Skip to content
Snippets Groups Projects
Commit 71a3ba63 authored by Виктория Суязова's avatar Виктория Суязова Committed by Anna Shestakova
Browse files

added sheba coare

parent fecffcf8
No related branches found
No related tags found
No related merge requests found
#include "../includeF/sfx_def.fi"
module sfx_sheba_coare
! modules used
! --------------------------------------------------------------------------------
#ifdef SFX_CHECK_NAN
use sfx_common
#endif
use sfx_data
use sfx_surface
use sfx_sheba_coare_param
#if defined(INCLUDE_CXX)
use iso_c_binding, only: C_LOC, C_PTR, C_INT, C_FLOAT
use C_FUNC
#endif
! --------------------------------------------------------------------------------
! directives list
! --------------------------------------------------------------------------------
implicit none
private
! --------------------------------------------------------------------------------
! public interface
! --------------------------------------------------------------------------------
public :: get_surface_fluxes
public :: get_surface_fluxes_vec
public :: get_psi_stable
public :: get_psi_a
public :: get_psi_convection
public :: get_psi_BD
integer z0m_id
integer z0t_id
! --------------------------------------------------------------------------------
! --------------------------------------------------------------------------------
type, public :: numericsType
integer :: maxiters_charnock = 10 !< maximum (actual) number of iterations in charnock roughness
integer :: maxiters_convection = 10 !< maximum (actual) number of iterations in charnock roughness
end type
! --------------------------------------------------------------------------------
#if defined(INCLUDE_CXX)
type, BIND(C), public :: sfx_sheba_coare_param_C
real(C_FLOAT) :: kappa
real(C_FLOAT) :: Pr_t_0_inv
real(C_FLOAT) :: Pr_t_inf_inv
real(C_FLOAT) :: alpha_m
real(C_FLOAT) :: alpha_h
real(C_FLOAT) :: gamma
real(C_FLOAT) :: zeta_a
real(C_FLOAT) :: a_m
real(C_FLOAT) :: b_m
real(C_FLOAT) :: a_h
real(C_FLOAT) :: b_h
real(C_FLOAT) :: c_h
real(C_FLOAT) :: beta_m
real(C_FLOAT) :: beta_h
end type
type, BIND(C), public :: sfx_sheba_coare_numericsType_C
integer(C_INT) :: maxiters_convection
integer(C_INT) :: maxiters_charnock
end type
INTERFACE
SUBROUTINE c_sheba_coare_compute_flux(sfx, meteo, model_param, surface_param, numerics, constants, grid_size) BIND(C, &
name="c_sheba_coare_compute_flux")
use sfx_data
use, intrinsic :: ISO_C_BINDING, ONLY: C_INT, C_PTR
Import :: sfx_sheba_coare_param_C, sfx_sheba_coare_numericsType_C
implicit none
integer(C_INT) :: grid_size
type(C_PTR), value :: sfx
type(C_PTR), value :: meteo
type(sfx_sheba_coare_param_C) :: model_param
type(sfx_surface_sheba_coare_param) :: surface_param
type(sfx_sheba_coare_numericsType_C) :: numerics
type(sfx_phys_constants) :: constants
END SUBROUTINE c_sheba_coare_compute_flux
END INTERFACE
#endif
contains
! --------------------------------------------------------------------------------
#if defined(INCLUDE_CXX)
subroutine set_c_struct_sfx_sheba_coare_param_values(sfx_model_param)
type (sfx_sheba_coare_param_C), intent(inout) :: sfx_model_param
sfx_model_param%kappa = kappa
sfx_model_param%Pr_t_0_inv = Pr_t_0_inv
sfx_model_param%Pr_t_inf_inv = Pr_t_inf_inv
sfx_model_param%alpha_m = alpha_m
sfx_model_param%alpha_h = alpha_h
sfx_model_param%gamma = gamma
sfx_model_param%zeta_a = zeta_a
sfx_model_param%a_m = a_m
sfx_model_param%b_m = b_m
sfx_model_param%a_h = a_h
sfx_model_param%b_h = b_h
sfx_model_param%c_h = c_h
sfx_model_param%c3 = beta_m
sfx_model_param%c4 = beta_h
end subroutine set_c_struct_sfx_sheba_coare_param_values
#endif
! --------------------------------------------------------------------------------
subroutine get_surface_fluxes_vec(sfx, meteo, numerics, n)
!< @brief surface flux calculation for array data
!< @details contains C/C++ & CUDA interface
! ----------------------------------------------------------------------------
type (sfxDataVecType), intent(inout) :: sfx
type (meteoDataVecType), intent(in) :: meteo
type (numericsType), intent(in) :: numerics
integer, intent(in) :: n
! ----------------------------------------------------------------------------
! --- local variables
type (meteoDataType) meteo_cell
type (sfxDataType) sfx_cell
integer i
! ----------------------------------------------------------------------------
#if defined(INCLUDE_CXX)
type (meteoDataVecTypeC), target :: meteo_c !< meteorological data (input)
type (sfxDataVecTypeC), target :: sfx_c !< surface flux data (output)
type(C_PTR) :: meteo_c_ptr, sfx_c_ptr
type (sfx_sheba_coare_param_C) :: model_param
type (sfx_surface_param) :: surface_param
type (sfx_sheba_coare_numericsType_C) :: numerics_c
type (sfx_phys_constants) :: phys_constants
numerics_c%maxiters_convection = numerics%maxiters_convection
numerics_c%maxiters_charnock = numerics%maxiters_charnock
phys_constants%Pr_m = Pr_m;
phys_constants%nu_air = nu_air;
phys_constants%g = g;
call set_c_struct_sfx_sheba_coare_param_values(model_param)
call set_c_struct_sfx_surface_param_values(surface_param)
call set_meteo_vec_c(meteo, meteo_c)
call set_sfx_vec_c(sfx, sfx_c)
meteo_c_ptr = C_LOC(meteo_c)
sfx_c_ptr = C_LOC(sfx_c)
call c_sheba_coare_compute_flux(sfx_c_ptr, meteo_c_ptr, model_param, surface_param, numerics_c, phys_constants, n)
#else
do i = 1, n
meteo_cell = meteoDataType(&
h = meteo%h(i), &
U = meteo%U(i), dT = meteo%dT(i), Tsemi = meteo%Tsemi(i), dQ = meteo%dQ(i), &
z0_m = meteo%z0_m(i), depth=meteo%depth(i), lai=meteo%lai(i), surface_type=meteo%surface_type(i))
call get_surface_fluxes(sfx_cell, meteo_cell, numerics)
call push_sfx_data(sfx, sfx_cell, i)
end do
#endif
end subroutine get_surface_fluxes_vec
! --------------------------------------------------------------------------------
! --------------------------------------------------------------------------------
subroutine get_surface_fluxes(sfx, meteo, numerics)
!< @brief surface flux calculation for single cell
!< @details contains C/C++ interface
! ----------------------------------------------------------------------------
#ifdef SFX_CHECK_NAN
use ieee_arithmetic
#endif
type (sfxDataType), intent(out) :: sfx
type (meteoDataType), intent(in) :: meteo
type (numericsType), intent(in) :: numerics
! ----------------------------------------------------------------------------
! --- meteo derived datatype name shadowing
! ----------------------------------------------------------------------------
real :: h !< constant flux layer height [m]
real :: U !< abs(wind speed) at 'h' [m/s]
real :: dT !< difference between potential temperature at 'h' and at surface [K]
real :: Tsemi !< semi-sum of potential temperature at 'h' and at surface [K]
real :: dQ !< difference between humidity at 'h' and at surface [g/g]
real :: z0_m !< surface aerodynamic roughness (should be < 0 for water bodies surface)
!real :: hpbl
real :: depth
real :: lai
integer :: surface_type
! ----------------------------------------------------------------------------
! --- local variables
! ----------------------------------------------------------------------------
real z0_t !< thermal roughness [m]
real B !< = ln(z0_m / z0_t) [n/d]
real h0_m, h0_t !< = h / z0_m, h / z0_h [n/d]
real u_dyn0 !< dynamic velocity in neutral conditions [m/s]
real Re !< roughness Reynolds number = u_dyn0 * z0_m / nu [n/d]
real zeta !< = z/L [n/d]
real Rib !< bulk Richardson number
real zeta_conv_lim !< z/L critical value for matching free convection limit [n/d]
real Rib_conv_lim !< Ri-bulk critical value for matching free convection limit [n/d]
real f_m_conv_lim !< stability function (momentum) value in free convection limit [n/d]
real f_h_conv_lim !< stability function (heat) value in free convection limit [n/d]
real psi_m, psi_h !< universal functions (momentum) & (heat) [n/d]
real psi0_m, psi0_h !< universal functions (momentum) & (heat) [n/d]
real z0_m1
! real psi_m_BD, psi_h_BD !< universal functions (momentum) & (heat) [n/d]
! real psi0_m_BD, psi0_h_BD !< universal functions (momentum) & (heat) [n/d]
! real psi_m_conv, psi_h_conv !< universal functions (momentum) & (heat) [n/d]
! real psi0_m_conv, psi0_h_conv !< universal functions (momentum) & (heat) [n/d]
real Udyn, Tdyn, Qdyn !< dynamic scales
real phi_m, phi_h !< stability functions (momentum) & (heat) [n/d]
real Km !< eddy viscosity coeff. at h [m^2/s]
real Pr_t_inv !< invese Prandt number [n/d]
real Cm, Ct !< transfer coeff. for (momentum) & (heat) [n/d]
!integer surface_type !< surface type = (ocean || land)
real c_wdyn
#ifdef SFX_CHECK_NAN
real NaN
#endif
! ----------------------------------------------------------------------------
#ifdef SFX_CHECK_NAN
! --- checking if arguments are finite
if (.not.(is_finite(meteo%U).and.is_finite(meteo%Tsemi).and.is_finite(meteo%dT).and.is_finite(meteo%dQ) &
.and.is_finite(meteo%z0_m).and.is_finite(meteo%h))) then
NaN = ieee_value(0.0, ieee_quiet_nan) ! setting NaN
sfx = sfxDataType(zeta = NaN, Rib = NaN, &
Re = NaN, B = NaN, z0_m = NaN, z0_t = NaN, &
Rib_conv_lim = NaN, &
Cm = NaN, Ct = NaN, Km = NaN, Pr_t_inv = NaN)
!Cm = NaN, Ct = NaN, Km = NaN, Pr_t_inv = NaN, c_wdyn = NaN)
return
end if
#endif
! --- shadowing names for clarity
U = meteo%U
Tsemi = meteo%Tsemi
dT = meteo%dT
dQ = meteo%dQ
h = meteo%h
z0_m1 = meteo%z0_m
depth = meteo%depth
lai = meteo%lai
surface_type=meteo%surface_type
!hpbl = meteo%hpbl
call get_dynamic_roughness_definition(surface_type, ocean_z0m_id, land_z0m_id, lake_z0m_id, snow_z0m_id, &
forest_z0m_id, usersf_z0m_id, ice_z0m_id, z0m_id)
call get_dynamic_roughness_all(z0_m, u_dyn0, U, depth, h, numerics%maxiters_charnock, z0_m1, z0m_id)
call get_thermal_roughness_definition(surface_type, ocean_z0t_id, land_z0t_id, lake_z0t_id, snow_z0t_id, &
forest_z0t_id, usersf_z0t_id, ice_z0t_id, z0t_id)
Re = u_dyn0 * z0_m / nu_air
call get_thermal_roughness_all(z0_t, B, z0_m, Re, u_dyn0, lai, z0t_id)
! --- define relative height
h0_m = h / z0_m
! --- define relative height [thermal]
h0_t = h / z0_t
! --- define Ri-bulk
Rib = (g / Tsemi) * h * (dT + 0.61e0 * Tsemi * dQ) / U**2
! --- define free convection transition zeta = z/L value
call get_convection_lim(zeta_conv_lim, Rib_conv_lim, f_m_conv_lim, f_h_conv_lim, &
h0_m, h0_t, B)
! --- get the fluxes
! ----------------------------------------------------------------------------
if (Rib > 0.0) then
! --- stable stratification block
! --- restrict bulk Ri value
! *: note that this value is written to output
! Rib = min(Rib, Rib_max)
call get_zeta_stable(zeta, Rib, h, z0_m, z0_t)
call get_psi_stable(psi_m, psi_h, zeta, zeta)
call get_psi_stable(psi0_m, psi0_h, zeta * z0_m / h, zeta * z0_t / h)
phi_m = 1.0 + (a_m * zeta * (1.0 + zeta)**(1.0 / 3.0)) / (1.0 + b_m * zeta)
phi_h = 1.0 + (a_h * zeta + b_h * zeta * zeta) / (1.0 + c_h * zeta + zeta * zeta)
Udyn = kappa * U / (log(h / z0_m) - (psi_m - psi0_m))
Tdyn = kappa * dT * Pr_t_0_inv / (log(h / z0_t) - (psi_h - psi0_h))
else if (Rib <= -0.001)then
call get_dynamic_scales(Udyn, Tdyn, Qdyn, zeta, psi_m, psi_h, psi0_m, psi0_h,&
U, Tsemi, dT, dQ, h, z0_m, z0_t, (g / Tsemi), numerics%maxiters_convection)
call get_phi_a(phi_m,phi_h,zeta)
!! call get_phi_a2(phi_m,phi_h,zeta)
!! call get_phi_a3(phi_m,phi_h,zeta)
!! print *, zeta,psi_m,psi_h,phi_m,phi_h
psi_m = (log(h / z0_m) - (psi_m - psi0_m))
psi_h = (log(h / z0_t) - (psi_h - psi0_h))
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!non-iterative version below is not debugged yet!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! call get_zeta_conv(zeta,Rib,h,z0_m,z0_t)
!
! call get_psi_a(psi_m, psi_h, zeta,zeta)
! call get_psi_a(psi0_m, psi0_h, zeta * z0_m / h, zeta * z0_t / h)
!
! Udyn = kappa * U / (log(h / z0_m) - (psi_m - psi0_m))
! Tdyn = kappa * dT * Pr_t_0_inv / (log(h / z0_t) - (psi_h - psi0_h))
!
! call get_phi_a(phi_m,phi_h,zeta)
!print *, zeta,psi_m,psi_h,phi_m,phi_h
!
! psi_m = (log(h / z0_m) - (psi_m - psi0_m))
! psi_h = (log(h / z0_t) - (psi_h - psi0_h))
else
! --- nearly neutral [-0.001, 0] block
call get_psi_neutral(psi_m, psi_h, h0_m, h0_t, B)
zeta = 0.0
phi_m = 1.0
phi_h = 1.0 / Pr_t_0_inv
Udyn = kappa * U / log(h / z0_m)
Tdyn = kappa * dT * Pr_t_0_inv / log(h / z0_t)
end if
! ----------------------------------------------------------------------------
! --- define transfer coeff. (momentum) & (heat)
if(Rib > 0)then
Cm = 0.0
if (U > 0.0) then
Cm = Udyn / U
end if
Ct = 0.0
if (abs(dT) > 0.0) then
Ct = Tdyn / dT
end if
else
Cm = kappa / psi_m
Ct = kappa / psi_h
end if
! --- define eddy viscosity & inverse Prandtl number
Km = kappa * Cm * U * h / phi_m
Pr_t_inv = phi_m / phi_h
! --- setting output
sfx = sfxDataType(zeta = zeta, Rib = Rib, &
Re = Re, B = B, z0_m = z0_m, z0_t = z0_t, &
Rib_conv_lim = Rib_conv_lim, &
Cm = Cm, Ct = Ct, Km = Km, Pr_t_inv = Pr_t_inv)
! Cm = Cm, Ct = Ct, Km = Km, Pr_t_inv = Pr_t_inv, c_wdyn = 0)
end subroutine get_surface_fluxes
! --------------------------------------------------------------------------------
! universal functions
! --------------------------------------------------------------------------------
subroutine get_psi_neutral(psi_m, psi_h, h0_m, h0_t, B)
!< @brief universal functions (momentum) & (heat): neutral case
! ----------------------------------------------------------------------------
real, intent(out) :: psi_m, psi_h !< universal functions
real, intent(in) :: h0_m, h0_t !< = z/z0_m, z/z0_h
real, intent(in) :: B !< = log(z0_m / z0_h)
! ----------------------------------------------------------------------------
psi_m = log(h0_m)
psi_h = log(h0_t) / Pr_t_0_inv
!*: this looks redundant z0_t = z0_m in case |B| ~ 0
if (abs(B) < 1.0e-10) psi_h = psi_m / Pr_t_0_inv
end subroutine
subroutine get_zeta_stable(zeta, Rib, h, z0_m, z0_t)
real,intent(out) :: zeta
real,intent(in) :: Rib, h, z0_m, z0_t
real :: Ribl, C1, A1, A2, lne, lnet
real :: psi_m, psi_h, psi0_m, psi0_h
Ribl = (Rib * Pr_t_0_inv) * (1 - z0_t / h) / ((1 - z0_m / h)**2)
call get_psi_stable(psi_m, psi_h, zeta_a, zeta_a)
call get_psi_stable(psi0_m, psi0_h, zeta_a * z0_m / h, zeta_a * z0_t / h)
lne = log(h/z0_m)
lnet = log(h/z0_t)
C1 = (lne**2)/lnet
A1 = ((lne - psi_m + psi0_m)**(2*(gamma-1))) &
& / ((zeta_a**(gamma-1))*((lnet-(psi_h-psi0_h)*Pr_t_0_inv)**(gamma-1)))
A2 = ((lne - psi_m + psi0_m)**2) / (lnet-(psi_h-psi0_h)*Pr_t_0_inv) - C1
zeta = C1 * Ribl + A1 * A2 * (Ribl**gamma)
end subroutine get_zeta_stable
subroutine get_psi_stable(psi_m, psi_h, zeta_m, zeta_h)
!< @brief universal functions (momentum) & (heat): neutral case
! ----------------------------------------------------------------------------
real, intent(out) :: psi_m, psi_h !< universal functions
real, intent(in) :: zeta_m, zeta_h !< = z/L
! ----------------------------------------------------------------------------
! --- local variables
real :: x_m, x_h
real :: q_m, q_h
! ----------------------------------------------------------------------------
q_m = ((1.0 - b_m) / b_m)**(1.0 / 3.0)
x_m = (1.0 + zeta_m)**(1.0 / 3.0)
psi_m = -3.0 * (a_m / b_m) * (x_m - 1.0) + 0.5 * (a_m / b_m) * q_m * (&
2.0 * log((x_m + q_m) / (1.0 + q_m)) - &
log((x_m * x_m - x_m * q_m + q_m * q_m) / (1.0 - q_m + q_m * q_m)) + &
2.0 * sqrt(3.0) * (&
atan((2.0 * x_m - q_m) / (sqrt(3.0) * q_m)) - &
atan((2.0 - q_m) / (sqrt(3.0) * q_m))))
q_h = sqrt(c_h * c_h - 4.0)
x_h = zeta_h
psi_h = -0.5 * b_h * log(1.0 + c_h * x_h + x_h * x_h) + &
((-a_h / q_h) + ((b_h * c_h) / (2.0 * q_h))) * (&
log((2.0 * x_h + c_h - q_h) / (2.0 * x_h + c_h + q_h)) - &
log((c_h - q_h) / (c_h + q_h)))
end subroutine get_psi_stable
subroutine get_psi_convection(psi_m, psi_h, zeta_m, zeta_h)
!< @brief Carl et al. 1973 with Grachev et al. 2000 corrections of beta_m, beta_h
! ----------------------------------------------------------------------------
real, intent(out) :: psi_m, psi_h !< universal functions [n/d]
real, intent(in) :: zeta_m, zeta_h !< = z/L [n/d]
real y
! ----------------------------------------------------------------------------
! beta_m = 10, beta_h = 34
y = (1.0 - beta_m * zeta_m)**(1/3.)
psi_m = 3.0 * 0.5 *log((y*y + y + 1.0)/3.) - sqrt(3.0) *atan((2.0*y + 1)/sqrt(3.0)) + pi/sqrt(3.0)
y = (1.0 - beta_h * zeta_h)**(1/3.)
psi_h = 3.0 * 0.5 *log((y*y + y + 1.0)/3.) - sqrt(3.0) *atan((2.0*y + 1)/sqrt(3.0)) + pi/sqrt(3.0)
end subroutine
subroutine get_psi_BD(psi_m, psi_h, zeta_m, zeta_h)
!< @brief universal functions (momentum) & (heat): neutral case
! ----------------------------------------------------------------------------
real, intent(out) :: psi_m, psi_h !< universal functions
real, intent(in) :: zeta_m,zeta_h !< = z/L
! ----------------------------------------------------------------------------
! --- local variables
real :: x_m, x_h
! ----------------------------------------------------------------------------
x_m = (1.0 - alpha_m * zeta_m)**(0.25)
x_h = (1.0 - alpha_h * zeta_h)**(0.25)
psi_m = (4.0 * atan(1.0) / 2.0) + 2.0 * log(0.5 * (1.0 + x_m)) + log(0.5 * (1.0 + x_m * x_m)) - 2.0 * atan(x_m)
psi_h = 2.0 * log(0.5 * (1.0 + x_h * x_h))
end subroutine
subroutine get_phi_a(phi_m, phi_h, zeta)
!< @brief universal functions (momentum) & (heat): neutral case
! ----------------------------------------------------------------------------
real, intent(out) :: phi_m, phi_h !< universal functions
real, intent(in) :: zeta !< = z/L
! ----------------------------------------------------------------------------
! --- local variables
real :: x_m, x_h, y
real :: psi_m_bd,psi_h_bd,psi_m_conv,psi_h_conv
real :: dpsi_m_bd,dpsi_h_bd,dpsi_m_conv,dpsi_h_conv
! ----------------------------------------------------------------------------
call get_psi_BD(psi_m_bd,psi_h_bd,zeta,zeta)
call get_psi_convection(psi_m_conv,psi_h_conv,zeta,zeta)
x_m = (1.0 - alpha_m * zeta)**(0.25)
x_h = (1.0 - alpha_h * zeta)**(0.25)
dpsi_m_bd = -(alpha_m/(2.0*(x_m**3))) * (1/(1+x_m) + (x_m-1)/(1+x_m**2))
dpsi_h_bd = -alpha_h / ((x_h**2)*(1+x_h**2))
y = (1 - beta_m * zeta)**(1/3.)
dpsi_m_conv = -beta_m/(y*(y**2 + y + 1))
y = (1 - beta_h * zeta)**(1/3.)
dpsi_h_conv = -beta_h/(y*(y**2 + y + 1))
phi_m = 1.0 - zeta * (dpsi_m_bd/(1.0+zeta**2) - psi_m_bd*2.0*zeta/((1.0+zeta**2)**2) + &
dpsi_m_conv/(1.0+1.0/(zeta**2)) + 2.0*psi_m_conv/((zeta**3)*((1.0+1.0/(zeta**2))**2)))
phi_h = 1.0 - zeta * (dpsi_h_bd/(1.0+zeta**2) - psi_h_bd*2.0*zeta/((1.0+zeta**2)**2) + &
dpsi_h_conv/(1.0+1.0/(zeta**2)) + 2.0*psi_h_conv/((zeta**3)*((1.0+1.0/(zeta**2))**2)))
end subroutine
subroutine get_phi_a2(phi_m,phi_h,zeta)
! ----------------------------------------------------------------------------
real, intent(out) :: phi_m, phi_h !< universal functions
real, intent(in) :: zeta !< = z/L
! ----------------------------------------------------------------------------
! --- local variables
real :: phi_m_bd,phi_h_bd,phi_m_conv,phi_h_conv
call get_phi_convection(phi_m_conv, phi_h_conv, zeta)
call get_phi_BD(phi_m_BD, phi_h_BD, zeta)
phi_m = (phi_m_BD + (zeta**2) * phi_m_conv) / (1 + zeta**2)
phi_h = (phi_h_BD + (zeta**2) * phi_h_conv) / (1 + zeta**2)
end subroutine
subroutine get_phi_a3(phi_m,phi_h,zeta)
! ----------------------------------------------------------------------------
real, intent(out) :: phi_m, phi_h !< universal functions
real, intent(in) :: zeta !< = z/L
! ----------------------------------------------------------------------------
! --- local variables
real :: phi_m_bd,phi_h_bd,phi_m_conv,phi_h_conv
real :: psi_m_a,psi_h_a,psi_m_conv,psi_h_conv,psi_m_BD,psi_h_BD
call get_phi_convection(phi_m_conv, phi_h_conv, zeta)
call get_phi_BD(phi_m_BD, phi_h_BD, zeta)
call get_psi_convection(psi_m_conv, psi_h_conv, zeta,zeta)
call get_psi_BD(psi_m_BD, psi_h_BD, zeta,zeta)
! call get_psi_a(psi_m_a, psi_h_a, zeta,zeta)
phi_m = (1-phi_m_BD)/(zeta*(1+zeta**2)) + 2*zeta*(psi_m_conv-psi_m_BD)/((1+zeta**2)**2) &
+ zeta*(1-phi_m_conv)/((1+zeta**2)**2)
phi_h = (1-phi_h_BD)/(zeta*(1+zeta**2)) + 2*zeta*(psi_h_conv-psi_h_BD)/((1+zeta**2)**2) &
+ zeta*(1-phi_h_conv)/((1+zeta**2)**2)
end subroutine
subroutine get_phi_BD(phi_m, phi_h, zeta)
!< @brief stability functions (momentum) & (heat): neutral case
! ----------------------------------------------------------------------------
real, intent(out) :: phi_m, phi_h !< stability functions
real, intent(in) :: zeta !< = z/L
! ----------------------------------------------------------------------------
phi_m = (1.0 - alpha_m * zeta)**(-0.25)
phi_h = (1.0 - alpha_h * zeta)**(-0.5)
end subroutine
subroutine get_phi_convection(phi_m, phi_h, zeta)
!< @brief stability functions (momentum) & (heat): neutral case
! ----------------------------------------------------------------------------
real, intent(out) :: phi_m, phi_h !< stability functions
real, intent(in) :: zeta !< = z/L
! ----------------------------------------------------------------------------
phi_m = (1.0 - beta_m * zeta)**(-1.0/3.0)
phi_h = (1.0 - beta_h * zeta)**(-1.0/3.0)
end subroutine
!< @brief get dynamic scales
! --------------------------------------------------------------------------------
subroutine get_dynamic_scales(Udyn, Tdyn, Qdyn, zeta, psi_m, psi_h, &
psi0_m,psi0_h, U, Tsemi, dT, dQ, z, z0_m, z0_t, beta, maxiters)
! ----------------------------------------------------------------------------
real, intent(out) :: Udyn, Tdyn, Qdyn !< dynamic scales
real, intent(out) :: zeta !< = z/L
real, intent(out) :: psi_m,psi_h,psi0_m,psi0_h
real, intent(in) :: U !< abs(wind speed) at z
real, intent(in) :: Tsemi !< semi-sum of temperature at z and at surface
real, intent(in) :: dT, dQ !< temperature & humidity difference between z and at surface
real, intent(in) :: z !< constant flux layer height
real, intent(in) :: z0_m, z0_t !< roughness parameters
real, intent(in) :: beta !< buoyancy parameter
integer, intent(in) :: maxiters !< maximum number of iterations
! ----------------------------------------------------------------------------
! --- local variables
real :: Linv
integer :: i
! ----------------------------------------------------------------------------
Udyn = kappa * U / log(z / z0_m)
Tdyn = kappa * dT * Pr_t_0_inv / log(z / z0_t)
Qdyn = kappa * dQ * Pr_t_0_inv / log(z / z0_t)
zeta = 0.0
! --- no wind
if (Udyn < 1e-5) return
Linv = kappa * beta * (Tdyn + 0.61 * Qdyn * Tsemi) / (Udyn * Udyn)
zeta = z * Linv
psi_m = log(z/z0_m)
psi_h = log(z/z0_t) / Pr_t_0_inv
psi0_m = log(z/z0_m)
psi0_h = log(z/z0_t) / Pr_t_0_inv
! --- near neutral case
! if (Linv < 1e-5) return
do i = 1, maxiters
call get_psi_a(psi_m, psi_h, zeta, zeta)
call get_psi_a(psi0_m, psi0_h, z0_m * Linv, z0_t * Linv)
Udyn = kappa * U / (log(z / z0_m) - (psi_m - psi0_m))
Tdyn = kappa * dT * Pr_t_0_inv / (log(z / z0_t) - (psi_h - psi0_h))
Qdyn = kappa * dQ * Pr_t_0_inv / (log(z / z0_t) - (psi_h - psi0_h))
if (Udyn < 1e-5) exit
Linv = kappa * beta * (Tdyn + 0.61 * Qdyn * Tsemi) / (Udyn * Udyn)
zeta = z * Linv
end do
end subroutine get_dynamic_scales
subroutine get_psi_a(psi_m,psi_h,zeta_m, zeta_h)
! ----------------------------------------------------------------------------
real, intent(out) :: psi_m, psi_h !< universal functions
real, intent(in) :: zeta_m,zeta_h !< = z/L
! ----------------------------------------------------------------------------
! --- local variables
real :: psi_m_bd,psi_h_bd,psi_m_conv,psi_h_conv
call get_psi_convection(psi_m_conv, psi_h_conv, zeta_m, zeta_h)
call get_psi_BD(psi_m_BD, psi_h_BD, zeta_m, zeta_h)
psi_m = (psi_m_BD + (zeta_m**2) * psi_m_conv) / (1 + zeta_m**2)
psi_h = (psi_h_BD + (zeta_h**2) * psi_h_conv) / (1 + zeta_h**2)
end subroutine
subroutine get_convection_lim(zeta_lim, Rib_lim, f_m_lim, f_h_lim, &
h0_m, h0_t, B)
! ----------------------------------------------------------------------------
real, intent(out) :: zeta_lim !< limiting value of z/L
real, intent(out) :: Rib_lim !< limiting value of Ri-bulk
real, intent(out) :: f_m_lim, f_h_lim !< limiting values of universal functions shortcuts
real, intent(in) :: h0_m, h0_t !< = z/z0_m, z/z0_h [n/d]
real, intent(in) :: B !< = log(z0_m / z0_h) [n/d]
! ----------------------------------------------------------------------------
! --- local variables
real :: psi_m, psi_h
real :: f_m, f_h
real :: c
! ----------------------------------------------------------------------------
! --- define limiting value of zeta = z / L
c = (Pr_t_inf_inv / Pr_t_0_inv)**4
zeta_lim = (2.0 * alpha_h - c * alpha_m - &
sqrt((c * alpha_m)**2 + 4.0 * c * alpha_h * (alpha_h - alpha_m))) / (2.0 * alpha_h**2)
f_m_lim = f_m_conv(zeta_lim)
f_h_lim = f_h_conv(zeta_lim)
! --- universal functions
f_m = zeta_lim / h0_m
f_h = zeta_lim / h0_t
if (abs(B) < 1.0e-10) f_h = f_m
f_m = (1.0 - alpha_m * f_m)**0.25
f_h = sqrt(1.0 - alpha_h_fix * f_h)
psi_m = 2.0 * (atan(f_m_lim) - atan(f_m)) + alog((f_m_lim - 1.0) * (f_m + 1.0)/((f_m_lim + 1.0) * (f_m - 1.0)))
psi_h = alog((f_h_lim - 1.0) * (f_h + 1.0)/((f_h_lim + 1.0) * (f_h - 1.0))) / Pr_t_0_inv
! --- bulk Richardson number
Rib_lim = zeta_lim * psi_h / (psi_m * psi_m)
end subroutine
! convection universal functions shortcuts
! --------------------------------------------------------------------------------
function f_m_conv(zeta)
! ----------------------------------------------------------------------------
real :: f_m_conv
real, intent(in) :: zeta
! ----------------------------------------------------------------------------
f_m_conv = (1.0 - alpha_m * zeta)**0.25
end function f_m_conv
function f_h_conv(zeta)
! ----------------------------------------------------------------------------
real :: f_h_conv
real, intent(in) :: zeta
! ----------------------------------------------------------------------------
f_h_conv = (1.0 - alpha_h * zeta)**0.5
end function f_h_conv
subroutine get_zeta_conv(zeta,Rib,z,z0m,z0t)
!< @brief Srivastava and Sharan 2017, Abdella and Assefa 2005
! ----------------------------------------------------------------------------
real, intent(out) :: zeta !< = z/L [n/d]
real, intent(in) :: Rib !
real, intent(in) :: z,z0m,z0t !
real A,a0,a1,a2,r,q,s1,s2,theta,delta
real ksi_m,ksi_h,ksi_m_0,ksi_m_inf,ksi_h_0,ksi_h_inf
real f_m_inf,f_h_inf
real psi_m_zeta,psi_m_zeta0,psi_h_zeta,psi_h_zeta0
! ----------------------------------------------------------------------------
A = ( 1 / Pr_t_0_inv ) * ( (1 - z0m/z)**2) * log(z/z0t) / ( (1 - z0t/z) * ((log(z/z0m))**2) )
call get_psi_convection(psi_m_zeta,psi_h_zeta,Rib/A, Rib/A)
call get_psi_convection(psi_m_zeta0,psi_h_zeta0, (z0m/z) * (Rib/A),(z0t/z) * (Rib/A))
f_m_inf = 1 - (psi_m_zeta - psi_m_zeta0) / log(z/z0m)
f_h_inf = 1 - (psi_h_zeta - psi_h_zeta0) / log(z/z0t)
ksi_m_0 = ((z0m / z) - 1.0) / log(z0m/z)
ksi_h_0 = ((z0t / z) - 1.0) / log(z0t/z)
ksi_m_inf = (A / (beta_m * Rib)) * (1.0 - 1.0 / (f_m_inf**4))
ksi_h_inf = (A / (beta_h * Rib)) * (1.0 - ((1.0 / Pr_t_0_inv)**2) / (f_h_inf**2))
ksi_m = cc1 * ksi_m_inf + cc2 * ksi_m_0
ksi_h = cc3 * ksi_h_inf + cc4 * ksi_h_0
a0 = (1 / (beta_m * ksi_m)) * ((Rib / A)**2)
a1 = -1 * (beta_h * ksi_h / (beta_m * ksi_m)) * ((Rib / A)**2)
a2 = -1 / (beta_m * ksi_m)
r = (9.0 * (a1 * a2 - 3 * a0) - 2.0 * (a2**3)) / 54.0
q = (3.0 * a1 - a2*a2) / 9.0
delta = q**3 + r**2
s1 = (r + sqrt(delta))**(1./3.)
s2 = (r - sqrt(delta))**(1./3.)
theta = 1.0 / cos(r / sqrt(-1 * (q**3)))
if(delta <= 0.0)then
zeta = 2.0 * sqrt(-1.0 * q) * cos((theta + 2.0 * pi)/3.0) + 1 /(3.0 * beta_m * ksi_m)
else
s1 = cmplx(r + delta**0.5)**(1./3.)
s2 = cmplx(r - delta**0.5)**(1./3.)
zeta = -1*(real(real(s1)) + real(real(s2)) + 1.0 /(3.0 * beta_m * ksi_m))
endif
end subroutine
end module sfx_sheba_coare
\ No newline at end of file
module sfx_sheba_coare_param
!< @brief noit surface flux model parameters
!< @details all in SI units
! modules used
! --------------------------------------------------------------------------------
use sfx_phys_const
! --------------------------------------------------------------------------------
! directives list
! --------------------------------------------------------------------------------
implicit none
! --------------------------------------------------------------------------------
!< von Karman constant [n/d]
real, parameter :: kappa = 0.40
!< inverse Prandtl (turbulent) number in neutral conditions [n/d]
real, parameter :: Pr_t_0_inv = 1.15 !1.0
!< inverse Prandtl (turbulent) number in free convection [n/d]
real, parameter :: Pr_t_inf_inv = 3.5
real, parameter :: pi = 3.14
!< stability function coeff. (unstable) Grachev et al. 2000
real, parameter :: beta_m = 10.0
real, parameter :: beta_h = 34.0
real, parameter :: cc1 = 1.00
real, parameter :: cc2 = 0.001
real, parameter :: cc3 = 0.8
real, parameter :: cc4 = 0.008
!< stability function coeff. Dyer 1974
real, parameter :: alpha_m = 16.0
real, parameter :: alpha_h = 16.0
real, parameter :: alpha_h_fix = 16.0
!< stability function coeff. (stable)
real, parameter :: a_m = 5.0
real, parameter :: b_m = a_m / 6.5
real, parameter :: a_h = 5.0
real, parameter :: b_h = 5.0
real, parameter :: c_h = 3.0
real, parameter :: gamma = 2.91, zeta_a = 3.6 ! for stable psi
end module sfx_sheba_coare_param
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment