Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
S
sfx
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
inmcm-mirror
sfx
Commits
71a3ba63
Commit
71a3ba63
authored
3 weeks ago
by
Виктория Суязова
Committed by
Anna Shestakova
3 weeks ago
Browse files
Options
Downloads
Patches
Plain Diff
added sheba coare
parent
fecffcf8
No related branches found
No related tags found
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
srcF/sfx_sheba_coare.f90
+805
-0
805 additions, 0 deletions
srcF/sfx_sheba_coare.f90
srcF/sfx_sheba_coare_param.f90
+49
-0
49 additions, 0 deletions
srcF/sfx_sheba_coare_param.f90
with
854 additions
and
0 deletions
srcF/sfx_sheba_coare.f90
0 → 100644
+
805
−
0
View file @
71a3ba63
#include "../includeF/sfx_def.fi"
module
sfx_sheba_coare
! modules used
! --------------------------------------------------------------------------------
#ifdef SFX_CHECK_NAN
use
sfx_common
#endif
use
sfx_data
use
sfx_surface
use
sfx_sheba_coare_param
#if defined(INCLUDE_CXX)
use
iso_c_binding
,
only
:
C_LOC
,
C_PTR
,
C_INT
,
C_FLOAT
use
C_FUNC
#endif
! --------------------------------------------------------------------------------
! directives list
! --------------------------------------------------------------------------------
implicit
none
private
! --------------------------------------------------------------------------------
! public interface
! --------------------------------------------------------------------------------
public
::
get_surface_fluxes
public
::
get_surface_fluxes_vec
public
::
get_psi_stable
public
::
get_psi_a
public
::
get_psi_convection
public
::
get_psi_BD
integer
z0m_id
integer
z0t_id
! --------------------------------------------------------------------------------
! --------------------------------------------------------------------------------
type
,
public
::
numericsType
integer
::
maxiters_charnock
=
10
!< maximum (actual) number of iterations in charnock roughness
integer
::
maxiters_convection
=
10
!< maximum (actual) number of iterations in charnock roughness
end
type
! --------------------------------------------------------------------------------
#if defined(INCLUDE_CXX)
type
,
BIND
(
C
),
public
::
sfx_sheba_coare_param_C
real
(
C_FLOAT
)
::
kappa
real
(
C_FLOAT
)
::
Pr_t_0_inv
real
(
C_FLOAT
)
::
Pr_t_inf_inv
real
(
C_FLOAT
)
::
alpha_m
real
(
C_FLOAT
)
::
alpha_h
real
(
C_FLOAT
)
::
gamma
real
(
C_FLOAT
)
::
zeta_a
real
(
C_FLOAT
)
::
a_m
real
(
C_FLOAT
)
::
b_m
real
(
C_FLOAT
)
::
a_h
real
(
C_FLOAT
)
::
b_h
real
(
C_FLOAT
)
::
c_h
real
(
C_FLOAT
)
::
beta_m
real
(
C_FLOAT
)
::
beta_h
end
type
type
,
BIND
(
C
),
public
::
sfx_sheba_coare_numericsType_C
integer
(
C_INT
)
::
maxiters_convection
integer
(
C_INT
)
::
maxiters_charnock
end
type
INTERFACE
SUBROUTINE
c_sheba_coare_compute_flux
(
sfx
,
meteo
,
model_param
,
surface_param
,
numerics
,
constants
,
grid_size
)
BIND
(
C
,
&
name
=
"c_sheba_coare_compute_flux"
)
use
sfx_data
use
,
intrinsic
::
ISO_C_BINDING
,
ONLY
:
C_INT
,
C_PTR
Import
::
sfx_sheba_coare_param_C
,
sfx_sheba_coare_numericsType_C
implicit
none
integer
(
C_INT
)
::
grid_size
type
(
C_PTR
),
value
::
sfx
type
(
C_PTR
),
value
::
meteo
type
(
sfx_sheba_coare_param_C
)
::
model_param
type
(
sfx_surface_sheba_coare_param
)
::
surface_param
type
(
sfx_sheba_coare_numericsType_C
)
::
numerics
type
(
sfx_phys_constants
)
::
constants
END
SUBROUTINE
c_sheba_coare_compute_flux
END
INTERFACE
#endif
contains
! --------------------------------------------------------------------------------
#if defined(INCLUDE_CXX)
subroutine
set_c_struct_sfx_sheba_coare_param_values
(
sfx_model_param
)
type
(
sfx_sheba_coare_param_C
),
intent
(
inout
)
::
sfx_model_param
sfx_model_param
%
kappa
=
kappa
sfx_model_param
%
Pr_t_0_inv
=
Pr_t_0_inv
sfx_model_param
%
Pr_t_inf_inv
=
Pr_t_inf_inv
sfx_model_param
%
alpha_m
=
alpha_m
sfx_model_param
%
alpha_h
=
alpha_h
sfx_model_param
%
gamma
=
gamma
sfx_model_param
%
zeta_a
=
zeta_a
sfx_model_param
%
a_m
=
a_m
sfx_model_param
%
b_m
=
b_m
sfx_model_param
%
a_h
=
a_h
sfx_model_param
%
b_h
=
b_h
sfx_model_param
%
c_h
=
c_h
sfx_model_param
%
c3
=
beta_m
sfx_model_param
%
c4
=
beta_h
end
subroutine
set_c_struct_sfx_sheba_coare_param_values
#endif
! --------------------------------------------------------------------------------
subroutine
get_surface_fluxes_vec
(
sfx
,
meteo
,
numerics
,
n
)
!< @brief surface flux calculation for array data
!< @details contains C/C++ & CUDA interface
! ----------------------------------------------------------------------------
type
(
sfxDataVecType
),
intent
(
inout
)
::
sfx
type
(
meteoDataVecType
),
intent
(
in
)
::
meteo
type
(
numericsType
),
intent
(
in
)
::
numerics
integer
,
intent
(
in
)
::
n
! ----------------------------------------------------------------------------
! --- local variables
type
(
meteoDataType
)
meteo_cell
type
(
sfxDataType
)
sfx_cell
integer
i
! ----------------------------------------------------------------------------
#if defined(INCLUDE_CXX)
type
(
meteoDataVecTypeC
),
target
::
meteo_c
!< meteorological data (input)
type
(
sfxDataVecTypeC
),
target
::
sfx_c
!< surface flux data (output)
type
(
C_PTR
)
::
meteo_c_ptr
,
sfx_c_ptr
type
(
sfx_sheba_coare_param_C
)
::
model_param
type
(
sfx_surface_param
)
::
surface_param
type
(
sfx_sheba_coare_numericsType_C
)
::
numerics_c
type
(
sfx_phys_constants
)
::
phys_constants
numerics_c
%
maxiters_convection
=
numerics
%
maxiters_convection
numerics_c
%
maxiters_charnock
=
numerics
%
maxiters_charnock
phys_constants
%
Pr_m
=
Pr_m
;
phys_constants
%
nu_air
=
nu_air
;
phys_constants
%
g
=
g
;
call
set_c_struct_sfx_sheba_coare_param_values
(
model_param
)
call
set_c_struct_sfx_surface_param_values
(
surface_param
)
call
set_meteo_vec_c
(
meteo
,
meteo_c
)
call
set_sfx_vec_c
(
sfx
,
sfx_c
)
meteo_c_ptr
=
C_LOC
(
meteo_c
)
sfx_c_ptr
=
C_LOC
(
sfx_c
)
call
c_sheba_coare_compute_flux
(
sfx_c_ptr
,
meteo_c_ptr
,
model_param
,
surface_param
,
numerics_c
,
phys_constants
,
n
)
#else
do
i
=
1
,
n
meteo_cell
=
meteoDataType
(&
h
=
meteo
%
h
(
i
),
&
U
=
meteo
%
U
(
i
),
dT
=
meteo
%
dT
(
i
),
Tsemi
=
meteo
%
Tsemi
(
i
),
dQ
=
meteo
%
dQ
(
i
),
&
z0_m
=
meteo
%
z0_m
(
i
),
depth
=
meteo
%
depth
(
i
),
lai
=
meteo
%
lai
(
i
),
surface_type
=
meteo
%
surface_type
(
i
))
call
get_surface_fluxes
(
sfx_cell
,
meteo_cell
,
numerics
)
call
push_sfx_data
(
sfx
,
sfx_cell
,
i
)
end
do
#endif
end
subroutine
get_surface_fluxes_vec
! --------------------------------------------------------------------------------
! --------------------------------------------------------------------------------
subroutine
get_surface_fluxes
(
sfx
,
meteo
,
numerics
)
!< @brief surface flux calculation for single cell
!< @details contains C/C++ interface
! ----------------------------------------------------------------------------
#ifdef SFX_CHECK_NAN
use
ieee_arithmetic
#endif
type
(
sfxDataType
),
intent
(
out
)
::
sfx
type
(
meteoDataType
),
intent
(
in
)
::
meteo
type
(
numericsType
),
intent
(
in
)
::
numerics
! ----------------------------------------------------------------------------
! --- meteo derived datatype name shadowing
! ----------------------------------------------------------------------------
real
::
h
!< constant flux layer height [m]
real
::
U
!< abs(wind speed) at 'h' [m/s]
real
::
dT
!< difference between potential temperature at 'h' and at surface [K]
real
::
Tsemi
!< semi-sum of potential temperature at 'h' and at surface [K]
real
::
dQ
!< difference between humidity at 'h' and at surface [g/g]
real
::
z0_m
!< surface aerodynamic roughness (should be < 0 for water bodies surface)
!real :: hpbl
real
::
depth
real
::
lai
integer
::
surface_type
! ----------------------------------------------------------------------------
! --- local variables
! ----------------------------------------------------------------------------
real
z0_t
!< thermal roughness [m]
real
B
!< = ln(z0_m / z0_t) [n/d]
real
h0_m
,
h0_t
!< = h / z0_m, h / z0_h [n/d]
real
u_dyn0
!< dynamic velocity in neutral conditions [m/s]
real
Re
!< roughness Reynolds number = u_dyn0 * z0_m / nu [n/d]
real
zeta
!< = z/L [n/d]
real
Rib
!< bulk Richardson number
real
zeta_conv_lim
!< z/L critical value for matching free convection limit [n/d]
real
Rib_conv_lim
!< Ri-bulk critical value for matching free convection limit [n/d]
real
f_m_conv_lim
!< stability function (momentum) value in free convection limit [n/d]
real
f_h_conv_lim
!< stability function (heat) value in free convection limit [n/d]
real
psi_m
,
psi_h
!< universal functions (momentum) & (heat) [n/d]
real
psi0_m
,
psi0_h
!< universal functions (momentum) & (heat) [n/d]
real
z0_m1
! real psi_m_BD, psi_h_BD !< universal functions (momentum) & (heat) [n/d]
! real psi0_m_BD, psi0_h_BD !< universal functions (momentum) & (heat) [n/d]
! real psi_m_conv, psi_h_conv !< universal functions (momentum) & (heat) [n/d]
! real psi0_m_conv, psi0_h_conv !< universal functions (momentum) & (heat) [n/d]
real
Udyn
,
Tdyn
,
Qdyn
!< dynamic scales
real
phi_m
,
phi_h
!< stability functions (momentum) & (heat) [n/d]
real
Km
!< eddy viscosity coeff. at h [m^2/s]
real
Pr_t_inv
!< invese Prandt number [n/d]
real
Cm
,
Ct
!< transfer coeff. for (momentum) & (heat) [n/d]
!integer surface_type !< surface type = (ocean || land)
real
c_wdyn
#ifdef SFX_CHECK_NAN
real
NaN
#endif
! ----------------------------------------------------------------------------
#ifdef SFX_CHECK_NAN
! --- checking if arguments are finite
if
(
.not.
