Skip to content
Snippets Groups Projects
Commit 2ce9723f authored by Anna Shestakova's avatar Anna Shestakova
Browse files

noniterative sheba scheme for stable surface layer

parent ccb76011
Branches
No related tags found
No related merge requests found
......@@ -89,6 +89,8 @@ set(SOURCES_F
srcF/sfx_most_param.f90
srcF/sfx_sheba.f90
srcF/sfx_sheba_param.f90
srcF/sfx_sheba_noniterative.f90
srcF/sfx_sheba_noit_param.f90
srcF/sfx_fc_wrapper.F90
srcF/sfx_api_inmcm.f90
srcF/sfx_api_term.f90
......
......@@ -19,11 +19,13 @@ module sfx_config
integer, parameter :: model_log = 1 !< LOG simplified model
integer, parameter :: model_most = 2 !< MOST model
integer, parameter :: model_sheba = 3 !< SHEBA model
integer, parameter :: model_sheba_noit = 4 !< SHEBA model noniterative
character(len = 16), parameter :: model_esm_tag = 'esm'
character(len = 16), parameter :: model_log_tag = 'log'
character(len = 16), parameter :: model_most_tag = 'most'
character(len = 16), parameter :: model_sheba_tag = 'sheba'
character(len = 16), parameter :: model_sheba_noit_tag = 'sheba_noit'
!> @brief dataset enum def.
integer, parameter :: dataset_mosaic = 1 !< MOSAiC campaign
......@@ -68,6 +70,8 @@ contains
id = model_most
else if (trim(tag) == trim(model_sheba_tag)) then
id = model_sheba
else if (trim(tag) == trim(model_sheba_noit_tag)) then
id = model_sheba_noit
end if
end function
......@@ -86,6 +90,8 @@ contains
tag = model_most_tag
else if (id == model_sheba) then
tag = model_sheba_tag
else if (id == model_sheba_noit) then
tag = model_sheba_noit_tag
end if
end function
......
......@@ -40,6 +40,9 @@ contains
use sfx_sheba, only: &
get_surface_fluxes_vec_sheba => get_surface_fluxes_vec, &
numericsType_sheba => numericsType
use sfx_sheba_noniterative, only: &
get_surface_fluxes_vec_sheba_noit => get_surface_fluxes_vec, &
numericsType_sheba_noit => numericsType
! --------------------------------------------------------------------------------
character(len=*), intent(in) :: filename_out
......@@ -59,6 +62,7 @@ contains
type(numericsType_log) :: numerics_log !< surface flux module (LOG) numerics parameters
type(numericsType_most) :: numerics_most !< surface flux module (MOST) numerics parameters
type(numericsType_sheba) :: numerics_sheba !< surface flux module (SHEBA) numerics parameters
type(numericsType_sheba_noit) :: numerics_sheba_noit !< surface flux module (SHEBA) numerics parameters
integer :: num !< number of 'cells' in input
! --------------------------------------------------------------------------------
......@@ -147,6 +151,8 @@ contains
call get_surface_fluxes_vec_most(sfx, meteo, numerics_most, num)
else if (model == model_sheba) then
call get_surface_fluxes_vec_sheba(sfx, meteo, numerics_sheba, num)
else if (model == model_sheba_noit) then
call get_surface_fluxes_vec_sheba_noit(sfx, meteo, numerics_sheba_noit, num)
end if
......@@ -233,7 +239,7 @@ contains
write(*, *) ' --help'
write(*, *) ' print usage options'
write(*, *) ' --model [key]'
write(*, *) ' key = esm (default) || log || most || sheba'
write(*, *) ' key = esm (default) || log || most || sheba || sheba_noit'
write(*, *) ' --dataset [key]'
write(*, *) ' key = mosaic (default) || irgason || sheba'
write(*, *) ' = lake || papa || toga || user [filename] [param]'
......
......@@ -33,6 +33,7 @@ module sfx_sheba
! --------------------------------------------------------------------------------
type, public :: numericsType
integer :: maxiters_convection = 10 !< maximum (actual) number of iterations
integer :: maxiters_charnock = 10 !< maximum (actual) number of iterations in charnock roughness
end type
! --------------------------------------------------------------------------------
......@@ -40,7 +41,8 @@ module sfx_sheba
#if defined(INCLUDE_CXX)
type, BIND(C), public :: sfx_sheba_param_C
real(C_FLOAT) :: kappa
real(C_FLOAT) :: Pr_t_0_inv
real(C_FLOAT) ::
Pr_t_0_inv
real(C_FLOAT) :: alpha_m
real(C_FLOAT) :: alpha_h
......@@ -256,7 +258,7 @@ contains
! --- get the fluxes
! ----------------------------------------------------------------------------
call get_dynamic_scales(Udyn, Tdyn, Qdyn, zeta, &
U, Tsemi, dT, dQ, h, z0_m, z0_t, (g / Tsemi), 10)
U, Tsemi, dT, dQ, h, z0_m, z0_t, (g / Tsemi), numerics%maxiters_convection)
! ----------------------------------------------------------------------------
call get_phi(phi_m, phi_h, zeta)
......@@ -343,6 +345,9 @@ contains
end do
end subroutine get_dynamic_scales
! --------------------------------------------------------------------------------
! stability functions
......
module sfx_sheba_noit_param
!< @brief SHEBA surface flux model parameters
!< @details all in SI units
! modules used
! --------------------------------------------------------------------------------
use sfx_phys_const
! --------------------------------------------------------------------------------
! directives list
! --------------------------------------------------------------------------------
implicit none
! --------------------------------------------------------------------------------
!< von Karman constant [n/d]
real, parameter :: kappa = 0.40
!< inverse Prandtl (turbulent) number in neutral conditions [n/d]
real, parameter :: Pr_t_0_inv = 1.15
!< inverse Prandtl (turbulent) number in free convection [n/d]
real, parameter :: Pr_t_inf_inv = 3.5
real, parameter :: Rib_max = 0.5
!< stability function coeff. (unstable)
real, parameter :: alpha_m = 16.0
real, parameter :: alpha_h = 16.0
real, parameter :: alpha_h_fix = 16.0
!< stability function coeff. (stable)
real, parameter :: a_m = 5.0
real, parameter :: b_m = a_m / 6.5
real, parameter :: a_h = 5.0
real, parameter :: b_h = 5.0
real, parameter :: c_h = 3.0
real, parameter :: gamma = 2.91, zeta_a = 3.6 ! for stable psi
end module sfx_sheba_noit_param
#include "../includeF/sfx_def.fi"
module sfx_sheba_noniterative
!< @brief main Earth System Model surface flux module
! modules used
! --------------------------------------------------------------------------------
#ifdef SFX_CHECK_NAN
use sfx_common
#endif
use sfx_data
use sfx_surface
use sfx_sheba_noit_param
#if defined(INCLUDE_CXX)
use iso_c_binding, only: C_LOC, C_PTR, C_INT, C_FLOAT
use C_FUNC
#endif
! --------------------------------------------------------------------------------
! directives list
! --------------------------------------------------------------------------------
implicit none
private
! --------------------------------------------------------------------------------
! public interface
! --------------------------------------------------------------------------------
public :: get_surface_fluxes
public :: get_surface_fluxes_vec
! --------------------------------------------------------------------------------
! --------------------------------------------------------------------------------
type, public :: numericsType
integer :: maxiters_convection = 10 !< maximum (actual) number of iterations in convection
integer :: maxiters_charnock = 10 !< maximum (actual) number of iterations in charnock roughness
end type
! --------------------------------------------------------------------------------
#if defined(INCLUDE_CXX)
type, BIND(C), public :: sfx_sheba_noit_param_C
real(C_FLOAT) :: kappa
real(C_FLOAT) :: Pr_t_0_inv
real(C_FLOAT) :: Pr_t_inf_inv
real(C_FLOAT) :: alpha_m
real(C_FLOAT) :: alpha_h
real(C_FLOAT) :: alpha_h_fix
real(C_FLOAT) :: Rib_max
real(C_FLOAT) :: gamma
real(C_FLOAT) :: zeta_a
end type
type, BIND(C), public :: sfx_sheba_noit_numericsType_C
integer(C_INT) :: maxiters_convection
integer(C_INT) :: maxiters_charnock
end type
INTERFACE
SUBROUTINE c_sheba_noit_compute_flux(sfx, meteo, model_param, surface_param, numerics, constants, grid_size) BIND(C, &
name="c_sheba_noit_compute_flux")
use sfx_data
use, intrinsic :: ISO_C_BINDING, ONLY: C_INT, C_PTR
Import :: sfx_sheba_noit_param_C, sfx_sheba_noit_numericsType_C
implicit none
integer(C_INT) :: grid_size
type(C_PTR), value :: sfx
type(C_PTR), value :: meteo
type(sfx_sheba_noit_param_C) :: model_param
type(sfx_surface_noit_param) :: surface_param
type(sfx_sheba_noit_numericsType_C) :: numerics
type(sfx_phys_constants) :: constants
END SUBROUTINE c_sheba_noit_compute_flux
END INTERFACE
#endif
contains
! --------------------------------------------------------------------------------
#if defined(INCLUDE_CXX)
subroutine set_c_struct_sfx_sheba_noit_param_values(sfx_model_param)
type (sfx_sheba_noit_param_C), intent(inout) :: sfx_model_param
sfx_model_param%kappa = kappa
sfx_model_param%Pr_t_0_inv = Pr_t_0_inv
sfx_model_param%Pr_t_inf_inv = Pr_t_inf_inv
sfx_model_param%alpha_m = alpha_m
sfx_model_param%alpha_h = alpha_h
sfx_model_param%alpha_h_fix = alpha_h_fix
sfx_model_param%Rib_max = Rib_max
sfx_model_param%gamma = gamma
sfx_model_param%zeta_a = zeta_a
end subroutine set_c_struct_sfx_sheba_noit_param_values
#endif
subroutine get_surface_fluxes_vec(sfx, meteo, numerics, n)
!< @brief surface flux calculation for array data
!< @details contains C/C++ & CUDA interface
! ----------------------------------------------------------------------------
type (sfxDataVecType), intent(inout) :: sfx
type (meteoDataVecType), intent(in) :: meteo
type (numericsType), intent(in) :: numerics
integer, intent(in) :: n
! ----------------------------------------------------------------------------
! --- local variables
type (meteoDataType) meteo_cell
type (sfxDataType) sfx_cell
integer i
! ----------------------------------------------------------------------------
#if defined(INCLUDE_CXX)
type (meteoDataVecTypeC), target :: meteo_c !< meteorological data (input)
type (sfxDataVecTypeC), target :: sfx_c !< surface flux data (output)
type(C_PTR) :: meteo_c_ptr, sfx_c_ptr
type (sfx_sheba_noit_param_C) :: model_param
type (sfx_surface_param) :: surface_param
type (sfx_sheba_noit_numericsType_C) :: numerics_c
type (sfx_phys_constants) :: phys_constants
numerics_c%maxiters_convection = numerics%maxiters_convection
numerics_c%maxiters_charnock = numerics%maxiters_charnock
phys_constants%Pr_m = Pr_m;
phys_constants%nu_air = nu_air;
phys_constants%g = g;
call set_c_struct_sfx_sheba_noit_param_values(model_param)
call set_c_struct_sfx_surface_param_values(surface_param)
call set_meteo_vec_c(meteo, meteo_c)
call set_sfx_vec_c(sfx, sfx_c)
meteo_c_ptr = C_LOC(meteo_c)
sfx_c_ptr = C_LOC(sfx_c)
call c_sheba_noit_compute_flux(sfx_c_ptr, meteo_c_ptr, model_param, surface_param, numerics_c, phys_constants, n)
#else
do i = 1, n
#ifdef SFX_FORCE_DEPRECATED_sheba_CODE
#else
meteo_cell = meteoDataType(&
h = meteo%h(i), &
U = meteo%U(i), dT = meteo%dT(i), Tsemi = meteo%Tsemi(i), dQ = meteo%dQ(i), &
z0_m = meteo%z0_m(i))
call get_surface_fluxes(sfx_cell, meteo_cell, numerics)
call push_sfx_data(sfx, sfx_cell, i)
#endif
end do
#endif
end subroutine get_surface_fluxes_vec
! --------------------------------------------------------------------------------
! --------------------------------------------------------------------------------
subroutine get_surface_fluxes(sfx, meteo, numerics)
!< @brief surface flux calculation for single cell
!< @details contains C/C++ interface
! ----------------------------------------------------------------------------
#ifdef SFX_CHECK_NAN
use ieee_arithmetic
#endif
type (sfxDataType), intent(out) :: sfx
type (meteoDataType), intent(in) :: meteo
type (numericsType), intent(in) :: numerics
! ----------------------------------------------------------------------------
! --- meteo derived datatype name shadowing
! ----------------------------------------------------------------------------
real :: h !< constant flux layer height [m]
real :: U !< abs(wind speed) at 'h' [m/s]
real :: dT !< difference between potential temperature at 'h' and at surface [K]
real :: Tsemi !< semi-sum of potential temperature at 'h' and at surface [K]
real :: dQ !< difference between humidity at 'h' and at surface [g/g]
real :: z0_m !< surface aerodynamic roughness (should be < 0 for water bodies surface)
! ----------------------------------------------------------------------------
! --- local variables
! ----------------------------------------------------------------------------
real z0_t !< thermal roughness [m]
real B !< = ln(z0_m / z0_t) [n/d]
real h0_m, h0_t !< = h / z0_m, h / z0_h [n/d]
real u_dyn0 !< dynamic velocity in neutral conditions [m/s]
real Re !< roughness Reynolds number = u_dyn0 * z0_m / nu [n/d]
real zeta !< = z/L [n/d]
real Rib !< bulk Richardson number
real zeta_conv_lim !< z/L critical value for matching free convection limit [n/d]
real Rib_conv_lim !< Ri-bulk critical value for matching free convection limit [n/d]
real f_m_conv_lim !< stability function (momentum) value in free convection limit [n/d]
real f_h_conv_lim !< stability function (heat) value in free convection limit [n/d]
real psi_m, psi_h !< universal functions (momentum) & (heat) [n/d]
real psi0_m, psi0_h !< universal functions (momentum) & (heat) [n/d]
real phi_m, phi_h !< stability functions (momentum) & (heat) [n/d]
real Km !< eddy viscosity coeff. at h [m^2/s]
real Pr_t_inv !< invese Prandt number [n/d]
real Cm, Ct !< transfer coeff. for (momentum) & (heat) [n/d]
real Udyn, Tdyn
integer surface_type !< surface type = (ocean || land)
real fval !< just a shortcut for partial calculations
real :: C1,A1,A2,lne,lnet,Ribl
#ifdef SFX_CHECK_NAN
real NaN
#endif
! ----------------------------------------------------------------------------
#ifdef SFX_CHECK_NAN
! --- checking if arguments are finite
if (.not.(is_finite(meteo%U).and.is_finite(meteo%Tsemi).and.is_finite(meteo%dT).and.is_finite(meteo%dQ) &
.and.is_finite(meteo%z0_m).and.is_finite(meteo%h))) then
NaN = ieee_value(0.0, ieee_quiet_nan) ! setting NaN
sfx = sfxDataType(zeta = NaN, Rib = NaN, &
Re = NaN, B = NaN, z0_m = NaN, z0_t = NaN, &
Rib_conv_lim = NaN, &
Cm = NaN, Ct = NaN, Km = NaN, Pr_t_inv = NaN)
return
end if
#endif
! --- shadowing names for clarity
U = meteo%U
Tsemi = meteo%Tsemi
dT = meteo%dT
dQ = meteo%dQ
h = meteo%h
z0_m = meteo%z0_m
! --- define surface type
if (z0_m < 0.0) then
surface_type = surface_ocean
else
surface_type = surface_land
end if
if (surface_type == surface_ocean) then
! --- define surface roughness [momentum] & dynamic velocity in neutral conditions
call get_charnock_roughness(z0_m, u_dyn0, U, h, numerics%maxiters_charnock)
! --- define relative height
h0_m = h / z0_m
endif
if (surface_type == surface_land) then
! --- define relative height
h0_m = h / z0_m
! --- define dynamic velocity in neutral conditions
u_dyn0 = U * kappa / log(h0_m)
end if
! --- define thermal roughness & B = log(z0_m / z0_h)
Re = u_dyn0 * z0_m / nu_air
call get_thermal_roughness(z0_t, B, z0_m, Re, surface_type)
! --- define relative height [thermal]
h0_t = h / z0_t
! --- define Ri-bulk
Rib = (g / Tsemi) * h * (dT + 0.61e0 * Tsemi * dQ) / U**2
! --- define free convection transition zeta = z/L value
call get_convection_lim(zeta_conv_lim, Rib_conv_lim, f_m_conv_lim, f_h_conv_lim, &
h0_m, h0_t, B)
! --- get the fluxes
! ----------------------------------------------------------------------------
if (Rib > 0.0) then
! --- stable stratification block
! --- restrict bulk Ri value
! *: note that this value is written to output
Rib = min(Rib, Rib_max)
Ribl = (Rib*Pr_t_0_inv) * (1 - z0_t / h) / ((1 - z0_m / h)**2)
call get_psi_stable(psi_m, psi_h, zeta_a, zeta_a)
call get_psi_stable(psi0_m, psi0_h, zeta_a * z0_m / h, zeta_a * z0_t / h)
lne = log(h/z0_m)
lnet = log(h/z0_t)
C1 = (lne**2)/lnet
A1 = ((lne - psi_m + psi0_m)**(2*(gamma-1))) &
& / ((zeta_a**(gamma-1))*((lnet-(psi_h-psi0_h)*Pr_t_0_inv)**(gamma-1)))
A2 = ((lne - psi_m + psi0_m)**2) / (lnet-(psi_h-psi0_h)*Pr_t_0_inv) - C1
zeta = C1 * Ribl + A1 * A2 * (Ribl**gamma)
call get_psi_stable(psi_m, psi_h, zeta, zeta)
call get_psi_stable(psi0_m, psi0_h, zeta * z0_m / h, zeta * z0_t / h)
phi_m = 1.0 + (a_m * zeta * (1.0 + zeta)**(1.0 / 3.0)) / (1.0 + b_m * zeta)
phi_h = 1.0 + (a_h * zeta + b_h * zeta * zeta) / (1.0 + c_h * zeta + zeta * zeta)
Udyn = kappa * U / (log(h / z0_m) - (psi_m - psi0_m))
Tdyn = kappa * dT * Pr_t_0_inv / (log(h / z0_t) - (psi_h - psi0_h))
else if (Rib < Rib_conv_lim) then
! --- strong instability block
call get_psi_convection(psi_m, psi_h, zeta, Rib, &
zeta_conv_lim, f_m_conv_lim, f_h_conv_lim, h0_m, h0_t, B, numerics%maxiters_convection)
fval = (zeta_conv_lim / zeta)**(1.0/3.0)
phi_m = fval / f_m_conv_lim
phi_h = fval / (Pr_t_0_inv * f_h_conv_lim)
else if (Rib > -0.001) then
! --- nearly neutral [-0.001, 0] block
call get_psi_neutral(psi_m, psi_h, h0_m, h0_t, B)
zeta = 0.0
phi_m = 1.0
phi_h = 1.0 / Pr_t_0_inv
else
! --- weak & semistrong instability block
call get_psi_semi_convection(psi_m, psi_h, zeta, Rib, h0_m, h0_t, B, numerics%maxiters_convection)
phi_m = (1.0 - alpha_m * zeta)**(-0.25)
phi_h = 1.0 / (Pr_t_0_inv * sqrt(1.0 - alpha_h_fix * zeta))
end if
! ----------------------------------------------------------------------------
! --- define transfer coeff. (momentum) & (heat)
if(Rib > 0)then
Cm = 0.0
if (U > 0.0) then
Cm = Udyn / U
end if
Ct = 0.0
if (abs(dT) > 0.0) then
Ct = Tdyn / dT
end if
else
Cm = kappa / psi_m
Ct = kappa / psi_h
end if
! --- define eddy viscosity & inverse Prandtl number
Km = kappa * Cm * U * h / phi_m
Pr_t_inv = phi_m / phi_h
! --- setting output
sfx = sfxDataType(zeta = zeta, Rib = Rib, &
Re = Re, B = B, z0_m = z0_m, z0_t = z0_t, &
Rib_conv_lim = Rib_conv_lim, &
Cm = Cm, Ct = Ct, Km = Km, Pr_t_inv = Pr_t_inv)
end subroutine get_surface_fluxes
! --------------------------------------------------------------------------------
! convection universal functions shortcuts
! --------------------------------------------------------------------------------
function f_m_conv(zeta)
! ----------------------------------------------------------------------------
real :: f_m_conv
real, intent(in) :: zeta
! ----------------------------------------------------------------------------
f_m_conv = (1.0 - alpha_m * zeta)**0.25
end function f_m_conv
function f_h_conv(zeta)
! ----------------------------------------------------------------------------
real :: f_h_conv
real, intent(in) :: zeta
! ----------------------------------------------------------------------------
f_h_conv = (1.0 - alpha_h * zeta)**0.5
end function f_h_conv
! --------------------------------------------------------------------------------
! universal functions
! --------------------------------------------------------------------------------
subroutine get_psi_neutral(psi_m, psi_h, h0_m, h0_t, B)
!< @brief universal functions (momentum) & (heat): neutral case
! ----------------------------------------------------------------------------
real, intent(out) :: psi_m, psi_h !< universal functions
real, intent(in) :: h0_m, h0_t !< = z/z0_m, z/z0_h
real, intent(in) :: B !< = log(z0_m / z0_h)
! ----------------------------------------------------------------------------
psi_m = log(h0_m)
psi_h = log(h0_t) / Pr_t_0_inv
!*: this looks redundant z0_t = z0_m in case |B| ~ 0
if (abs(B) < 1.0e-10) psi_h = psi_m / Pr_t_0_inv
end subroutine
subroutine get_psi_stable(psi_m, psi_h, zeta_m, zeta_h)
!< @brief universal functions (momentum) & (heat): neutral case
! ----------------------------------------------------------------------------
real, intent(out) :: psi_m, psi_h !< universal functions
real, intent(in) :: zeta_m, zeta_h !< = z/L
! ----------------------------------------------------------------------------
! --- local variables
real :: x_m, x_h
real :: q_m, q_h
! ----------------------------------------------------------------------------
q_m = ((1.0 - b_m) / b_m)**(1.0 / 3.0)
x_m = (1.0 + zeta_m)**(1.0 / 3.0)
psi_m = -3.0 * (a_m / b_m) * (x_m - 1.0) + 0.5 * (a_m / b_m) * q_m * (&
2.0 * log((x_m + q_m) / (1.0 + q_m)) - &
log((x_m * x_m - x_m * q_m + q_m * q_m) / (1.0 - q_m + q_m * q_m)) + &
2.0 * sqrt(3.0) * (&
atan((2.0 * x_m - q_m) / (sqrt(3.0) * q_m)) - &
atan((2.0 - q_m) / (sqrt(3.0) * q_m))))
q_h = sqrt(c_h * c_h - 4.0)
x_h = zeta_h
psi_h = -0.5 * b_h * log(1.0 + c_h * x_h + x_h * x_h) + &
((-a_h / q_h) + ((b_h * c_h) / (2.0 * q_h))) * (&
log((2.0 * x_h + c_h - q_h) / (2.0 * x_h + c_h + q_h)) - &
log((c_h - q_h) / (c_h + q_h)))
end subroutine
subroutine get_psi_semi_convection(psi_m, psi_h, zeta, Rib, h0_m, h0_t, B, maxiters)
!< @brief universal functions (momentum) & (heat): semi-strong convection case
! ----------------------------------------------------------------------------
real, intent(out) :: psi_m, psi_h !< universal functions [n/d]
real, intent(out) :: zeta !< = z/L [n/d]
real, intent(in) :: Rib !< bulk Richardson number [n/d]
real, intent(in) :: h0_m, h0_t !< = z/z0_m, z/z0_h [n/d]
real, intent(in) :: B !< = log(z0_m / z0_h) [n/d]
integer, intent(in) :: maxiters !< maximum number of iterations
! --- local variables
real :: zeta0_m, zeta0_h
real :: f0_m, f0_h
real :: f_m, f_h
integer :: i
! ----------------------------------------------------------------------------
psi_m = log(h0_m)
psi_h = log(h0_t)
if (abs(B) < 1.0e-10) psi_h = psi_m
zeta = Rib * Pr_t_0_inv * psi_m**2 / psi_h
do i = 1, maxiters + 1
zeta0_m = zeta / h0_m
zeta0_h = zeta / h0_t
if (abs(B) < 1.0e-10) zeta0_h = zeta0_m
f_m = (1.0 - alpha_m * zeta)**0.25e0
f_h = sqrt(1.0 - alpha_h_fix * zeta)
f0_m = (1.0 - alpha_m * zeta0_m)**0.25e0
f0_h = sqrt(1.0 - alpha_h_fix * zeta0_h)
f0_m = max(f0_m, 1.000001e0)
f0_h = max(f0_h, 1.000001e0)
psi_m = log((f_m - 1.0e0)*(f0_m + 1.0e0)/((f_m + 1.0e0)*(f0_m - 1.0e0))) + 2.0e0*(atan(f_m) - atan(f0_m))
psi_h = log((f_h - 1.0e0)*(f0_h + 1.0e0)/((f_h + 1.0e0)*(f0_h - 1.0e0))) / Pr_t_0_inv
! *: don't update zeta = z/L at last iteration
if (i == maxiters + 1) exit
zeta = Rib * psi_m**2 / psi_h
end do
end subroutine
subroutine get_psi_convection(psi_m, psi_h, zeta, Rib, &
zeta_conv_lim, f_m_conv_lim, f_h_conv_lim, &
h0_m, h0_t, B, maxiters)
!< @brief universal functions (momentum) & (heat): fully convective case
! ----------------------------------------------------------------------------
real, intent(out) :: psi_m, psi_h !< universal functions [n/d]
real, intent(out) :: zeta !< = z/L [n/d]
real, intent(in) :: Rib !< bulk Richardson number [n/d]
real, intent(in) :: h0_m, h0_t !< = z/z0_m, z/z0_h [n/d]
real, intent(in) :: B !< = log(z0_m / z0_h) [n/d]
integer, intent(in) :: maxiters !< maximum number of iterations
real, intent(in) :: zeta_conv_lim !< convective limit zeta
real, intent(in) :: f_m_conv_lim, f_h_conv_lim !< universal function shortcuts in limiting case
! ----------------------------------------------------------------------------
! --- local variables
real :: zeta0_m, zeta0_h
real :: f0_m, f0_h
real :: p_m, p_h
real :: a_m, a_h
real :: c_lim, f
integer :: i
! ----------------------------------------------------------------------------
p_m = 2.0 * atan(f_m_conv_lim) + log((f_m_conv_lim - 1.0) / (f_m_conv_lim + 1.0))
p_h = log((f_h_conv_lim - 1.0) / (f_h_conv_lim + 1.0))
zeta = zeta_conv_lim
do i = 1, maxiters + 1
zeta0_m = zeta / h0_m
zeta0_h = zeta / h0_t
if (abs(B) < 1.0e-10) zeta0_h = zeta0_m
f0_m = (1.0 - alpha_m * zeta0_m)**0.25
f0_h = sqrt(1.0 - alpha_h_fix * zeta0_h)
a_m = -2.0*atan(f0_m) + log((f0_m + 1.0)/(f0_m - 1.0))
a_h = log((f0_h + 1.0)/(f0_h - 1.0))
c_lim = (zeta_conv_lim / zeta)**(1.0 / 3.0)
f = 3.0 * (1.0 - c_lim)
psi_m = f / f_m_conv_lim + p_m + a_m
psi_h = (f / f_h_conv_lim + p_h + a_h) / Pr_t_0_inv
! *: don't update zeta = z/L at last iteration
if (i == maxiters + 1) exit
zeta = Rib * psi_m**2 / psi_h
end do
end subroutine
! --------------------------------------------------------------------------------
! convection limit definition
! --------------------------------------------------------------------------------
subroutine get_convection_lim(zeta_lim, Rib_lim, f_m_lim, f_h_lim, &
h0_m, h0_t, B)
! ----------------------------------------------------------------------------
real, intent(out) :: zeta_lim !< limiting value of z/L
real, intent(out) :: Rib_lim !< limiting value of Ri-bulk
real, intent(out) :: f_m_lim, f_h_lim !< limiting values of universal functions shortcuts
real, intent(in) :: h0_m, h0_t !< = z/z0_m, z/z0_h [n/d]
real, intent(in) :: B !< = log(z0_m / z0_h) [n/d]
! ----------------------------------------------------------------------------
! --- local variables
real :: psi_m, psi_h
real :: f_m, f_h
real :: c
! ----------------------------------------------------------------------------
! --- define limiting value of zeta = z / L
c = (Pr_t_inf_inv / Pr_t_0_inv)**4
zeta_lim = (2.0 * alpha_h - c * alpha_m - &
sqrt((c * alpha_m)**2 + 4.0 * c * alpha_h * (alpha_h - alpha_m))) / (2.0 * alpha_h**2)
f_m_lim = f_m_conv(zeta_lim)
f_h_lim = f_h_conv(zeta_lim)
! --- universal functions
f_m = zeta_lim / h0_m
f_h = zeta_lim / h0_t
if (abs(B) < 1.0e-10) f_h = f_m
f_m = (1.0 - alpha_m * f_m)**0.25
f_h = sqrt(1.0 - alpha_h_fix * f_h)
psi_m = 2.0 * (atan(f_m_lim) - atan(f_m)) + alog((f_m_lim - 1.0) * (f_m + 1.0)/((f_m_lim + 1.0) * (f_m - 1.0)))
psi_h = alog((f_h_lim - 1.0) * (f_h + 1.0)/((f_h_lim + 1.0) * (f_h - 1.0))) / Pr_t_0_inv
! --- bulk Richardson number
Rib_lim = zeta_lim * psi_h / (psi_m * psi_m)
end subroutine
! --------------------------------------------------------------------------------
end module sfx_sheba_noniterative
\ No newline at end of file
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment