Newer
Older
#include "../includeF/sfx_def.fi"
module sfx_sheba_noniterative
! modules used
! --------------------------------------------------------------------------------
#ifdef SFX_CHECK_NAN
use sfx_common
#endif
use sfx_data
use sfx_surface
use sfx_sheba_noit_param
#if defined(INCLUDE_CXX)
use iso_c_binding, only: C_LOC, C_PTR, C_INT, C_FLOAT
use C_FUNC
#endif
! --------------------------------------------------------------------------------
! directives list
! --------------------------------------------------------------------------------
implicit none
private
! --------------------------------------------------------------------------------
! public interface
! --------------------------------------------------------------------------------
public :: get_surface_fluxes
public :: get_surface_fluxes_vec
public :: get_psi_stable
! --------------------------------------------------------------------------------
! --------------------------------------------------------------------------------
type, public :: numericsType
integer :: maxiters_convection = 10 !< maximum (actual) number of iterations in convection
integer :: maxiters_charnock = 10 !< maximum (actual) number of iterations in charnock roughness
end type
! --------------------------------------------------------------------------------
#if defined(INCLUDE_CXX)
type, BIND(C), public :: sfx_sheba_noit_param_C
real(C_FLOAT) :: kappa
real(C_FLOAT) :: Pr_t_0_inv
real(C_FLOAT) :: Pr_t_inf_inv
real(C_FLOAT) :: alpha_m
real(C_FLOAT) :: alpha_h
real(C_FLOAT) :: alpha_h_fix
real(C_FLOAT) :: Rib_max
real(C_FLOAT) :: gamma
real(C_FLOAT) :: zeta_a
real(C_FLOAT) :: a_m
real(C_FLOAT) :: b_m
real(C_FLOAT) :: a_h
real(C_FLOAT) :: b_h
real(C_FLOAT) :: c_h
end type
type, BIND(C), public :: sfx_sheba_noit_numericsType_C
integer(C_INT) :: maxiters_charnock
end type
INTERFACE
SUBROUTINE c_sheba_noit_compute_flux(sfx, meteo, model_param, surface_param, numerics, constants, grid_size) BIND(C, &
name="c_sheba_noit_compute_flux")
use sfx_data
use, intrinsic :: ISO_C_BINDING, ONLY: C_INT, C_PTR
Import :: sfx_sheba_noit_param_C, sfx_sheba_noit_numericsType_C
implicit none
integer(C_INT) :: grid_size
type(C_PTR), value :: sfx
type(C_PTR), value :: meteo
type(sfx_sheba_noit_param_C) :: model_param
type(sfx_sheba_noit_numericsType_C) :: numerics
type(sfx_phys_constants) :: constants
END SUBROUTINE c_sheba_noit_compute_flux
END INTERFACE
#endif
contains
! --------------------------------------------------------------------------------
#if defined(INCLUDE_CXX)
subroutine set_c_struct_sfx_sheba_noit_param_values(sfx_model_param)
type (sfx_sheba_noit_param_C), intent(inout) :: sfx_model_param
sfx_model_param%kappa = kappa
sfx_model_param%Pr_t_0_inv = Pr_t_0_inv
sfx_model_param%Pr_t_inf_inv = Pr_t_inf_inv
sfx_model_param%alpha_m = alpha_m
sfx_model_param%alpha_h = alpha_h
sfx_model_param%alpha_h_fix = alpha_h_fix
sfx_model_param%Rib_max = Rib_max
sfx_model_param%gamma = gamma
sfx_model_param%zeta_a = zeta_a
sfx_model_param%a_m = a_m
sfx_model_param%b_m = b_m
sfx_model_param%a_h = a_h
sfx_model_param%b_h = b_h
sfx_model_param%c_h = c_h
end subroutine set_c_struct_sfx_sheba_noit_param_values
#endif
! --------------------------------------------------------------------------------
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
subroutine get_surface_fluxes_vec(sfx, meteo, numerics, n)
!< @brief surface flux calculation for array data
!< @details contains C/C++ & CUDA interface
! ----------------------------------------------------------------------------
type (sfxDataVecType), intent(inout) :: sfx
type (meteoDataVecType), intent(in) :: meteo
type (numericsType), intent(in) :: numerics
integer, intent(in) :: n
! ----------------------------------------------------------------------------
! --- local variables
type (meteoDataType) meteo_cell
type (sfxDataType) sfx_cell
integer i
! ----------------------------------------------------------------------------
#if defined(INCLUDE_CXX)
type (meteoDataVecTypeC), target :: meteo_c !< meteorological data (input)
type (sfxDataVecTypeC), target :: sfx_c !< surface flux data (output)
type(C_PTR) :: meteo_c_ptr, sfx_c_ptr
type (sfx_sheba_noit_param_C) :: model_param
type (sfx_surface_param) :: surface_param
type (sfx_sheba_noit_numericsType_C) :: numerics_c
type (sfx_phys_constants) :: phys_constants
numerics_c%maxiters_convection = numerics%maxiters_convection
numerics_c%maxiters_charnock = numerics%maxiters_charnock
phys_constants%Pr_m = Pr_m;
phys_constants%nu_air = nu_air;
phys_constants%g = g;
call set_c_struct_sfx_sheba_noit_param_values(model_param)
call set_c_struct_sfx_surface_param_values(surface_param)
call set_meteo_vec_c(meteo, meteo_c)
call set_sfx_vec_c(sfx, sfx_c)
meteo_c_ptr = C_LOC(meteo_c)
sfx_c_ptr = C_LOC(sfx_c)
call c_sheba_noit_compute_flux(sfx_c_ptr, meteo_c_ptr, model_param, surface_param, numerics_c, phys_constants, n)
#else
do i = 1, n
meteo_cell = meteoDataType(&
h = meteo%h(i), &
U = meteo%U(i), dT = meteo%dT(i), Tsemi = meteo%Tsemi(i), dQ = meteo%dQ(i), &
z0_m = meteo%z0_m(i), depth=meteo%depth(i), lai=meteo%lai(i), surface_type=meteo%surface_type(i))
!write(*,*) 'get_flux', meteo%surface_type(i)
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
call get_surface_fluxes(sfx_cell, meteo_cell, numerics)
call push_sfx_data(sfx, sfx_cell, i)
end do
#endif
end subroutine get_surface_fluxes_vec
! --------------------------------------------------------------------------------
! --------------------------------------------------------------------------------
subroutine get_surface_fluxes(sfx, meteo, numerics)
!< @brief surface flux calculation for single cell
!< @details contains C/C++ interface
! ----------------------------------------------------------------------------
#ifdef SFX_CHECK_NAN
use ieee_arithmetic
#endif
type (sfxDataType), intent(out) :: sfx
type (meteoDataType), intent(in) :: meteo
type (numericsType), intent(in) :: numerics
! ----------------------------------------------------------------------------
! --- meteo derived datatype name shadowing
! ----------------------------------------------------------------------------
real :: h !< constant flux layer height [m]
real :: U !< abs(wind speed) at 'h' [m/s]
real :: dT !< difference between potential temperature at 'h' and at surface [K]
real :: Tsemi !< semi-sum of potential temperature at 'h' and at surface [K]
real :: dQ !< difference between humidity at 'h' and at surface [g/g]
real :: z0_m !< surface aerodynamic roughness (should be < 0 for water bodies surface)
! ----------------------------------------------------------------------------
! --- local variables
! ----------------------------------------------------------------------------
real z0_t !< thermal roughness [m]
real B !< = ln(z0_m / z0_t) [n/d]
real h0_m, h0_t !< = h / z0_m, h / z0_h [n/d]
real u_dyn0 !< dynamic velocity in neutral conditions [m/s]
real Rib, Ri_sn !< bulk Richardson number, snow Richardson number
real zeta !< = z/L [n/d]
real Re !< roughness Reynolds number = u_dyn0 * z0_m / nu [n/d]
real zeta_conv_lim !< z/L critical value for matching free convection limit [n/d]
real Rib_conv_lim !< Ri-bulk critical value for matching free convection limit [n/d]
real f_m_conv_lim !< stability function (momentum) value in free convection limit [n/d]
real f_h_conv_lim !< stability function (heat) value in free convection limit [n/d]
real psi_m, psi_h !< universal functions (momentum) & (heat) [n/d]
real psi0_m, psi0_h !< universal functions (momentum) & (heat) [n/d]
real Udyn, Tdyn, Qdyn !< dynamic scales
real phi_m, phi_h !< stability functions (momentum) & (heat) [n/d]
real Km !< eddy viscosity coeff. at h [m^2/s]
real Pr_t_inv !< invese Prandt number [n/d]
real Cm, Ct !< transfer coeff. for (momentum) & (heat) [n/d]
real fval !< just a shortcut for partial calculations
real w_snow, deltaS, h_salt
real sigma_w, sigma_r
real S_mean, S_salt
real z0_m1
#ifdef SFX_CHECK_NAN
real NaN
#endif
! ----------------------------------------------------------------------------
#ifdef SFX_CHECK_NAN
! --- checking if arguments are finite
if (.not.(is_finite(meteo%U).and.is_finite(meteo%Tsemi).and.is_finite(meteo%dT).and.is_finite(meteo%dQ) &
.and.is_finite(meteo%z0_m).and.is_finite(meteo%h))) then
NaN = ieee_value(0.0, ieee_quiet_nan) ! setting NaN
sfx = sfxDataType(zeta = NaN, Rib = NaN, &
Re = NaN, B = NaN, z0_m = NaN, z0_t = NaN, &
Rib_conv_lim = NaN, &
Cm = NaN, Ct = NaN, Km = NaN, Pr_t_inv = NaN)
return
end if
#endif
! --- shadowing names for clarity
U = meteo%U
Tsemi = meteo%Tsemi
dT = meteo%dT
dQ = meteo%dQ
h = meteo%h
z0_m1 = meteo%z0_m
depth = meteo%depth
lai = meteo%lai
surface_type=meteo%surface_type
!write (*,*) surface_type, 'esm'
call get_dynamic_roughness_definition(surface_type, ocean_z0m_id, land_z0m_id, lake_z0m_id, snow_z0m_id, &
forest_z0m_id, usersf_z0m_id, ice_z0m_id, z0m_id)
call get_dynamic_roughness_all(z0_m, u_dyn0, U, depth, h, numerics%maxiters_charnock, z0_m1, z0m_id)
call get_thermal_roughness_definition(surface_type, ocean_z0t_id, land_z0t_id, lake_z0t_id, snow_z0t_id, &
forest_z0t_id, usersf_z0t_id, ice_z0t_id, z0t_id)
Re = u_dyn0 * z0_m / nu_air
call get_thermal_roughness_all(z0_t, B, z0_m, Re, u_dyn0, lai, z0t_id)
! --- define relative height
h0_m = h / z0_m
! --- define relative height [thermal]
h0_t = h / z0_t
! --- define snow consentration
call get_sigma(sigma_r, sigma_w, rho_air, rho_s)
call get_w_snow(w_snow, sigma_w, g, d_s, nu_air)
call get_h_salt(h_salt, u_dyn0)
call get_S_salt(S_salt, u_dyn0, u_thsnow, g, h_salt)
call get_S_mean(S_mean, S_salt, h_salt, h, w_snow, u_dyn0)
deltaS=S_salt-S_mean
! --- define Ri-bulk
Rib = (g / Tsemi) * h * (dT + 0.61e0 * Tsemi * dQ) / U**2
Ri_sn = (g * sigma_r * deltaS * h) / U**2
!write(*,*) 'ri', S_salt, h_salt, h, w_snow, u_dyn0
! --- define free convection transition zeta = z/L value
call get_convection_lim(zeta_conv_lim, Rib_conv_lim, f_m_conv_lim, f_h_conv_lim, &
h0_m, h0_t, B)
! --- get the fluxes
! ----------------------------------------------------------------------------
!write(*,*) 'surface_type', surface_type
! --- stable stratification block
! --- restrict bulk Ri value
! *: note that this value is written to output
! Rib = min(Rib, Rib_max)
write(*,*) 'sfx_snow1', Ri_sn, Rib, U, deltaS
!write(*,*) 'sfx_snow2', deltaS, u_dyn0, S_mean
call get_zeta(zeta, Rib, h, z0_m, z0_t)
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
call get_psi_stable(psi_m, psi_h, zeta, zeta)
call get_psi_stable(psi0_m, psi0_h, zeta * z0_m / h, zeta * z0_t / h)
phi_m = 1.0 + (a_m * zeta * (1.0 + zeta)**(1.0 / 3.0)) / (1.0 + b_m * zeta)
phi_h = 1.0 + (a_h * zeta + b_h * zeta * zeta) / (1.0 + c_h * zeta + zeta * zeta)
Udyn = kappa * U / (log(h / z0_m) - (psi_m - psi0_m))
Tdyn = kappa * dT * Pr_t_0_inv / (log(h / z0_t) - (psi_h - psi0_h))
else if (Rib < Rib_conv_lim) then
! --- strong instability block
call get_psi_convection(psi_m, psi_h, zeta, Rib, &
zeta_conv_lim, f_m_conv_lim, f_h_conv_lim, h0_m, h0_t, B, numerics%maxiters_convection)
fval = (zeta_conv_lim / zeta)**(1.0/3.0)
phi_m = fval / f_m_conv_lim
phi_h = fval / (Pr_t_0_inv * f_h_conv_lim)
else if (Rib > -0.001) then
! --- nearly neutral [-0.001, 0] block
call get_psi_neutral(psi_m, psi_h, h0_m, h0_t, B)
zeta = 0.0
phi_m = 1.0
phi_h = 1.0 / Pr_t_0_inv
else
! --- weak & semistrong instability block
call get_psi_semi_convection(psi_m, psi_h, zeta, Rib, h0_m, h0_t, B, numerics%maxiters_convection)
phi_m = (1.0 - alpha_m * zeta)**(-0.25)
phi_h = 1.0 / (Pr_t_0_inv * sqrt(1.0 - alpha_h_fix * zeta))
end if
! ----------------------------------------------------------------------------
! --- define transfer coeff. (momentum) & (heat)
if(Rib > 0)then
Cm = 0.0
if (U > 0.0) then
Cm = Udyn / U
end if
Ct = 0.0
if (abs(dT) > 0.0) then
Ct = Tdyn / dT
end if
else
Cm = kappa / psi_m
Ct = kappa / psi_h
end if
! --- define eddy viscosity & inverse Prandtl number
Km = kappa * Cm * U * h / phi_m
Pr_t_inv = phi_m / phi_h
! --- setting output
sfx = sfxDataType(zeta = zeta, Rib = Rib, &
Re = Re, B = B, z0_m = z0_m, z0_t = z0_t, &
Rib_conv_lim = Rib_conv_lim, &
Cm = Cm, Ct = Ct, Km = Km, Pr_t_inv = Pr_t_inv)
end subroutine get_surface_fluxes
! --------------------------------------------------------------------------------
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
!--------------------------------------snow functions-----------------------------
subroutine get_sigma(sigma_r, sigma_w, rho_air, rho_s)
!< @brief function for
! ----------------------------------------------------------------------------
real, intent(out) :: sigma_r, sigma_w !< s
real, intent(in) :: rho_air, rho_s
! ----------------------------------------------------------------------------
sigma_r = ((rho_s/rho_air)-1)
sigma_w = (rho_s-rho_air)/rho_air
end subroutine
subroutine get_h_salt(h_salt, u_dyn0)
! ----------------------------------------------------------------------------
real, intent(out) :: h_salt
real, intent(in) :: u_dyn0
! ----------------------------------------------------------------------------
h_salt = 0.08436*u_dyn0**1.27
end subroutine
subroutine get_S_mean(S_mean, S_salt, h_salt, z, w_snow, u_dyn0)
!< @brief function for snow consentration
! ----------------------------------------------------------------------------
real, intent(out) :: S_mean !< snow consentration
real, intent(in) :: S_salt, h_salt, z, w_snow, u_dyn0
! ----------------------------------------------------------------------------
S_mean = S_salt * (z/h_salt)**(-w_snow/(kappa*u_dyn0))
end subroutine
subroutine get_S_salt(S_salt, u_dyn0, u_thsnow, g, h_salt)
!< @brief function for snow consentration
! ----------------------------------------------------------------------------
real, intent(out) :: S_salt !< snow consentration
real, intent(in) :: u_dyn0,u_thsnow, g, h_salt
! ----------------------------------------------------------------------------
real qs
if (u_dyn0>u_thsnow) then
qs = (u_dyn0*u_dyn0-u_thsnow*u_thsnow)/(Csn*u_dyn0*g*h_salt)
S_salt=qs/(qs+rho_s/rho_air)
else
S_salt=0.0
endif
end subroutine
subroutine get_w_snow(w_snow, sigma_w, g, d_s, nu_air)
!< @brief function for smow velosity
! ----------------------------------------------------------------------------
real, intent(out) :: w_snow !<
real, intent(in) :: sigma_w, g, d_s, nu_air
! ----------------------------------------------------------------------------
w_snow = (sigma_w * g * d_s * d_s) / (18.0 * nu_air);
end subroutine
!-----------------------------------------------------------------------------
subroutine get_zeta(zeta, Rib, h, z0_m, z0_t)
real,intent(out) :: zeta
real,intent(in) :: Rib, h, z0_m, z0_t
real :: Ribl, C1, A1, A2, lne, lnet
real :: psi_m, psi_h, psi0_m, psi0_h
Ribl = (Rib * Pr_t_0_inv) * (1 - z0_t / h) / ((1 - z0_m / h)**2)
call get_psi_stable(psi_m, psi_h, zeta_a, zeta_a)
call get_psi_stable(psi0_m, psi0_h, zeta_a * z0_m / h, zeta_a * z0_t / h)
lne = log(h/z0_m)
lnet = log(h/z0_t)
C1 = (lne**2)/lnet
A1 = ((lne - psi_m + psi0_m)**(2*(gamma-1))) &
& / ((zeta_a**(gamma-1))*((lnet-(psi_h-psi0_h)*Pr_t_0_inv)**(gamma-1)))
A2 = ((lne - psi_m + psi0_m)**2) / (lnet-(psi_h-psi0_h)*Pr_t_0_inv) - C1
zeta = C1 * Ribl + A1 * A2 * (Ribl**gamma)
end subroutine get_zeta
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
! convection universal functions shortcuts
! --------------------------------------------------------------------------------
function f_m_conv(zeta)
! ----------------------------------------------------------------------------
real :: f_m_conv
real, intent(in) :: zeta
! ----------------------------------------------------------------------------
f_m_conv = (1.0 - alpha_m * zeta)**0.25
end function f_m_conv
function f_h_conv(zeta)
! ----------------------------------------------------------------------------
real :: f_h_conv
real, intent(in) :: zeta
! ----------------------------------------------------------------------------
f_h_conv = (1.0 - alpha_h * zeta)**0.5
end function f_h_conv
! --------------------------------------------------------------------------------
! universal functions
! --------------------------------------------------------------------------------
subroutine get_psi_neutral(psi_m, psi_h, h0_m, h0_t, B)
!< @brief universal functions (momentum) & (heat): neutral case
! ----------------------------------------------------------------------------
real, intent(out) :: psi_m, psi_h !< universal functions
real, intent(in) :: h0_m, h0_t !< = z/z0_m, z/z0_h
real, intent(in) :: B !< = log(z0_m / z0_h)
! ----------------------------------------------------------------------------
psi_m = log(h0_m)
psi_h = log(h0_t) / Pr_t_0_inv
!*: this looks redundant z0_t = z0_m in case |B| ~ 0
if (abs(B) < 1.0e-10) psi_h = psi_m / Pr_t_0_inv
end subroutine
subroutine get_psi_stable(psi_m, psi_h, zeta_m, zeta_h)
!< @brief universal functions (momentum) & (heat): neutral case
! ----------------------------------------------------------------------------
real, intent(out) :: psi_m, psi_h !< universal functions
real, intent(in) :: zeta_m, zeta_h !< = z/L
! ----------------------------------------------------------------------------
! --- local variables
real :: x_m, x_h
real :: q_m, q_h
! ----------------------------------------------------------------------------
q_m = ((1.0 - b_m) / b_m)**(1.0 / 3.0)
x_m = (1.0 + zeta_m)**(1.0 / 3.0)
psi_m = -3.0 * (a_m / b_m) * (x_m - 1.0) + 0.5 * (a_m / b_m) * q_m * (&
2.0 * log((x_m + q_m) / (1.0 + q_m)) - &
log((x_m * x_m - x_m * q_m + q_m * q_m) / (1.0 - q_m + q_m * q_m)) + &
2.0 * sqrt(3.0) * (&
atan((2.0 * x_m - q_m) / (sqrt(3.0) * q_m)) - &
atan((2.0 - q_m) / (sqrt(3.0) * q_m))))
q_h = sqrt(c_h * c_h - 4.0)
x_h = zeta_h
psi_h = -0.5 * b_h * log(1.0 + c_h * x_h + x_h * x_h) + &
((-a_h / q_h) + ((b_h * c_h) / (2.0 * q_h))) * (&
log((2.0 * x_h + c_h - q_h) / (2.0 * x_h + c_h + q_h)) - &
log((c_h - q_h) / (c_h + q_h)))
end subroutine get_psi_stable
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
subroutine get_psi_semi_convection(psi_m, psi_h, zeta, Rib, h0_m, h0_t, B, maxiters)
!< @brief universal functions (momentum) & (heat): semi-strong convection case
! ----------------------------------------------------------------------------
real, intent(out) :: psi_m, psi_h !< universal functions [n/d]
real, intent(out) :: zeta !< = z/L [n/d]
real, intent(in) :: Rib !< bulk Richardson number [n/d]
real, intent(in) :: h0_m, h0_t !< = z/z0_m, z/z0_h [n/d]
real, intent(in) :: B !< = log(z0_m / z0_h) [n/d]
integer, intent(in) :: maxiters !< maximum number of iterations
! --- local variables
real :: zeta0_m, zeta0_h
real :: f0_m, f0_h
real :: f_m, f_h
integer :: i
! ----------------------------------------------------------------------------
psi_m = log(h0_m)
psi_h = log(h0_t)
if (abs(B) < 1.0e-10) psi_h = psi_m
zeta = Rib * Pr_t_0_inv * psi_m**2 / psi_h
do i = 1, maxiters + 1
zeta0_m = zeta / h0_m
zeta0_h = zeta / h0_t
if (abs(B) < 1.0e-10) zeta0_h = zeta0_m
f_m = (1.0 - alpha_m * zeta)**0.25e0
f_h = sqrt(1.0 - alpha_h_fix * zeta)
f0_m = (1.0 - alpha_m * zeta0_m)**0.25e0
f0_h = sqrt(1.0 - alpha_h_fix * zeta0_h)
f0_m = max(f0_m, 1.000001e0)
f0_h = max(f0_h, 1.000001e0)
psi_m = log((f_m - 1.0e0)*(f0_m + 1.0e0)/((f_m + 1.0e0)*(f0_m - 1.0e0))) + 2.0e0*(atan(f_m) - atan(f0_m))
psi_h = log((f_h - 1.0e0)*(f0_h + 1.0e0)/((f_h + 1.0e0)*(f0_h - 1.0e0))) / Pr_t_0_inv
! *: don't update zeta = z/L at last iteration
if (i == maxiters + 1) exit
zeta = Rib * psi_m**2 / psi_h
end do
end subroutine
subroutine get_psi_convection(psi_m, psi_h, zeta, Rib, &
zeta_conv_lim, f_m_conv_lim, f_h_conv_lim, &
h0_m, h0_t, B, maxiters)
!< @brief universal functions (momentum) & (heat): fully convective case
! ----------------------------------------------------------------------------
real, intent(out) :: psi_m, psi_h !< universal functions [n/d]
real, intent(out) :: zeta !< = z/L [n/d]
real, intent(in) :: Rib !< bulk Richardson number [n/d]
real, intent(in) :: h0_m, h0_t !< = z/z0_m, z/z0_h [n/d]
real, intent(in) :: B !< = log(z0_m / z0_h) [n/d]
integer, intent(in) :: maxiters !< maximum number of iterations
real, intent(in) :: zeta_conv_lim !< convective limit zeta
real, intent(in) :: f_m_conv_lim, f_h_conv_lim !< universal function shortcuts in limiting case
! ----------------------------------------------------------------------------
! --- local variables
real :: zeta0_m, zeta0_h
real :: f0_m, f0_h
real :: p_m, p_h
real :: a_m, a_h
real :: c_lim, f
integer :: i
! ----------------------------------------------------------------------------
p_m = 2.0 * atan(f_m_conv_lim) + log((f_m_conv_lim - 1.0) / (f_m_conv_lim + 1.0))
p_h = log((f_h_conv_lim - 1.0) / (f_h_conv_lim + 1.0))
zeta = zeta_conv_lim
do i = 1, maxiters + 1
zeta0_m = zeta / h0_m
zeta0_h = zeta / h0_t
if (abs(B) < 1.0e-10) zeta0_h = zeta0_m
f0_m = (1.0 - alpha_m * zeta0_m)**0.25
f0_h = sqrt(1.0 - alpha_h_fix * zeta0_h)
a_m = -2.0*atan(f0_m) + log((f0_m + 1.0)/(f0_m - 1.0))
a_h = log((f0_h + 1.0)/(f0_h - 1.0))
c_lim = (zeta_conv_lim / zeta)**(1.0 / 3.0)
f = 3.0 * (1.0 - c_lim)
psi_m = f / f_m_conv_lim + p_m + a_m
psi_h = (f / f_h_conv_lim + p_h + a_h) / Pr_t_0_inv
! *: don't update zeta = z/L at last iteration
if (i == maxiters + 1) exit
zeta = Rib * psi_m**2 / psi_h
end do
end subroutine
! --------------------------------------------------------------------------------
! convection limit definition
! --------------------------------------------------------------------------------
subroutine get_convection_lim(zeta_lim, Rib_lim, f_m_lim, f_h_lim, &
h0_m, h0_t, B)
! ----------------------------------------------------------------------------
real, intent(out) :: zeta_lim !< limiting value of z/L
real, intent(out) :: Rib_lim !< limiting value of Ri-bulk
real, intent(out) :: f_m_lim, f_h_lim !< limiting values of universal functions shortcuts
real, intent(in) :: h0_m, h0_t !< = z/z0_m, z/z0_h [n/d]
real, intent(in) :: B !< = log(z0_m / z0_h) [n/d]
! ----------------------------------------------------------------------------
! --- local variables
real :: psi_m, psi_h
real :: f_m, f_h
real :: c
! ----------------------------------------------------------------------------
! --- define limiting value of zeta = z / L
c = (Pr_t_inf_inv / Pr_t_0_inv)**4
zeta_lim = (2.0 * alpha_h - c * alpha_m - &
sqrt((c * alpha_m)**2 + 4.0 * c * alpha_h * (alpha_h - alpha_m))) / (2.0 * alpha_h**2)
f_m_lim = f_m_conv(zeta_lim)
f_h_lim = f_h_conv(zeta_lim)
! --- universal functions
f_m = zeta_lim / h0_m
f_h = zeta_lim / h0_t
if (abs(B) < 1.0e-10) f_h = f_m
f_m = (1.0 - alpha_m * f_m)**0.25
f_h = sqrt(1.0 - alpha_h_fix * f_h)
psi_m = 2.0 * (atan(f_m_lim) - atan(f_m)) + alog((f_m_lim - 1.0) * (f_m + 1.0)/((f_m_lim + 1.0) * (f_m - 1.0)))
psi_h = alog((f_h_lim - 1.0) * (f_h + 1.0)/((f_h_lim + 1.0) * (f_h - 1.0))) / Pr_t_0_inv
! --- bulk Richardson number
Rib_lim = zeta_lim * psi_h / (psi_m * psi_m)
end subroutine
! --------------------------------------------------------------------------------
end module sfx_sheba_noniterative