(
is_finite
(
meteo
%
U
)
.and.
is_finite
(
meteo
%
Tsemi
)
.and.
is_finite
(
meteo
%
dT
)
.and.
is_finite
(
meteo
%
dQ
)
&
.and.
is_finite
(
meteo
%
z0_m
)
.and.
is_finite
(
meteo
%
h
)))
then
NaN
=
ieee_value
(
0.0
,
ieee_quiet_nan
)
! setting NaN
sfx
=
sfxDataType
(
zeta
=
NaN
,
Rib
=
NaN
,
&
Re
=
NaN
,
B
=
NaN
,
z0_m
=
NaN
,
z0_t
=
NaN
,
&
Rib_conv_lim
=
NaN
,
&
Cm
=
NaN
,
Ct
=
NaN
,
Km
=
NaN
,
Pr_t_inv
=
NaN
)
!Cm = NaN, Ct = NaN, Km = NaN, Pr_t_inv = NaN, c_wdyn = NaN)
return
end
if
#endif
! --- shadowing names for clarity
U
=
meteo
%
U
Tsemi
=
meteo
%
Tsemi
dT
=
meteo
%
dT
dQ
=
meteo
%
dQ
h
=
meteo
%
h
z0_m1
=
meteo
%
z0_m
depth
=
meteo
%
depth
lai
=
meteo
%
lai
surface_type
=
meteo
%
surface_type
!hpbl = meteo%hpbl
call
get_dynamic_roughness_definition
(
surface_type
,
ocean_z0m_id
,
land_z0m_id
,
lake_z0m_id
,
snow_z0m_id
,
&
forest_z0m_id
,
usersf_z0m_id
,
ice_z0m_id
,
z0m_id
)
call
get_dynamic_roughness_all
(
z0_m
,
u_dyn0
,
U
,
depth
,
h
,
numerics
%
maxiters_charnock
,
z0_m1
,
z0m_id
)
call
get_thermal_roughness_definition
(
surface_type
,
ocean_z0t_id
,
land_z0t_id
,
lake_z0t_id
,
snow_z0t_id
,
&
forest_z0t_id
,
usersf_z0t_id
,
ice_z0t_id
,
z0t_id
)
Re
=
u_dyn0
*
z0_m
/
nu_air
call
get_thermal_roughness_all
(
z0_t
,
B
,
z0_m
,
Re
,
u_dyn0
,
lai
,
z0t_id
)
! --- define relative height
h0_m
=
h
/
z0_m
! --- define relative height [thermal]
h0_t
=
h
/
z0_t
! --- define Ri-bulk
Rib
=
(
g
/
Tsemi
)
*
h
*
(
dT
+
0.61e0
*
Tsemi
*
dQ
)
/
U
**
2
! --- define free convection transition zeta = z/L value
call
get_convection_lim
(
zeta_conv_lim
,
Rib_conv_lim
,
f_m_conv_lim
,
f_h_conv_lim
,
&
h0_m
,
h0_t
,
B
)
! --- get the fluxes
! ----------------------------------------------------------------------------
if
(
Rib
>
0.0
)
then
! --- stable stratification block
! --- restrict bulk Ri value
! *: note that this value is written to output
! Rib = min(Rib, Rib_max)
call
get_zeta_stable
(
zeta
,
Rib
,
h
,
z0_m
,
z0_t
)
call
get_psi_stable
(
psi_m
,
psi_h
,
zeta
,
zeta
)
call
get_psi_stable
(
psi0_m
,
psi0_h
,
zeta
*
z0_m
/
h
,
zeta
*
z0_t
/
h
)
phi_m
=
1.0
+
(
a_m
*
zeta
*
(
1.0
+
zeta
)
**
(
1.0
/
3.0
))
/
(
1.0
+
b_m
*
zeta
)
phi_h
=
1.0
+
(
a_h
*
zeta
+
b_h
*
zeta
*
zeta
)
/
(
1.0
+
c_h
*
zeta
+
zeta
*
zeta
)
Udyn
=
kappa
*
U
/
(
log
(
h
/
z0_m
)
-
(
psi_m
-
psi0_m
))
Tdyn
=
kappa
*
dT
*
Pr_t_0_inv
/
(
log
(
h
/
z0_t
)
-
(
psi_h
-
psi0_h
))
else
if
(
Rib
<=
-0.001
)
then
call
get_dynamic_scales
(
Udyn
,
Tdyn
,
Qdyn
,
zeta
,
psi_m
,
psi_h
,
psi0_m
,
psi0_h
,&
U
,
Tsemi
,
dT
,
dQ
,
h
,
z0_m
,
z0_t
,
(
g
/
Tsemi
),
numerics
%
maxiters_convection
)
call
get_phi_a
(
phi_m
,
phi_h
,
zeta
)
!! call get_phi_a2(phi_m,phi_h,zeta)
!! call get_phi_a3(phi_m,phi_h,zeta)
!! print *, zeta,psi_m,psi_h,phi_m,phi_h
psi_m
=
(
log
(
h
/
z0_m
)
-
(
psi_m
-
psi0_m
))
psi_h
=
(
log
(
h
/
z0_t
)
-
(
psi_h
-
psi0_h
))
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!non-iterative version below is not debugged yet!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! call get_zeta_conv(zeta,Rib,h,z0_m,z0_t)
!
! call get_psi_a(psi_m, psi_h, zeta,zeta)
! call get_psi_a(psi0_m, psi0_h, zeta * z0_m / h, zeta * z0_t / h)
!
! Udyn = kappa * U / (log(h / z0_m) - (psi_m - psi0_m))
! Tdyn = kappa * dT * Pr_t_0_inv / (log(h / z0_t) - (psi_h - psi0_h))
!
! call get_phi_a(phi_m,phi_h,zeta)
!print *, zeta,psi_m,psi_h,phi_m,phi_h
!
! psi_m = (log(h / z0_m) - (psi_m - psi0_m))
! psi_h = (log(h / z0_t) - (psi_h - psi0_h))
else
! --- nearly neutral [-0.001, 0] block
call
get_psi_neutral
(
psi_m
,
psi_h
,
h0_m
,
h0_t
,
B
)
zeta
=
0.0
phi_m
=
1.0
phi_h
=
1.0
/
Pr_t_0_inv
Udyn
=
kappa
*
U
/
log
(
h
/
z0_m
)
Tdyn
=
kappa
*
dT
*
Pr_t_0_inv
/
log
(
h
/
z0_t
)
end
if
! ----------------------------------------------------------------------------
! --- define transfer coeff. (momentum) & (heat)
if
(
Rib
>
0
)
then
Cm
=
0.0
if
(
U
>
0.0
)
then
Cm
=
Udyn
/
U
end
if
Ct
=
0.0
if
(
abs
(
dT
)
>
0.0
)
then
Ct
=
Tdyn
/
dT
end
if
else
Cm
=
kappa
/
psi_m
Ct
=
kappa
/
psi_h
end
if
! --- define eddy viscosity & inverse Prandtl number
Km
=
kappa
*
Cm
*
U
*
h
/
phi_m
Pr_t_inv
=
phi_m
/
phi_h
! --- setting output
sfx
=
sfxDataType
(
zeta
=
zeta
,
Rib
=
Rib
,
&
Re
=
Re
,
B
=
B
,
z0_m
=
z0_m
,
z0_t
=
z0_t
,
&
Rib_conv_lim
=
Rib_conv_lim
,
&
Cm
=
Cm
,
Ct
=
Ct
,
Km
=
Km
,
Pr_t_inv
=
Pr_t_inv
)
! Cm = Cm, Ct = Ct, Km = Km, Pr_t_inv = Pr_t_inv, c_wdyn = 0)
end
subroutine
get_surface_fluxes
! --------------------------------------------------------------------------------
! universal functions
! --------------------------------------------------------------------------------
subroutine
get_psi_neutral
(
psi_m
,
psi_h
,
h0_m
,
h0_t
,
B
)
!< @brief universal functions (momentum) & (heat): neutral case
! ----------------------------------------------------------------------------
real
,
intent
(
out
)
::
psi_m
,
psi_h
!< universal functions
real
,
intent
(
in
)
::
h0_m
,
h0_t
!< = z/z0_m, z/z0_h
real
,
intent
(
in
)
::
B
!< = log(z0_m / z0_h)
! ----------------------------------------------------------------------------
psi_m
=
log
(
h0_m
)
psi_h
=
log
(
h0_t
)
/
Pr_t_0_inv
!*: this looks redundant z0_t = z0_m in case |B| ~ 0
if
(
abs
(
B
)
<
1.0e-10
)
psi_h
=
psi_m
/
Pr_t_0_inv
end
subroutine
subroutine
get_zeta_stable
(
zeta
,
Rib
,
h
,
z0_m
,
z0_t
)
real
,
intent
(
out
)
::
zeta
real
,
intent
(
in
)
::
Rib
,
h
,
z0_m
,
z0_t
real
::
Ribl
,
C1
,
A1
,
A2
,
lne
,
lnet
real
::
psi_m
,
psi_h
,
psi0_m
,
psi0_h
Ribl
=
(
Rib
*
Pr_t_0_inv
)
*
(
1
-
z0_t
/
h
)
/
((
1
-
z0_m
/
h
)
**
2
)
call
get_psi_stable
(
psi_m
,
psi_h
,
zeta_a
,
zeta_a
)
call
get_psi_stable
(
psi0_m
,
psi0_h
,
zeta_a
*
z0_m
/
h
,
zeta_a
*
z0_t
/
h
)
lne
=
log
(
h
/
z0_m
)
lnet
=
log
(
h
/
z0_t
)
C1
=
(
lne
**
2
)/
lnet
A1
=
((
lne
-
psi_m
+
psi0_m
)
**
(
2
*
(
gamma
-1
)))
&
&
/
((
zeta_a
**
(
gamma
-1
))
*
((
lnet
-
(
psi_h
-
psi0_h
)
*
Pr_t_0_inv
)
**
(
gamma
-1
)))
A2
=
((
lne
-
psi_m
+
psi0_m
)
**
2
)
/
(
lnet
-
(
psi_h
-
psi0_h
)
*
Pr_t_0_inv
)
-
C1
zeta
=
C1
*
Ribl
+
A1
*
A2
*
(
Ribl
**
gamma
)
end
subroutine
get_zeta_stable
subroutine
get_psi_stable
(
psi_m
,
psi_h
,
zeta_m
,
zeta_h
)
!< @brief universal functions (momentum) & (heat): neutral case
! ----------------------------------------------------------------------------
real
,
intent
(
out
)
::
psi_m
,
psi_h
!< universal functions
real
,
intent
(
in
)
::
zeta_m
,
zeta_h
!< = z/L
! ----------------------------------------------------------------------------
! --- local variables
real
::
x_m
,
x_h
real
::
q_m
,
q_h
! ----------------------------------------------------------------------------
q_m
=
((
1.0
-
b_m
)
/
b_m
)
**
(
1.0
/
3.0
)
x_m
=
(
1.0
+
zeta_m
)
**
(
1.0
/
3.0
)
psi_m
=
-3.0
*
(
a_m
/
b_m
)
*
(
x_m
-
1.0
)
+
0.5
*
(
a_m
/
b_m
)
*
q_m
*
(&
2.0
*
log
((
x_m
+
q_m
)
/
(
1.0
+
q_m
))
-
&
log
((
x_m
*
x_m
-
x_m
*
q_m
+
q_m
*
q_m
)
/
(
1.0
-
q_m
+
q_m
*
q_m
))
+
&
2.0
*
sqrt
(
3.0
)
*
(&
atan
((
2.0
*
x_m
-
q_m
)
/
(
sqrt
(
3.0
)
*
q_m
))
-
&
atan
((
2.0
-
q_m
)
/
(
sqrt
(
3.0
)
*
q_m
))))
q_h
=
sqrt
(
c_h
*
c_h
-
4.0
)
x_h
=
zeta_h
psi_h
=
-0.5
*
b_h
*
log
(
1.0
+
c_h
*
x_h
+
x_h
*
x_h
)
+
&
((
-
a_h
/
q_h
)
+
((
b_h
*
c_h
)
/
(
2.0
*
q_h
)))
*
(&
log
((
2.0
*
x_h
+
c_h
-
q_h
)
/
(
2.0
*
x_h
+
c_h
+
q_h
))
-
&
log
((
c_h
-
q_h
)
/
(
c_h
+
q_h
)))
end
subroutine
get_psi_stable
subroutine
get_psi_convection
(
psi_m
,
psi_h
,
zeta_m
,
zeta_h
)
!< @brief Carl et al. 1973 with Grachev et al. 2000 corrections of beta_m, beta_h
! ----------------------------------------------------------------------------
real
,
intent
(
out
)
::
psi_m
,
psi_h
!< universal functions [n/d]
real
,
intent
(
in
)
::
zeta_m
,
zeta_h
!< = z/L [n/d]
real
y
! ----------------------------------------------------------------------------
! beta_m = 10, beta_h = 34
y
=
(
1.0
-
beta_m
*
zeta_m
)
**
(
1
/
3.
)
psi_m
=
3.0
*
0.5
*
log
((
y
*
y
+
y
+
1.0
)/
3.
)
-
sqrt
(
3.0
)
*
atan
((
2.0
*
y
+
1
)/
sqrt
(
3.0
))
+
pi
/
sqrt
(
3.0
)
y
=
(
1.0
-
beta_h
*
zeta_h
)
**
(
1
/
3.
)
psi_h
=
3.0
*
0.5
*
log
((
y
*
y
+
y
+
1.0
)/
3.
)
-
sqrt
(
3.0
)
*
atan
((
2.0
*
y
+
1
)/
sqrt
(
3.0
))
+
pi
/
sqrt
(
3.0
)
end
subroutine
subroutine
get_psi_BD
(
psi_m
,
psi_h
,
zeta_m
,
zeta_h
)
!< @brief universal functions (momentum) & (heat): neutral case
! ----------------------------------------------------------------------------
real
,
intent
(
out
)
::
psi_m
,
psi_h
!< universal functions
real
,
intent
(
in
)
::
zeta_m
,
zeta_h
!< = z/L
! ----------------------------------------------------------------------------
! --- local variables
real
::
x_m
,
x_h
! ----------------------------------------------------------------------------
x_m
=
(
1.0
-
alpha_m
*
zeta_m
)
**
(
0.25
)
x_h
=
(
1.0
-
alpha_h
*
zeta_h
)
**
(
0.25
)
psi_m
=
(
4.0
*
atan
(
1.0
)
/
2.0
)
+
2.0
*
log
(
0.5
*
(
1.0
+
x_m
))
+
log
(
0.5
*
(
1.0
+
x_m
*
x_m
))
-
2.0
*
atan
(
x_m
)
psi_h
=
2.0
*
log
(
0.5
*
(
1.0
+
x_h
*
x_h
))
end
subroutine
subroutine
get_phi_a
(
phi_m
,
phi_h
,
zeta
)
!< @brief universal functions (momentum) & (heat): neutral case
! ----------------------------------------------------------------------------
real
,
intent
(
out
)
::
phi_m
,
phi_h
!< universal functions
real
,
intent
(
in
)
::
zeta
!< = z/L
! ----------------------------------------------------------------------------
! --- local variables
real
::
x_m
,
x_h
,
y
real
::
psi_m_bd
,
psi_h_bd
,
psi_m_conv
,
psi_h_conv
real
::
dpsi_m_bd
,
dpsi_h_bd
,
dpsi_m_conv
,
dpsi_h_conv
! ----------------------------------------------------------------------------
call
get_psi_BD
(
psi_m_bd
,
psi_h_bd
,
zeta
,
zeta
)
call
get_psi_convection
(
psi_m_conv
,
psi_h_conv
,
zeta
,
zeta
)
x_m
=
(
1.0
-
alpha_m
*
zeta
)
**
(
0.25
)
x_h
=
(
1.0
-
alpha_h
*
zeta
)
**
(
0.25
)
dpsi_m_bd
=
-
(
alpha_m
/(
2.0
*
(
x_m
**
3
)))
*
(
1
/(
1
+
x_m
)
+
(
x_m
-1
)/(
1
+
x_m
**
2
))
dpsi_h_bd
=
-
alpha_h
/
((
x_h
**
2
)
*
(
1
+
x_h
**
2
))
y
=
(
1
-
beta_m
*
zeta
)
**
(
1
/
3.
)
dpsi_m_conv
=
-
beta_m
/(
y
*
(
y
**
2
+
y
+
1
))
y
=
(
1
-
beta_h
*
zeta
)
**
(
1
/
3.
)
dpsi_h_conv
=
-
beta_h
/(
y
*
(
y
**
2
+
y
+
1
))
phi_m
=
1.0
-
zeta
*
(
dpsi_m_bd
/(
1.0
+
zeta
**
2
)
-
psi_m_bd
*
2.0
*
zeta
/((
1.0
+
zeta
**
2
)
**
2
)
+
&
dpsi_m_conv
/(
1.0+1.0
/(
zeta
**
2
))
+
2.0
*
psi_m_conv
/((
zeta
**
3
)
*
((
1.0+1.0
/(
zeta
**
2
))
**
2
)))
phi_h
=
1.0
-
zeta
*
(
dpsi_h_bd
/(
1.0
+
zeta
**
2
)
-
psi_h_bd
*
2.0
*
zeta
/((
1.0
+
zeta
**
2
)
**
2
)
+
&
dpsi_h_conv
/(
1.0+1.0
/(
zeta
**
2
))
+
2.0
*
psi_h_conv
/((
zeta
**
3
)
*
((
1.0+1.0
/(
zeta
**
2
))
**
2
)))
end
subroutine
subroutine
get_phi_a2
(
phi_m
,
phi_h
,
zeta
)
! ----------------------------------------------------------------------------
real
,
intent
(
out
)
::
phi_m
,
phi_h
!< universal functions
real
,
intent
(
in
)
::
zeta
!< = z/L
! ----------------------------------------------------------------------------
! --- local variables
real
::
phi_m_bd
,
phi_h_bd
,
phi_m_conv
,
phi_h_conv
call
get_phi_convection
(
phi_m_conv
,
phi_h_conv
,
zeta
)
call
get_phi_BD
(
phi_m_BD
,
phi_h_BD
,
zeta
)
phi_m
=
(
phi_m_BD
+
(
zeta
**
2
)
*
phi_m_conv
)
/
(
1
+
zeta
**
2
)
phi_h
=
(
phi_h_BD
+
(
zeta
**
2
)
*
phi_h_conv
)
/
(
1
+
zeta
**
2
)
end
subroutine
subroutine
get_phi_a3
(
phi_m
,
phi_h
,
zeta
)
! ----------------------------------------------------------------------------
real
,
intent
(
out
)
::
phi_m
,
phi_h
!< universal functions
real
,
intent
(
in
)
::
zeta
!< = z/L
! ----------------------------------------------------------------------------
! --- local variables
real
::
phi_m_bd
,
phi_h_bd
,
phi_m_conv
,
phi_h_conv
real
::
psi_m_a
,
psi_h_a
,
psi_m_conv
,
psi_h_conv
,
psi_m_BD
,
psi_h_BD
call
get_phi_convection
(
phi_m_conv
,
phi_h_conv
,
zeta
)
call
get_phi_BD
(
phi_m_BD
,
phi_h_BD
,
zeta
)
call
get_psi_convection
(
psi_m_conv
,
psi_h_conv
,
zeta
,
zeta
)
call
get_psi_BD
(
psi_m_BD
,
psi_h_BD
,
zeta
,
zeta
)
! call get_psi_a(psi_m_a, psi_h_a, zeta,zeta)
phi_m
=
(
1
-
phi_m_BD
)/(
zeta
*
(
1
+
zeta
**
2
))
+
2
*
zeta
*
(
psi_m_conv
-
psi_m_BD
)/((
1
+
zeta
**
2
)
**
2
)
&
+
zeta
*
(
1
-
phi_m_conv
)/((
1
+
zeta
**
2
)
**
2
)
phi_h
=
(
1
-
phi_h_BD
)/(
zeta
*
(
1
+
zeta
**
2
))
+
2
*
zeta
*
(
psi_h_conv
-
psi_h_BD
)/((
1
+
zeta
**
2
)
**
2
)
&
+
zeta
*
(
1
-
phi_h_conv
)/((
1
+
zeta
**
2
)
**
2
)
end
subroutine
subroutine
get_phi_BD
(
phi_m
,
phi_h
,
zeta
)
!< @brief stability functions (momentum) & (heat): neutral case
! ----------------------------------------------------------------------------
real
,
intent
(
out
)
::
phi_m
,
phi_h
!< stability functions
real
,
intent
(
in
)
::
zeta
!< = z/L
! ----------------------------------------------------------------------------
phi_m
=
(
1.0
-
alpha_m
*
zeta
)
**
(
-0.25
)
phi_h
=
(
1.0
-
alpha_h
*
zeta
)
**
(
-0.5
)
end
subroutine
subroutine
get_phi_convection
(
phi_m
,
phi_h
,
zeta
)
!< @brief stability functions (momentum) & (heat): neutral case
! ----------------------------------------------------------------------------
real
,
intent
(
out
)
::
phi_m
,
phi_h
!< stability functions
real
,
intent
(
in
)
::
zeta
!< = z/L
! ----------------------------------------------------------------------------
phi_m
=
(
1.0
-
beta_m
*
zeta
)
**
(
-1.0
/
3.0
)
phi_h
=
(
1.0
-
beta_h
*
zeta
)
**
(
-1.0
/
3.0
)
end
subroutine
!< @brief get dynamic scales
! --------------------------------------------------------------------------------
subroutine
get_dynamic_scales
(
Udyn
,
Tdyn
,
Qdyn
,
zeta
,
psi_m
,
psi_h
,
&
psi0_m
,
psi0_h
,
U
,
Tsemi
,
dT
,
dQ
,
z
,
z0_m
,
z0_t
,
beta
,
maxiters
)
! ----------------------------------------------------------------------------
real
,
intent
(
out
)
::
Udyn
,
Tdyn
,
Qdyn
!< dynamic scales
real
,
intent
(
out
)
::
zeta
!< = z/L
real
,
intent
(
out
)
::
psi_m
,
psi_h
,
psi0_m
,
psi0_h
real
,
intent
(
in
)
::
U
!< abs(wind speed) at z
real
,
intent
(
in
)
::
Tsemi
!< semi-sum of temperature at z and at surface
real
,
intent
(
in
)
::
dT
,
dQ
!< temperature & humidity difference between z and at surface
real
,
intent
(
in
)
::
z
!< constant flux layer height
real
,
intent
(
in
)
::
z0_m
,
z0_t
!< roughness parameters
real
,
intent
(
in
)
::
beta
!< buoyancy parameter
integer
,
intent
(
in
)
::
maxiters
!< maximum number of iterations
! ----------------------------------------------------------------------------
! --- local variables
real
::
Linv
integer
::
i
! ----------------------------------------------------------------------------
Udyn
=
kappa
*
U
/
log
(
z
/
z0_m
)
Tdyn
=
kappa
*
dT
*
Pr_t_0_inv
/
log
(
z
/
z0_t
)
Qdyn
=
kappa
*
dQ
*
Pr_t_0_inv
/
log
(
z
/
z0_t
)
zeta
=
0.0
! --- no wind
if
(
Udyn
<
1e-5
)
return
Linv
=
kappa
*
beta
*
(
Tdyn
+
0.61
*
Qdyn
*
Tsemi
)
/
(
Udyn
*
Udyn
)
zeta
=
z
*
Linv
psi_m
=
log
(
z
/
z0_m
)
psi_h
=
log
(
z
/
z0_t
)
/
Pr_t_0_inv
psi0_m
=
log
(
z
/
z0_m
)
psi0_h
=
log
(
z
/
z0_t
)
/
Pr_t_0_inv
! --- near neutral case
! if (Linv < 1e-5) return
do
i
=
1
,
maxiters
call
get_psi_a
(
psi_m
,
psi_h
,
zeta
,
zeta
)
call
get_psi_a
(
psi0_m
,
psi0_h
,
z0_m
*
Linv
,
z0_t
*
Linv
)
Udyn
=
kappa
*
U
/
(
log
(
z
/
z0_m
)
-
(
psi_m
-
psi0_m
))
Tdyn
=
kappa
*
dT
*
Pr_t_0_inv
/
(
log
(
z
/
z0_t
)
-
(
psi_h
-
psi0_h
))
Qdyn
=
kappa
*
dQ
*
Pr_t_0_inv
/
(
log
(
z
/
z0_t
)
-
(
psi_h
-
psi0_h
))
if
(
Udyn
<
1e-5
)
exit
Linv
=
kappa
*
beta
*
(
Tdyn
+
0.61
*
Qdyn
*
Tsemi
)
/
(
Udyn
*
Udyn
)
zeta
=
z
*
Linv
end
do
end
subroutine
get_dynamic_scales
subroutine
get_psi_a
(
psi_m
,
psi_h
,
zeta_m
,
zeta_h
)
! ----------------------------------------------------------------------------
real
,
intent
(
out
)
::
psi_m
,
psi_h
!< universal functions
real
,
intent
(
in
)
::
zeta_m
,
zeta_h
!< = z/L
! ----------------------------------------------------------------------------
! --- local variables
real
::
psi_m_bd
,
psi_h_bd
,
psi_m_conv
,
psi_h_conv
call
get_psi_convection
(
psi_m_conv
,
psi_h_conv
,
zeta_m
,
zeta_h
)
call
get_psi_BD
(
psi_m_BD
,
psi_h_BD
,
zeta_m
,
zeta_h
)
psi_m
=
(
psi_m_BD
+
(
zeta_m
**
2
)
*
psi_m_conv
)
/
(
1
+
zeta_m
**
2
)
psi_h
=
(
psi_h_BD
+
(
zeta_h
**
2
)
*
psi_h_conv
)
/
(
1
+
zeta_h
**
2
)
end
subroutine
subroutine
get_convection_lim
(
zeta_lim
,
Rib_lim
,
f_m_lim
,
f_h_lim
,
&
h0_m
,
h0_t
,
B
)
! ----------------------------------------------------------------------------
real
,
intent
(
out
)
::
zeta_lim
!< limiting value of z/L
real
,
intent
(
out
)
::
Rib_lim
!< limiting value of Ri-bulk
real
,
intent
(
out
)
::
f_m_lim
,
f_h_lim
!< limiting values of universal functions shortcuts
real
,
intent
(
in
)
::
h0_m
,
h0_t
!< = z/z0_m, z/z0_h [n/d]
real
,
intent
(
in
)
::
B
!< = log(z0_m / z0_h) [n/d]
! ----------------------------------------------------------------------------
! --- local variables
real
::
psi_m
,
psi_h
real
::
f_m
,
f_h
real
::
c
! ----------------------------------------------------------------------------
! --- define limiting value of zeta = z / L
c
=
(
Pr_t_inf_inv
/
Pr_t_0_inv
)
**
4
zeta_lim
=
(
2.0
*
alpha_h
-
c
*
alpha_m
-
&
sqrt
((
c
*
alpha_m
)
**
2
+
4.0
*
c
*
alpha_h
*
(
alpha_h
-
alpha_m
)))
/
(
2.0
*
alpha_h
**
2
)
f_m_lim
=
f_m_conv
(
zeta_lim
)
f_h_lim
=
f_h_conv
(
zeta_lim
)
! --- universal functions
f_m
=
zeta_lim
/
h0_m
f_h
=
zeta_lim
/
h0_t
if
(
abs
(
B
)
<
1.0e-10
)
f_h
=
f_m
f_m
=
(
1.0
-
alpha_m
*
f_m
)
**
0.25
f_h
=
sqrt
(
1.0
-
alpha_h_fix
*
f_h
)
psi_m
=
2.0
*
(
atan
(
f_m_lim
)
-
atan
(
f_m
))
+
alog
((
f_m_lim
-
1.0
)
*
(
f_m
+
1.0
)/((
f_m_lim
+
1.0
)
*
(
f_m
-
1.0
)))
psi_h
=
alog
((
f_h_lim
-
1.0
)
*
(
f_h
+
1.0
)/((
f_h_lim
+
1.0
)
*
(
f_h
-
1.0
)))
/
Pr_t_0_inv
! --- bulk Richardson number
Rib_lim
=
zeta_lim
*
psi_h
/
(
psi_m
*
psi_m
)
end
subroutine
! convection universal functions shortcuts
! --------------------------------------------------------------------------------
function
f_m_conv
(
zeta
)
! ----------------------------------------------------------------------------
real
::
f_m_conv
real
,
intent
(
in
)
::
zeta
! ----------------------------------------------------------------------------
f_m_conv
=
(
1.0
-
alpha_m
*
zeta
)
**
0.25
end
function
f_m_conv
function
f_h_conv
(
zeta
)
! ----------------------------------------------------------------------------
real
::
f_h_conv
real
,
intent
(
in
)
::
zeta
! ----------------------------------------------------------------------------
f_h_conv
=
(
1.0
-
alpha_h
*
zeta
)
**
0.5
end
function
f_h_conv
subroutine
get_zeta_conv
(
zeta
,
Rib
,
z
,
z0m
,
z0t
)
!< @brief Srivastava and Sharan 2017, Abdella and Assefa 2005
! ----------------------------------------------------------------------------
real
,
intent
(
out
)
::
zeta
!< = z/L [n/d]
real
,
intent
(
in
)
::
Rib
!
real
,
intent
(
in
)
::
z
,
z0m
,
z0t
!
real
A
,
a0
,
a1
,
a2
,
r
,
q
,
s1
,
s2
,
theta
,
delta
real
ksi_m
,
ksi_h
,
ksi_m_0
,
ksi_m_inf
,
ksi_h_0
,
ksi_h_inf
real
f_m_inf
,
f_h_inf
real
psi_m_zeta
,
psi_m_zeta0
,
psi_h_zeta
,
psi_h_zeta0
! ----------------------------------------------------------------------------
A
=
(
1
/
Pr_t_0_inv
)
*
(
(
1
-
z0m
/
z
)
**
2
)
*
log
(
z
/
z0t
)
/
(
(
1
-
z0t
/
z
)
*
((
log
(
z
/
z0m
))
**
2
)
)
call
get_psi_convection
(
psi_m_zeta
,
psi_h_zeta
,
Rib
/
A
,
Rib
/
A
)
call
get_psi_convection
(
psi_m_zeta0
,
psi_h_zeta0
,
(
z0m
/
z
)
*
(
Rib
/
A
),(
z0t
/
z
)
*
(
Rib
/
A
))
f_m_inf
=
1
-
(
psi_m_zeta
-
psi_m_zeta0
)
/
log
(
z
/
z0m
)
f_h_inf
=
1
-
(
psi_h_zeta
-
psi_h_zeta0
)
/
log
(
z
/
z0t
)
ksi_m_0
=
((
z0m
/
z
)
-
1.0
)
/
log
(
z0m
/
z
)
ksi_h_0
=
((
z0t
/
z
)
-
1.0
)
/
log
(
z0t
/
z
)
ksi_m_inf
=
(
A
/
(
beta_m
*
Rib
))
*
(
1.0
-
1.0
/
(
f_m_inf
**
4
))
ksi_h_inf
=
(
A
/
(
beta_h
*
Rib
))
*
(
1.0
-
((
1.0
/
Pr_t_0_inv
)
**
2
)
/
(
f_h_inf
**
2
))
ksi_m
=
cc1
*
ksi_m_inf
+
cc2
*
ksi_m_0
ksi_h
=
cc3
*
ksi_h_inf
+
cc4
*
ksi_h_0
a0
=
(
1
/
(
beta_m
*
ksi_m
))
*
((
Rib
/
A
)
**
2
)
a1
=
-1
*
(
beta_h
*
ksi_h
/
(
beta_m
*
ksi_m
))
*
((
Rib
/
A
)
**
2
)
a2
=
-1
/
(
beta_m
*
ksi_m
)
r
=
(
9.0
*
(
a1
*
a2
-
3
*
a0
)
-
2.0
*
(
a2
**
3
))
/
54.0
q
=
(
3.0
*
a1
-
a2
*
a2
)
/
9.0
delta
=
q
**
3
+
r
**
2
s1
=
(
r
+
sqrt
(
delta
))
**
(
1.
/
3.
)
s2
=
(
r
-
sqrt
(
delta
))
**
(
1.
/
3.
)
theta
=
1.0
/
cos
(
r
/
sqrt
(
-1
*
(
q
**
3
)))
if
(
delta
<=
0.0
)
then
zeta
=
2.0
*
sqrt
(
-1.0
*
q
)
*
cos
((
theta
+
2.0
*
pi
)/
3.0
)
+
1
/(
3.0
*
beta_m
*
ksi_m
)
else
s1
=
cmplx
(
r
+
delta
**
0.5
)
**
(
1.
/
3.
)
s2
=
cmplx
(
r
-
delta
**
0.5
)
**
(
1.
/
3.
)
zeta
=
-1
*
(
real
(
real
(
s1
))
+
real
(
real
(
s2
))
+
1.0
/(
3.0
*
beta_m
*
ksi_m
))
endif
end
subroutine
end
module
sfx_sheba_coare
\ No newline at end of file
This diff is collapsed.
Click to expand it.
srcF/sfx_sheba_coare_param.f90
0 → 100644
+
49
−
0
View file @
71a3ba63
module
sfx_sheba_coare_param
!< @brief noit surface flux model parameters
!< @details all in SI units
! modules used
! --------------------------------------------------------------------------------
use
sfx_phys_const
! --------------------------------------------------------------------------------
! directives list
! --------------------------------------------------------------------------------
implicit
none
! --------------------------------------------------------------------------------
!< von Karman constant [n/d]
real
,
parameter
::
kappa
=
0.40
!< inverse Prandtl (turbulent) number in neutral conditions [n/d]
real
,
parameter
::
Pr_t_0_inv
=
1.15
!1.0
!< inverse Prandtl (turbulent) number in free convection [n/d]
real
,
parameter
::
Pr_t_inf_inv
=
3.5
real
,
parameter
::
pi
=
3.14
!< stability function coeff. (unstable) Grachev et al. 2000
real
,
parameter
::
beta_m
=
10.0
real
,
parameter
::
beta_h
=
34.0
real
,
parameter
::
cc1
=
1.00
real
,
parameter
::
cc2
=
0.001
real
,
parameter
::
cc3
=
0.8
real
,
parameter
::
cc4
=
0.008
!< stability function coeff. Dyer 1974
real
,
parameter
::
alpha_m
=
16.0
real
,
parameter
::
alpha_h
=
16.0
real
,
parameter
::
alpha_h_fix
=
16.0
!< stability function coeff. (stable)
real
,
parameter
::
a_m
=
5.0
real
,
parameter
::
b_m
=
a_m
/
6.5
real
,
parameter
::
a_h
=
5.0
real
,
parameter
::
b_h
=
5.0
real
,
parameter
::
c_h
=
3.0
real
,
parameter
::
gamma
=
2.91
,
zeta_a
=
3.6
! for stable psi
end
module
sfx_sheba_coare_param
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment