diff --git a/srcF/sfx_sheba_coare.f90 b/srcF/sfx_sheba_coare.f90
new file mode 100644
index 0000000000000000000000000000000000000000..6c7eb23e357065120a08c2b932e92a92adb7d4b0
--- /dev/null
+++ b/srcF/sfx_sheba_coare.f90
@@ -0,0 +1,805 @@
+#include "../includeF/sfx_def.fi"
+
+module sfx_sheba_coare
+
+    ! modules used
+    ! --------------------------------------------------------------------------------
+#ifdef SFX_CHECK_NAN
+    use sfx_common
+#endif
+    use sfx_data
+    use sfx_surface
+    use sfx_sheba_coare_param
+
+#if defined(INCLUDE_CXX)
+    use iso_c_binding, only: C_LOC, C_PTR, C_INT, C_FLOAT
+    use C_FUNC
+#endif
+    ! --------------------------------------------------------------------------------
+
+    ! directives list
+    ! --------------------------------------------------------------------------------
+    implicit none
+    private
+    ! --------------------------------------------------------------------------------
+
+    ! public interface
+    ! --------------------------------------------------------------------------------
+    public :: get_surface_fluxes
+    public :: get_surface_fluxes_vec
+    public :: get_psi_stable
+    public :: get_psi_a
+    public :: get_psi_convection
+    public :: get_psi_BD
+    integer z0m_id
+    integer z0t_id
+    ! --------------------------------------------------------------------------------
+    ! --------------------------------------------------------------------------------
+    type, public :: numericsType
+        integer :: maxiters_charnock = 10      !< maximum (actual) number of iterations in charnock roughness
+        integer :: maxiters_convection = 10      !< maximum (actual) number of iterations in charnock roughness
+    end type
+
+    ! --------------------------------------------------------------------------------
+
+#if defined(INCLUDE_CXX)
+    type, BIND(C), public :: sfx_sheba_coare_param_C 
+        real(C_FLOAT) :: kappa
+        real(C_FLOAT) :: Pr_t_0_inv
+        real(C_FLOAT) :: Pr_t_inf_inv
+
+        real(C_FLOAT) :: alpha_m
+        real(C_FLOAT) :: alpha_h
+        real(C_FLOAT) :: gamma
+        real(C_FLOAT) :: zeta_a
+        real(C_FLOAT) ::  a_m
+        real(C_FLOAT) ::  b_m
+        real(C_FLOAT) ::  a_h
+        real(C_FLOAT) ::  b_h
+        real(C_FLOAT) ::  c_h
+        real(C_FLOAT) ::  beta_m
+        real(C_FLOAT) ::  beta_h
+    end type
+
+    type, BIND(C), public :: sfx_sheba_coare_numericsType_C 
+        integer(C_INT) :: maxiters_convection
+        integer(C_INT) :: maxiters_charnock 
+    end type
+
+    INTERFACE
+        SUBROUTINE c_sheba_coare_compute_flux(sfx, meteo, model_param, surface_param, numerics, constants, grid_size) BIND(C, & 
+            name="c_sheba_coare_compute_flux")
+            use sfx_data
+            use, intrinsic :: ISO_C_BINDING, ONLY: C_INT, C_PTR
+            Import :: sfx_sheba_coare_param_C, sfx_sheba_coare_numericsType_C
+            implicit none
+            integer(C_INT) :: grid_size
+            type(C_PTR), value :: sfx
+            type(C_PTR), value :: meteo
+            type(sfx_sheba_coare_param_C) :: model_param
+            type(sfx_surface_sheba_coare_param) :: surface_param
+            type(sfx_sheba_coare_numericsType_C) :: numerics
+            type(sfx_phys_constants) :: constants
+        END SUBROUTINE c_sheba_coare_compute_flux
+
+    END INTERFACE
+#endif 
+
+contains
+
+    ! --------------------------------------------------------------------------------
+#if defined(INCLUDE_CXX)
+    subroutine set_c_struct_sfx_sheba_coare_param_values(sfx_model_param)
+        type (sfx_sheba_coare_param_C), intent(inout) :: sfx_model_param
+        sfx_model_param%kappa = kappa
+        sfx_model_param%Pr_t_0_inv = Pr_t_0_inv
+        sfx_model_param%Pr_t_inf_inv = Pr_t_inf_inv
+
+        sfx_model_param%alpha_m = alpha_m
+        sfx_model_param%alpha_h = alpha_h
+        sfx_model_param%gamma = gamma
+        sfx_model_param%zeta_a = zeta_a
+        sfx_model_param%a_m = a_m
+        sfx_model_param%b_m = b_m
+        sfx_model_param%a_h = a_h
+        sfx_model_param%b_h = b_h
+        sfx_model_param%c_h = c_h
+        sfx_model_param%c3 = beta_m
+        sfx_model_param%c4 = beta_h
+    end subroutine set_c_struct_sfx_sheba_coare_param_values
+#endif
+
+    ! --------------------------------------------------------------------------------
+    subroutine get_surface_fluxes_vec(sfx, meteo, numerics, n)
+        !< @brief surface flux calculation for array data
+        !< @details contains C/C++ & CUDA interface
+        ! ----------------------------------------------------------------------------
+        type (sfxDataVecType), intent(inout) :: sfx
+
+        type (meteoDataVecType), intent(in) :: meteo
+        type (numericsType), intent(in) :: numerics
+        integer, intent(in) :: n
+        ! ----------------------------------------------------------------------------
+
+        ! --- local variables
+        type (meteoDataType)  meteo_cell
+        type (sfxDataType) sfx_cell
+        integer i
+        ! ----------------------------------------------------------------------------
+#if defined(INCLUDE_CXX)
+        type (meteoDataVecTypeC), target :: meteo_c         !< meteorological data (input)
+        type (sfxDataVecTypeC), target :: sfx_c             !< surface flux data (output)
+        type(C_PTR) :: meteo_c_ptr, sfx_c_ptr
+        type (sfx_sheba_coare_param_C) :: model_param
+        type (sfx_surface_param) :: surface_param
+        type (sfx_sheba_coare_numericsType_C) :: numerics_c
+        type (sfx_phys_constants) :: phys_constants
+
+        numerics_c%maxiters_convection = numerics%maxiters_convection
+        numerics_c%maxiters_charnock = numerics%maxiters_charnock
+
+        phys_constants%Pr_m = Pr_m;
+        phys_constants%nu_air = nu_air;
+        phys_constants%g = g;
+
+        call set_c_struct_sfx_sheba_coare_param_values(model_param)
+        call set_c_struct_sfx_surface_param_values(surface_param)
+        call set_meteo_vec_c(meteo, meteo_c)
+        call set_sfx_vec_c(sfx, sfx_c)
+        meteo_c_ptr = C_LOC(meteo_c)
+        sfx_c_ptr   = C_LOC(sfx_c)
+
+        call c_sheba_coare_compute_flux(sfx_c_ptr, meteo_c_ptr, model_param, surface_param, numerics_c, phys_constants, n)
+#else
+        do i = 1, n
+
+            meteo_cell = meteoDataType(&
+                    h = meteo%h(i), &
+                    U = meteo%U(i), dT = meteo%dT(i), Tsemi = meteo%Tsemi(i), dQ = meteo%dQ(i), &
+                    z0_m = meteo%z0_m(i), depth=meteo%depth(i), lai=meteo%lai(i), surface_type=meteo%surface_type(i))
+
+            call get_surface_fluxes(sfx_cell, meteo_cell, numerics)
+
+            call push_sfx_data(sfx, sfx_cell, i)
+        end do
+#endif
+
+    end subroutine get_surface_fluxes_vec
+    ! --------------------------------------------------------------------------------
+
+    ! --------------------------------------------------------------------------------
+    subroutine get_surface_fluxes(sfx, meteo, numerics)
+        !< @brief surface flux calculation for single cell
+        !< @details contains C/C++ interface
+        ! ----------------------------------------------------------------------------
+#ifdef SFX_CHECK_NAN
+        use ieee_arithmetic
+#endif
+
+        type (sfxDataType), intent(out) :: sfx
+
+        type (meteoDataType), intent(in) :: meteo
+        type (numericsType), intent(in) :: numerics
+        ! ----------------------------------------------------------------------------
+        ! --- meteo derived datatype name shadowing
+        ! ----------------------------------------------------------------------------
+        real :: h       !< constant flux layer height [m]
+        real :: U       !< abs(wind speed) at 'h' [m/s]
+        real :: dT      !< difference between potential temperature at 'h' and at surface [K]
+        real :: Tsemi   !< semi-sum of potential temperature at 'h' and at surface [K]
+        real :: dQ      !< difference between humidity at 'h' and at surface [g/g]
+        real :: z0_m    !< surface aerodynamic roughness (should be < 0 for water bodies surface)
+        !real :: hpbl
+        real :: depth   
+        real :: lai
+        integer :: surface_type
+        ! ----------------------------------------------------------------------------
+
+        ! --- local variables
+        ! ----------------------------------------------------------------------------
+        real z0_t               !< thermal roughness [m]
+        real B                  !< = ln(z0_m / z0_t) [n/d]
+        real h0_m, h0_t         !< = h / z0_m, h / z0_h [n/d]
+
+        real u_dyn0             !< dynamic velocity in neutral conditions [m/s]
+        real Re                 !< roughness Reynolds number = u_dyn0 * z0_m / nu [n/d]
+
+        real zeta               !< = z/L [n/d]
+        real Rib                !< bulk Richardson number
+
+        real zeta_conv_lim      !< z/L critical value for matching free convection limit [n/d]
+        real Rib_conv_lim       !< Ri-bulk critical value for matching free convection limit [n/d]
+
+        real f_m_conv_lim       !< stability function (momentum) value in free convection limit [n/d]
+        real f_h_conv_lim       !< stability function (heat) value in free convection limit [n/d]
+
+        real psi_m, psi_h       !< universal functions (momentum) & (heat) [n/d]
+        real psi0_m, psi0_h       !< universal functions (momentum) & (heat) [n/d]
+        real z0_m1
+!        real psi_m_BD, psi_h_BD       !< universal functions (momentum) & (heat) [n/d]
+!        real psi0_m_BD, psi0_h_BD       !< universal functions (momentum) & (heat) [n/d]
+!        real psi_m_conv, psi_h_conv       !< universal functions (momentum) & (heat) [n/d]
+!        real psi0_m_conv, psi0_h_conv       !< universal functions (momentum) & (heat) [n/d]
+
+        real Udyn, Tdyn, Qdyn   !< dynamic scales
+
+        real phi_m, phi_h       !< stability functions (momentum) & (heat) [n/d]
+
+        real Km                 !< eddy viscosity coeff. at h [m^2/s]
+        real Pr_t_inv           !< invese Prandt number [n/d]
+
+        real Cm, Ct             !< transfer coeff. for (momentum) & (heat) [n/d]
+
+        !integer surface_type    !< surface type = (ocean || land)
+
+        real c_wdyn
+
+#ifdef SFX_CHECK_NAN
+        real NaN
+#endif
+        ! ----------------------------------------------------------------------------
+
+#ifdef SFX_CHECK_NAN
+        ! --- checking if arguments are finite
+        if (.not.(is_finite(meteo%U).and.is_finite(meteo%Tsemi).and.is_finite(meteo%dT).and.is_finite(meteo%dQ) &
+                .and.is_finite(meteo%z0_m).and.is_finite(meteo%h))) then
+
+            NaN = ieee_value(0.0, ieee_quiet_nan)   ! setting NaN
+            sfx = sfxDataType(zeta = NaN, Rib = NaN, &
+                    Re = NaN, B = NaN, z0_m = NaN, z0_t = NaN, &
+                    Rib_conv_lim = NaN, &
+                    Cm = NaN, Ct = NaN, Km = NaN, Pr_t_inv = NaN)
+                    !Cm = NaN, Ct = NaN, Km = NaN, Pr_t_inv = NaN, c_wdyn = NaN)
+            return
+        end if
+#endif
+
+        ! --- shadowing names for clarity
+        U = meteo%U
+        Tsemi = meteo%Tsemi
+        dT = meteo%dT
+        dQ = meteo%dQ
+        h = meteo%h
+        z0_m1 = meteo%z0_m
+        depth = meteo%depth
+        lai = meteo%lai
+        surface_type=meteo%surface_type
+        !hpbl = meteo%hpbl
+
+        call get_dynamic_roughness_definition(surface_type, ocean_z0m_id, land_z0m_id, lake_z0m_id, snow_z0m_id, &
+        forest_z0m_id, usersf_z0m_id, ice_z0m_id, z0m_id)
+        
+        
+        call get_dynamic_roughness_all(z0_m, u_dyn0, U, depth, h, numerics%maxiters_charnock, z0_m1, z0m_id)
+        
+        call get_thermal_roughness_definition(surface_type, ocean_z0t_id, land_z0t_id, lake_z0t_id, snow_z0t_id, &
+        forest_z0t_id, usersf_z0t_id, ice_z0t_id, z0t_id)
+        
+        
+        Re = u_dyn0 * z0_m / nu_air
+
+        call get_thermal_roughness_all(z0_t, B, z0_m, Re, u_dyn0, lai, z0t_id)
+        ! --- define relative height
+            h0_m = h / z0_m
+        ! --- define relative height [thermal]
+        h0_t = h / z0_t
+      
+        ! --- define Ri-bulk
+        Rib = (g / Tsemi) * h * (dT + 0.61e0 * Tsemi * dQ) / U**2
+
+        ! --- define free convection transition zeta = z/L value
+        call get_convection_lim(zeta_conv_lim, Rib_conv_lim, f_m_conv_lim, f_h_conv_lim, &
+                h0_m, h0_t, B)
+
+        ! --- get the fluxes
+        ! ----------------------------------------------------------------------------
+        if (Rib > 0.0) then
+            ! --- stable stratification block
+
+            !   --- restrict bulk Ri value
+            !   *: note that this value is written to output
+!            Rib = min(Rib, Rib_max)
+
+            call get_zeta_stable(zeta, Rib, h, z0_m, z0_t)
+
+            call get_psi_stable(psi_m, psi_h, zeta, zeta)
+            call get_psi_stable(psi0_m, psi0_h, zeta * z0_m / h, zeta * z0_t / h)
+
+            phi_m = 1.0 + (a_m * zeta * (1.0 + zeta)**(1.0 / 3.0)) / (1.0 + b_m * zeta)
+            phi_h = 1.0 + (a_h * zeta + b_h * zeta * zeta) / (1.0 + c_h * zeta + zeta * zeta)
+
+            Udyn = kappa * U / (log(h / z0_m) - (psi_m - psi0_m))
+            Tdyn = kappa * dT * Pr_t_0_inv / (log(h / z0_t) - (psi_h - psi0_h))
+
+        else if (Rib <= -0.001)then
+
+            call get_dynamic_scales(Udyn, Tdyn, Qdyn, zeta, psi_m, psi_h, psi0_m, psi0_h,&
+            U, Tsemi, dT, dQ, h, z0_m, z0_t, (g / Tsemi), numerics%maxiters_convection)
+
+            call get_phi_a(phi_m,phi_h,zeta)
+!!            call get_phi_a2(phi_m,phi_h,zeta)
+!!            call get_phi_a3(phi_m,phi_h,zeta)
+!!         print *, zeta,psi_m,psi_h,phi_m,phi_h
+
+            psi_m = (log(h / z0_m) - (psi_m - psi0_m))
+            psi_h = (log(h / z0_t) - (psi_h - psi0_h))
+
+!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
+!!!!!!!!!!non-iterative version below is not debugged yet!!
+!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
+!            call get_zeta_conv(zeta,Rib,h,z0_m,z0_t)
+!
+!            call get_psi_a(psi_m, psi_h, zeta,zeta)
+!            call get_psi_a(psi0_m, psi0_h, zeta * z0_m / h, zeta * z0_t / h)
+!
+!            Udyn = kappa * U / (log(h / z0_m) - (psi_m - psi0_m))
+!            Tdyn = kappa * dT * Pr_t_0_inv / (log(h / z0_t) - (psi_h - psi0_h))
+!
+!            call get_phi_a(phi_m,phi_h,zeta)
+!print *, zeta,psi_m,psi_h,phi_m,phi_h
+!
+!            psi_m = (log(h / z0_m) - (psi_m - psi0_m))
+!            psi_h = (log(h / z0_t) - (psi_h - psi0_h))
+
+        else
+            ! --- nearly neutral [-0.001, 0] block
+
+            call get_psi_neutral(psi_m, psi_h, h0_m, h0_t, B)
+
+            zeta = 0.0
+            phi_m = 1.0
+            phi_h = 1.0 / Pr_t_0_inv
+
+            Udyn = kappa * U / log(h / z0_m)
+            Tdyn = kappa * dT * Pr_t_0_inv / log(h / z0_t)
+
+        end if
+        ! ----------------------------------------------------------------------------
+
+        ! --- define transfer coeff. (momentum) & (heat)
+        if(Rib > 0)then
+            Cm = 0.0
+            if (U > 0.0) then
+            Cm = Udyn / U
+            end if
+            Ct = 0.0
+            if (abs(dT) > 0.0) then
+            Ct = Tdyn / dT
+            end if
+        else
+            Cm = kappa / psi_m
+            Ct = kappa / psi_h
+        end if
+
+        ! --- define eddy viscosity & inverse Prandtl number
+        Km = kappa * Cm * U * h / phi_m
+        Pr_t_inv = phi_m / phi_h
+
+        ! --- setting output
+        sfx = sfxDataType(zeta = zeta, Rib = Rib, &
+            Re = Re, B = B, z0_m = z0_m, z0_t = z0_t, &
+            Rib_conv_lim = Rib_conv_lim, &
+            Cm = Cm, Ct = Ct, Km = Km, Pr_t_inv = Pr_t_inv)
+            !    Cm = Cm, Ct = Ct, Km = Km, Pr_t_inv = Pr_t_inv, c_wdyn = 0)
+
+    end subroutine get_surface_fluxes
+    ! --------------------------------------------------------------------------------
+
+
+
+    ! universal functions
+    ! --------------------------------------------------------------------------------
+    subroutine get_psi_neutral(psi_m, psi_h, h0_m, h0_t, B)
+        !< @brief universal functions (momentum) & (heat): neutral case
+        ! ----------------------------------------------------------------------------
+        real, intent(out) :: psi_m, psi_h   !< universal functions
+
+        real, intent(in) :: h0_m, h0_t      !< = z/z0_m, z/z0_h
+        real, intent(in) :: B               !< = log(z0_m / z0_h)
+        ! ----------------------------------------------------------------------------
+
+        psi_m = log(h0_m)
+        psi_h = log(h0_t) / Pr_t_0_inv
+        !*: this looks redundant z0_t = z0_m in case |B| ~ 0
+        if (abs(B) < 1.0e-10) psi_h = psi_m / Pr_t_0_inv
+
+    end subroutine
+
+
+    subroutine get_zeta_stable(zeta, Rib, h, z0_m, z0_t)
+    real,intent(out) :: zeta
+    real,intent(in) :: Rib, h, z0_m, z0_t
+
+    real :: Ribl, C1, A1, A2, lne, lnet
+    real :: psi_m, psi_h, psi0_m, psi0_h
+
+        Ribl = (Rib * Pr_t_0_inv) * (1 - z0_t / h) / ((1 - z0_m / h)**2)
+
+        call get_psi_stable(psi_m, psi_h, zeta_a, zeta_a)
+        call get_psi_stable(psi0_m, psi0_h, zeta_a * z0_m / h,  zeta_a * z0_t / h)
+
+        lne = log(h/z0_m)
+        lnet = log(h/z0_t)
+        C1 = (lne**2)/lnet
+        A1 = ((lne - psi_m + psi0_m)**(2*(gamma-1))) &
+&           / ((zeta_a**(gamma-1))*((lnet-(psi_h-psi0_h)*Pr_t_0_inv)**(gamma-1)))
+        A2 = ((lne - psi_m + psi0_m)**2) / (lnet-(psi_h-psi0_h)*Pr_t_0_inv) - C1
+
+        zeta = C1 * Ribl + A1 * A2 * (Ribl**gamma)
+
+    end subroutine get_zeta_stable
+
+
+
+    subroutine get_psi_stable(psi_m, psi_h, zeta_m, zeta_h)
+        !< @brief universal functions (momentum) & (heat): neutral case
+        ! ----------------------------------------------------------------------------
+        real, intent(out) :: psi_m, psi_h   !< universal functions
+
+        real, intent(in) :: zeta_m, zeta_h  !< = z/L
+        ! ----------------------------------------------------------------------------
+
+        ! --- local variables
+        real :: x_m, x_h
+        real :: q_m, q_h
+        ! ----------------------------------------------------------------------------
+
+
+            q_m = ((1.0 - b_m) / b_m)**(1.0 / 3.0)
+            x_m = (1.0 + zeta_m)**(1.0 / 3.0)
+
+            psi_m = -3.0 * (a_m / b_m) * (x_m - 1.0) + 0.5 * (a_m / b_m) * q_m * (&
+                    2.0 * log((x_m + q_m) / (1.0 + q_m)) - &
+                            log((x_m * x_m - x_m * q_m + q_m * q_m) / (1.0 - q_m + q_m * q_m)) + &
+                            2.0 * sqrt(3.0) * (&
+                                    atan((2.0 * x_m - q_m) / (sqrt(3.0) * q_m)) - &
+                                            atan((2.0 - q_m) / (sqrt(3.0) * q_m))))
+            q_h = sqrt(c_h * c_h - 4.0)
+            x_h = zeta_h
+
+            psi_h = -0.5 * b_h * log(1.0 + c_h * x_h + x_h * x_h) + &
+                    ((-a_h / q_h) + ((b_h * c_h) / (2.0 * q_h))) * (&
+                            log((2.0 * x_h + c_h - q_h) / (2.0 * x_h + c_h + q_h)) - &
+                                    log((c_h - q_h) / (c_h + q_h)))
+
+    end subroutine get_psi_stable
+
+
+
+    subroutine get_psi_convection(psi_m, psi_h, zeta_m, zeta_h)
+        !< @brief Carl et al. 1973 with Grachev et al. 2000 corrections of beta_m, beta_h
+        ! ----------------------------------------------------------------------------
+        real, intent(out) :: psi_m, psi_h               !< universal functions [n/d]
+        real, intent(in) :: zeta_m, zeta_h                       !< = z/L [n/d]
+
+        real y
+        ! ----------------------------------------------------------------------------
+        ! beta_m = 10, beta_h = 34
+
+        y = (1.0 - beta_m * zeta_m)**(1/3.)
+        psi_m = 3.0 * 0.5 *log((y*y + y + 1.0)/3.) - sqrt(3.0) *atan((2.0*y + 1)/sqrt(3.0)) + pi/sqrt(3.0)
+        y = (1.0 - beta_h * zeta_h)**(1/3.)
+        psi_h = 3.0 * 0.5 *log((y*y + y + 1.0)/3.) - sqrt(3.0) *atan((2.0*y + 1)/sqrt(3.0)) + pi/sqrt(3.0)
+
+
+    end subroutine
+
+    subroutine get_psi_BD(psi_m, psi_h, zeta_m, zeta_h)
+        !< @brief universal functions (momentum) & (heat): neutral case
+        ! ----------------------------------------------------------------------------
+        real, intent(out) :: psi_m, psi_h   !< universal functions
+
+        real, intent(in) :: zeta_m,zeta_h            !< = z/L
+        ! ----------------------------------------------------------------------------
+
+        ! --- local variables
+        real :: x_m, x_h
+        ! ----------------------------------------------------------------------------
+
+            x_m = (1.0 - alpha_m * zeta_m)**(0.25)
+            x_h = (1.0 - alpha_h * zeta_h)**(0.25)
+
+            psi_m = (4.0 * atan(1.0) / 2.0) + 2.0 * log(0.5 * (1.0 + x_m)) + log(0.5 * (1.0 + x_m * x_m)) - 2.0 * atan(x_m)
+            psi_h = 2.0 * log(0.5 * (1.0 + x_h * x_h))
+
+     end subroutine
+
+    subroutine get_phi_a(phi_m, phi_h, zeta)
+        !< @brief universal functions (momentum) & (heat): neutral case
+        ! ----------------------------------------------------------------------------
+        real, intent(out) :: phi_m, phi_h   !< universal functions
+
+        real, intent(in) :: zeta            !< = z/L
+        ! ----------------------------------------------------------------------------
+
+        ! --- local variables
+        real :: x_m, x_h, y
+        real :: psi_m_bd,psi_h_bd,psi_m_conv,psi_h_conv
+        real :: dpsi_m_bd,dpsi_h_bd,dpsi_m_conv,dpsi_h_conv
+        ! ----------------------------------------------------------------------------
+
+
+            call get_psi_BD(psi_m_bd,psi_h_bd,zeta,zeta)
+            call get_psi_convection(psi_m_conv,psi_h_conv,zeta,zeta)
+
+            x_m = (1.0 - alpha_m * zeta)**(0.25)
+            x_h = (1.0 - alpha_h * zeta)**(0.25)
+            dpsi_m_bd = -(alpha_m/(2.0*(x_m**3))) * (1/(1+x_m) + (x_m-1)/(1+x_m**2))
+            dpsi_h_bd = -alpha_h / ((x_h**2)*(1+x_h**2))
+
+            y = (1 - beta_m * zeta)**(1/3.)
+            dpsi_m_conv = -beta_m/(y*(y**2 + y + 1))
+            y = (1 - beta_h * zeta)**(1/3.)
+            dpsi_h_conv = -beta_h/(y*(y**2 + y + 1))
+
+            phi_m = 1.0 - zeta * (dpsi_m_bd/(1.0+zeta**2) - psi_m_bd*2.0*zeta/((1.0+zeta**2)**2) + &
+            dpsi_m_conv/(1.0+1.0/(zeta**2)) + 2.0*psi_m_conv/((zeta**3)*((1.0+1.0/(zeta**2))**2)))
+
+            phi_h = 1.0 - zeta * (dpsi_h_bd/(1.0+zeta**2) - psi_h_bd*2.0*zeta/((1.0+zeta**2)**2) + &
+            dpsi_h_conv/(1.0+1.0/(zeta**2)) + 2.0*psi_h_conv/((zeta**3)*((1.0+1.0/(zeta**2))**2)))
+
+     end subroutine
+
+    subroutine get_phi_a2(phi_m,phi_h,zeta)
+        ! ----------------------------------------------------------------------------
+        real, intent(out) :: phi_m, phi_h   !< universal functions
+
+        real, intent(in) :: zeta            !< = z/L
+        ! ----------------------------------------------------------------------------
+
+        ! --- local variables
+        real :: phi_m_bd,phi_h_bd,phi_m_conv,phi_h_conv
+
+            call get_phi_convection(phi_m_conv, phi_h_conv, zeta)
+            call get_phi_BD(phi_m_BD, phi_h_BD, zeta)
+
+            phi_m = (phi_m_BD + (zeta**2) * phi_m_conv) / (1 + zeta**2)
+            phi_h = (phi_h_BD + (zeta**2) * phi_h_conv) / (1 + zeta**2)
+
+    end subroutine
+
+    subroutine get_phi_a3(phi_m,phi_h,zeta)
+        ! ----------------------------------------------------------------------------
+        real, intent(out) :: phi_m, phi_h   !< universal functions
+
+        real, intent(in) :: zeta            !< = z/L
+        ! ----------------------------------------------------------------------------
+
+        ! --- local variables
+        real :: phi_m_bd,phi_h_bd,phi_m_conv,phi_h_conv
+        real :: psi_m_a,psi_h_a,psi_m_conv,psi_h_conv,psi_m_BD,psi_h_BD
+
+            call get_phi_convection(phi_m_conv, phi_h_conv, zeta)
+            call get_phi_BD(phi_m_BD, phi_h_BD, zeta)
+
+            call get_psi_convection(psi_m_conv, psi_h_conv, zeta,zeta)
+            call get_psi_BD(psi_m_BD, psi_h_BD, zeta,zeta)
+!            call get_psi_a(psi_m_a, psi_h_a, zeta,zeta)
+
+           phi_m = (1-phi_m_BD)/(zeta*(1+zeta**2)) + 2*zeta*(psi_m_conv-psi_m_BD)/((1+zeta**2)**2) &
+           + zeta*(1-phi_m_conv)/((1+zeta**2)**2)
+           phi_h = (1-phi_h_BD)/(zeta*(1+zeta**2)) + 2*zeta*(psi_h_conv-psi_h_BD)/((1+zeta**2)**2) &
+           + zeta*(1-phi_h_conv)/((1+zeta**2)**2)
+
+    end subroutine
+
+    subroutine get_phi_BD(phi_m, phi_h, zeta)
+        !< @brief stability functions (momentum) & (heat): neutral case
+        ! ----------------------------------------------------------------------------
+        real, intent(out) :: phi_m, phi_h   !< stability functions
+
+        real, intent(in) :: zeta            !< = z/L
+        ! ----------------------------------------------------------------------------
+
+            phi_m = (1.0 - alpha_m * zeta)**(-0.25)
+            phi_h = (1.0 - alpha_h * zeta)**(-0.5)
+
+    end subroutine
+
+    subroutine get_phi_convection(phi_m, phi_h, zeta)
+        !< @brief stability functions (momentum) & (heat): neutral case
+        ! ----------------------------------------------------------------------------
+        real, intent(out) :: phi_m, phi_h   !< stability functions
+
+        real, intent(in) :: zeta            !< = z/L
+        ! ----------------------------------------------------------------------------
+
+            phi_m = (1.0 - beta_m * zeta)**(-1.0/3.0)
+            phi_h = (1.0 - beta_h * zeta)**(-1.0/3.0)
+
+    end subroutine
+
+        !< @brief get dynamic scales
+    ! --------------------------------------------------------------------------------
+    subroutine get_dynamic_scales(Udyn, Tdyn, Qdyn, zeta, psi_m, psi_h, &
+            psi0_m,psi0_h, U, Tsemi, dT, dQ, z, z0_m, z0_t, beta, maxiters)
+        ! ----------------------------------------------------------------------------
+        real, intent(out) :: Udyn, Tdyn, Qdyn   !< dynamic scales
+        real, intent(out) :: zeta   !< = z/L
+        real, intent(out) :: psi_m,psi_h,psi0_m,psi0_h
+
+        real, intent(in) :: U                   !< abs(wind speed) at z
+        real, intent(in) :: Tsemi               !< semi-sum of temperature at z and at surface
+        real, intent(in) :: dT, dQ              !< temperature & humidity difference between z and at surface
+        real, intent(in) :: z                   !< constant flux layer height
+        real, intent(in) :: z0_m, z0_t          !< roughness parameters
+        real, intent(in) :: beta                !< buoyancy parameter
+
+        integer, intent(in) :: maxiters         !< maximum number of iterations
+        ! ----------------------------------------------------------------------------
+
+        ! --- local variables
+        real :: Linv
+        integer :: i
+        ! ----------------------------------------------------------------------------
+
+
+        Udyn = kappa * U / log(z / z0_m)
+        Tdyn = kappa * dT * Pr_t_0_inv / log(z / z0_t)
+        Qdyn = kappa * dQ * Pr_t_0_inv / log(z / z0_t)
+        zeta = 0.0
+
+        ! --- no wind
+        if (Udyn < 1e-5) return
+
+        Linv = kappa * beta * (Tdyn + 0.61 * Qdyn * Tsemi) / (Udyn * Udyn)
+        zeta = z * Linv
+        psi_m = log(z/z0_m)
+        psi_h = log(z/z0_t) / Pr_t_0_inv
+        psi0_m = log(z/z0_m)
+        psi0_h = log(z/z0_t) / Pr_t_0_inv
+
+
+        ! --- near neutral case
+!        if (Linv < 1e-5) return
+        do i = 1, maxiters
+
+            call get_psi_a(psi_m, psi_h, zeta, zeta)
+            call get_psi_a(psi0_m, psi0_h, z0_m * Linv, z0_t * Linv)
+
+            Udyn = kappa * U / (log(z / z0_m) - (psi_m - psi0_m))
+            Tdyn = kappa * dT * Pr_t_0_inv / (log(z / z0_t) - (psi_h - psi0_h))
+            Qdyn = kappa * dQ * Pr_t_0_inv / (log(z / z0_t) - (psi_h - psi0_h))
+
+            if (Udyn < 1e-5) exit
+
+            Linv = kappa * beta * (Tdyn + 0.61 * Qdyn * Tsemi) / (Udyn * Udyn)
+            zeta = z * Linv
+        end do
+
+    end subroutine get_dynamic_scales
+
+    subroutine get_psi_a(psi_m,psi_h,zeta_m, zeta_h)
+        ! ----------------------------------------------------------------------------
+        real, intent(out) :: psi_m, psi_h   !< universal functions
+
+        real, intent(in) :: zeta_m,zeta_h            !< = z/L
+        ! ----------------------------------------------------------------------------
+
+        ! --- local variables
+        real :: psi_m_bd,psi_h_bd,psi_m_conv,psi_h_conv
+
+            call get_psi_convection(psi_m_conv, psi_h_conv, zeta_m, zeta_h)
+            call get_psi_BD(psi_m_BD, psi_h_BD, zeta_m, zeta_h)
+
+            psi_m = (psi_m_BD + (zeta_m**2) * psi_m_conv) / (1 + zeta_m**2)
+            psi_h = (psi_h_BD + (zeta_h**2) * psi_h_conv) / (1 + zeta_h**2)
+
+    end subroutine
+
+    subroutine get_convection_lim(zeta_lim, Rib_lim, f_m_lim, f_h_lim, &
+            h0_m, h0_t, B)
+        ! ----------------------------------------------------------------------------
+        real, intent(out) :: zeta_lim           !< limiting value of z/L
+        real, intent(out) :: Rib_lim            !< limiting value of Ri-bulk
+        real, intent(out) :: f_m_lim, f_h_lim   !< limiting values of universal functions shortcuts
+
+        real, intent(in) :: h0_m, h0_t          !< = z/z0_m, z/z0_h [n/d]
+        real, intent(in) :: B                   !< = log(z0_m / z0_h) [n/d]
+        ! ----------------------------------------------------------------------------
+
+        ! --- local variables
+        real :: psi_m, psi_h
+        real :: f_m, f_h
+        real :: c
+        ! ----------------------------------------------------------------------------
+
+        ! --- define limiting value of zeta = z / L
+        c = (Pr_t_inf_inv / Pr_t_0_inv)**4
+        zeta_lim = (2.0 * alpha_h - c * alpha_m - &
+                sqrt((c * alpha_m)**2 + 4.0 * c * alpha_h * (alpha_h - alpha_m))) / (2.0 * alpha_h**2)
+
+        f_m_lim = f_m_conv(zeta_lim)
+        f_h_lim = f_h_conv(zeta_lim)
+
+        ! --- universal functions
+        f_m = zeta_lim / h0_m
+        f_h = zeta_lim / h0_t
+        if (abs(B) < 1.0e-10) f_h = f_m
+
+        f_m = (1.0 - alpha_m * f_m)**0.25
+        f_h = sqrt(1.0 - alpha_h_fix * f_h)
+
+        psi_m = 2.0 * (atan(f_m_lim) - atan(f_m)) + alog((f_m_lim - 1.0) * (f_m + 1.0)/((f_m_lim + 1.0) * (f_m - 1.0)))
+        psi_h = alog((f_h_lim - 1.0) * (f_h + 1.0)/((f_h_lim + 1.0) * (f_h - 1.0))) / Pr_t_0_inv
+
+        ! --- bulk Richardson number
+        Rib_lim = zeta_lim * psi_h / (psi_m * psi_m)
+
+    end subroutine
+
+    ! convection universal functions shortcuts
+    ! --------------------------------------------------------------------------------
+    function f_m_conv(zeta)
+        ! ----------------------------------------------------------------------------
+        real :: f_m_conv
+        real, intent(in) :: zeta
+        ! ----------------------------------------------------------------------------
+
+        f_m_conv = (1.0 - alpha_m * zeta)**0.25
+
+    end function f_m_conv
+
+    function f_h_conv(zeta)
+        ! ----------------------------------------------------------------------------
+        real :: f_h_conv
+        real, intent(in) :: zeta
+        ! ----------------------------------------------------------------------------
+
+        f_h_conv = (1.0 - alpha_h * zeta)**0.5
+
+    end function f_h_conv
+
+    subroutine get_zeta_conv(zeta,Rib,z,z0m,z0t)
+        !< @brief Srivastava and Sharan 2017, Abdella and Assefa 2005
+        ! ----------------------------------------------------------------------------
+        real, intent(out) :: zeta                       !< = z/L [n/d]
+        real, intent(in) :: Rib              !
+        real, intent(in) :: z,z0m,z0t               !
+
+        real A,a0,a1,a2,r,q,s1,s2,theta,delta
+        real ksi_m,ksi_h,ksi_m_0,ksi_m_inf,ksi_h_0,ksi_h_inf
+        real f_m_inf,f_h_inf
+        real psi_m_zeta,psi_m_zeta0,psi_h_zeta,psi_h_zeta0
+
+        ! ----------------------------------------------------------------------------
+
+        A = ( 1 / Pr_t_0_inv ) * ( (1 - z0m/z)**2) * log(z/z0t) / ( (1 - z0t/z) * ((log(z/z0m))**2) )
+
+        call get_psi_convection(psi_m_zeta,psi_h_zeta,Rib/A, Rib/A)
+        call get_psi_convection(psi_m_zeta0,psi_h_zeta0, (z0m/z) * (Rib/A),(z0t/z) * (Rib/A))
+
+        f_m_inf = 1 - (psi_m_zeta - psi_m_zeta0) / log(z/z0m)
+        f_h_inf = 1 - (psi_h_zeta - psi_h_zeta0) / log(z/z0t)
+
+        ksi_m_0 = ((z0m / z) - 1.0) / log(z0m/z)
+        ksi_h_0 = ((z0t / z) - 1.0) / log(z0t/z)
+
+        ksi_m_inf = (A / (beta_m * Rib)) * (1.0 - 1.0 / (f_m_inf**4))
+        ksi_h_inf = (A / (beta_h * Rib)) * (1.0 - ((1.0 / Pr_t_0_inv)**2) / (f_h_inf**2))
+
+        ksi_m = cc1 * ksi_m_inf + cc2 * ksi_m_0
+        ksi_h = cc3 * ksi_h_inf + cc4 * ksi_h_0
+
+        a0 = (1 / (beta_m * ksi_m)) * ((Rib / A)**2)
+        a1 = -1 * (beta_h * ksi_h / (beta_m * ksi_m)) * ((Rib / A)**2)
+        a2 = -1 / (beta_m * ksi_m)
+
+        r = (9.0 * (a1 * a2 - 3 * a0) - 2.0 * (a2**3)) / 54.0
+        q = (3.0 * a1 - a2*a2) / 9.0
+        delta = q**3 + r**2
+        s1 = (r + sqrt(delta))**(1./3.)
+        s2 = (r - sqrt(delta))**(1./3.)
+        theta = 1.0 / cos(r / sqrt(-1 * (q**3)))
+        if(delta <= 0.0)then
+        zeta = 2.0 * sqrt(-1.0 * q) * cos((theta + 2.0 * pi)/3.0) + 1 /(3.0 * beta_m * ksi_m)
+        else
+        s1 = cmplx(r + delta**0.5)**(1./3.)
+        s2 = cmplx(r - delta**0.5)**(1./3.)
+        zeta = -1*(real(real(s1)) + real(real(s2)) + 1.0 /(3.0 * beta_m * ksi_m))
+        endif
+
+    end subroutine
+
+
+end module sfx_sheba_coare
\ No newline at end of file
diff --git a/srcF/sfx_sheba_coare_param.f90 b/srcF/sfx_sheba_coare_param.f90
new file mode 100644
index 0000000000000000000000000000000000000000..5630b6dac2d83f689f2fcd3762145965e9be2a7a
--- /dev/null
+++ b/srcF/sfx_sheba_coare_param.f90
@@ -0,0 +1,49 @@
+module sfx_sheba_coare_param
+    !< @brief noit surface flux model parameters
+    !< @details  all in SI units
+
+    ! modules used
+    ! --------------------------------------------------------------------------------
+    use sfx_phys_const
+    ! --------------------------------------------------------------------------------
+
+    ! directives list
+    ! --------------------------------------------------------------------------------
+    implicit none
+    ! --------------------------------------------------------------------------------
+
+
+    !< von Karman constant [n/d]
+    real, parameter :: kappa = 0.40
+    !< inverse Prandtl (turbulent) number in neutral conditions [n/d]
+    real, parameter :: Pr_t_0_inv = 1.15 !1.0
+    !< inverse Prandtl (turbulent) number in free convection [n/d]
+    real, parameter :: Pr_t_inf_inv = 3.5
+
+    real, parameter :: pi = 3.14
+
+    !< stability function coeff. (unstable) Grachev et al. 2000
+    real, parameter :: beta_m = 10.0
+    real, parameter :: beta_h = 34.0
+    real, parameter :: cc1 = 1.00
+    real, parameter :: cc2 = 0.001
+    real, parameter :: cc3 = 0.8
+    real, parameter :: cc4 = 0.008
+
+
+    !< stability function coeff. Dyer 1974
+    real, parameter :: alpha_m = 16.0
+    real, parameter :: alpha_h = 16.0
+    real, parameter :: alpha_h_fix = 16.0
+
+    !< stability function coeff. (stable)
+    real, parameter :: a_m = 5.0
+    real, parameter :: b_m = a_m / 6.5
+    real, parameter :: a_h = 5.0
+    real, parameter :: b_h = 5.0
+    real, parameter :: c_h = 3.0
+
+    real, parameter  ::  gamma = 2.91, zeta_a = 3.6 ! for stable psi
+
+
+end module sfx_sheba_coare_param