Skip to content
Snippets Groups Projects
Commit 9d99a415 authored by Anna Shestakova's avatar Anna Shestakova
Browse files

noniterative sheba scheme for stable surface layer

parent ccb76011
No related branches found
No related tags found
No related merge requests found
......@@ -88,6 +88,7 @@ set(SOURCES_F
srcF/sfx_most.f90
srcF/sfx_most_param.f90
srcF/sfx_sheba.f90
srcF/sfx_sheba_noniterative.f90
srcF/sfx_sheba_param.f90
srcF/sfx_fc_wrapper.F90
srcF/sfx_api_inmcm.f90
......
......@@ -19,11 +19,13 @@ module sfx_config
integer, parameter :: model_log = 1 !< LOG simplified model
integer, parameter :: model_most = 2 !< MOST model
integer, parameter :: model_sheba = 3 !< SHEBA model
integer, parameter :: model_sheba_noit = 4 !< SHEBA model noniterative
character(len = 16), parameter :: model_esm_tag = 'esm'
character(len = 16), parameter :: model_log_tag = 'log'
character(len = 16), parameter :: model_most_tag = 'most'
character(len = 16), parameter :: model_sheba_tag = 'sheba'
character(len = 16), parameter :: model_sheba_noit_tag = 'sheba_noit'
!> @brief dataset enum def.
integer, parameter :: dataset_mosaic = 1 !< MOSAiC campaign
......@@ -68,6 +70,8 @@ contains
id = model_most
else if (trim(tag) == trim(model_sheba_tag)) then
id = model_sheba
else if (trim(tag) == trim(model_sheba_noit_tag)) then
id = model_sheba_noit
end if
end function
......@@ -86,6 +90,8 @@ contains
tag = model_most_tag
else if (id == model_sheba) then
tag = model_sheba_tag
else if (id == model_sheba_noit) then
tag = model_sheba_noit_tag
end if
end function
......
......@@ -40,6 +40,9 @@ contains
use sfx_sheba, only: &
get_surface_fluxes_vec_sheba => get_surface_fluxes_vec, &
numericsType_sheba => numericsType
use sfx_sheba_noniterative, only: &
get_surface_fluxes_vec_sheba_noit => get_surface_fluxes_vec, &
numericsType_sheba_noit => numericsType
! --------------------------------------------------------------------------------
character(len=*), intent(in) :: filename_out
......@@ -59,6 +62,7 @@ contains
type(numericsType_log) :: numerics_log !< surface flux module (LOG) numerics parameters
type(numericsType_most) :: numerics_most !< surface flux module (MOST) numerics parameters
type(numericsType_sheba) :: numerics_sheba !< surface flux module (SHEBA) numerics parameters
type(numericsType_sheba_noit) :: numerics_sheba_noit !< surface flux module (SHEBA) numerics parameters
integer :: num !< number of 'cells' in input
! --------------------------------------------------------------------------------
......@@ -147,6 +151,8 @@ contains
call get_surface_fluxes_vec_most(sfx, meteo, numerics_most, num)
else if (model == model_sheba) then
call get_surface_fluxes_vec_sheba(sfx, meteo, numerics_sheba, num)
else if (model == model_sheba_noit) then
call get_surface_fluxes_vec_sheba_noit(sfx, meteo, numerics_sheba_noit, num)
end if
......@@ -233,7 +239,7 @@ contains
write(*, *) ' --help'
write(*, *) ' print usage options'
write(*, *) ' --model [key]'
write(*, *) ' key = esm (default) || log || most || sheba'
write(*, *) ' key = esm (default) || log || most || sheba || sheba_noit'
write(*, *) ' --dataset [key]'
write(*, *) ' key = mosaic (default) || irgason || sheba'
write(*, *) ' = lake || papa || toga || user [filename] [param]'
......
#include "../includeF/sfx_def.fi"
module sfx_sheba_noniterative
!< @brief SHEBA surface flux module
! modules used
! --------------------------------------------------------------------------------
#ifdef SFX_CHECK_NAN
use sfx_common
#endif
use sfx_data
use sfx_surface
use sfx_sheba_param
#if defined(INCLUDE_CXX)
use iso_c_binding, only: C_LOC, C_PTR, C_INT, C_FLOAT
use C_FUNC
#endif
! --------------------------------------------------------------------------------
! directives list
! --------------------------------------------------------------------------------
implicit none
private
! --------------------------------------------------------------------------------
! public interface
! --------------------------------------------------------------------------------
public :: get_surface_fluxes
public :: get_surface_fluxes_vec
public :: get_psi
! --------------------------------------------------------------------------------
! --------------------------------------------------------------------------------
type, public :: numericsType
integer :: maxiters_charnock = 10 !< maximum (actual) number of iterations in charnock roughness
end type
! --------------------------------------------------------------------------------
#if defined(INCLUDE_CXX)
type, BIND(C), public :: sfx_sheba_param_C
real(C_FLOAT) :: kappa
real(C_FLOAT) :: Pr_t_0_inv
real(C_FLOAT) :: alpha_m
real(C_FLOAT) :: alpha_h
real(C_FLOAT) :: a_m
real(C_FLOAT) :: b_m
real(C_FLOAT) :: a_h
real(C_FLOAT) :: b_h
real(C_FLOAT) :: c_h
end type
type, BIND(C), public :: sfx_sheba_numericsType_C
integer(C_INT) :: maxiters_charnock
end type
INTERFACE
SUBROUTINE c_sheba_compute_flux(sfx, meteo, model_param, surface_param, numerics, constants, grid_size) BIND(C, &
name="c_sheba_compute_flux")
use sfx_data
use, intrinsic :: ISO_C_BINDING, ONLY: C_INT, C_PTR
Import :: sfx_sheba_param_C, sfx_sheba_numericsType_C
implicit none
INTEGER(C_INT) :: grid_size
type(C_PTR), value :: sfx
type(C_PTR), value :: meteo
type(sfx_sheba_param_C) :: model_param
type(sfx_surface_param) :: surface_param
type(sfx_sheba_numericsType_C) :: numerics
type(sfx_phys_constants) :: constants
END SUBROUTINE c_sheba_compute_flux
END INTERFACE
#endif
contains
#if defined(INCLUDE_CXX)
subroutine set_c_struct_sfx_sheba_param_values(sfx_model_param)
type (sfx_sheba_param_C), intent(inout) :: sfx_model_param
sfx_model_param%kappa = kappa
sfx_model_param%Pr_t_0_inv = Pr_t_0_inv
sfx_model_param%alpha_m = alpha_m
sfx_model_param%alpha_h = alpha_h
sfx_model_param%a_m = a_m
sfx_model_param%b_m = b_m
sfx_model_param%a_h = a_h
sfx_model_param%b_h = b_h
sfx_model_param%c_h = c_h
end subroutine set_c_struct_sfx_sheba_param_values
#endif
! --------------------------------------------------------------------------------
subroutine get_surface_fluxes_vec(sfx, meteo, numerics, n)
!< @brief surface flux calculation for array data
!< @details contains C/C++ & CUDA interface
! ----------------------------------------------------------------------------
type (sfxDataVecType), intent(inout) :: sfx
type (meteoDataVecType), intent(in) :: meteo
type (numericsType), intent(in) :: numerics
integer, intent(in) :: n
! ----------------------------------------------------------------------------
! --- local variables
type (meteoDataType) meteo_cell
type (sfxDataType) sfx_cell
integer i
! ----------------------------------------------------------------------------
#if defined(INCLUDE_CXX)
type (meteoDataVecTypeC), target :: meteo_c !< meteorological data (input)
type (sfxDataVecTypeC), target :: sfx_c !< surface flux data (output)
type(C_PTR) :: meteo_c_ptr, sfx_c_ptr
type (sfx_sheba_param_C) :: model_param
type (sfx_surface_param) :: surface_param
type (sfx_sheba_numericsType_C) :: numerics_c
type (sfx_phys_constants) :: phys_constants
numerics_c%maxiters_charnock = numerics%maxiters_charnock
phys_constants%Pr_m = Pr_m;
phys_constants%nu_air = nu_air;
phys_constants%g = g;
call set_c_struct_sfx_sheba_param_values(model_param)
call set_c_struct_sfx_surface_param_values(surface_param)
call set_meteo_vec_c(meteo, meteo_c)
call set_sfx_vec_c(sfx, sfx_c)
meteo_c_ptr = C_LOC(meteo_c)
sfx_c_ptr = C_LOC(sfx_c)
call c_sheba_compute_flux(sfx_c_ptr, meteo_c_ptr, model_param, surface_param, numerics_c, phys_constants, n)
#else
do i = 1, n
meteo_cell = meteoDataType(&
h = meteo%h(i), &
U = meteo%U(i), dT = meteo%dT(i), Tsemi = meteo%Tsemi(i), dQ = meteo%dQ(i), &
z0_m = meteo%z0_m(i))
call get_surface_fluxes(sfx_cell, meteo_cell, numerics)
call push_sfx_data(sfx, sfx_cell, i)
end do
#endif
end subroutine get_surface_fluxes_vec
! --------------------------------------------------------------------------------
! --------------------------------------------------------------------------------
subroutine get_surface_fluxes(sfx, meteo, numerics)
!< @brief surface flux calculation for single cell
!< @details contains C/C++ interface
! ----------------------------------------------------------------------------
#ifdef SFX_CHECK_NAN
use ieee_arithmetic
#endif
type (sfxDataType), intent(out) :: sfx
type (meteoDataType), intent(in) :: meteo
type (numericsType), intent(in) :: numerics
! ----------------------------------------------------------------------------
! --- meteo derived datatype name shadowing
! ----------------------------------------------------------------------------
real :: h !< constant flux layer height [m]
real :: U !< abs(wind speed) at 'h' [m/s]
real :: dT !< difference between potential temperature at 'h' and at surface [K]
real :: Tsemi !< semi-sum of potential temperature at 'h' and at surface [K]
real :: dQ !< difference between humidity at 'h' and at surface [g/g]
real :: z0_m !< surface aerodynamic roughness (should be < 0 for water bodies surface)
! ----------------------------------------------------------------------------
! --- local variables
! ----------------------------------------------------------------------------
real z0_t !< thermal roughness [m]
real B !< = ln(z0_m / z0_t) [n/d]
real h0_m, h0_t !< = h / z0_m, h / z0_h [n/d]
real u_dyn0 !< dynamic velocity in neutral conditions [m/s]
real Re !< roughness Reynolds number = u_dyn0 * z0_m / nu [n/d]
real zeta !< = z/L [n/d]
real Rib !< bulk Richardson number
real Udyn, Tdyn, Qdyn !< dynamic scales
real phi_m, phi_h !< stability functions (momentum) & (heat) [n/d]
real Km !< eddy viscosity coeff. at h [m^2/s]
real Pr_t_inv !< invese Prandt number [n/d]
real Cm, Ct !< transfer coeff. for (momentum) & (heat) [n/d]
integer surface_type !< surface type = (ocean || land)
#ifdef SFX_CHECK_NAN
real NaN
#endif
! ----------------------------------------------------------------------------
#ifdef SFX_CHECK_NAN
! --- checking if arguments are finite
if (.not.(is_finite(meteo%U).and.is_finite(meteo%Tsemi).and.is_finite(meteo%dT).and.is_finite(meteo%dQ) &
.and.is_finite(meteo%z0_m).and.is_finite(meteo%h))) then
NaN = ieee_value(0.0, ieee_quiet_nan) ! setting NaN
sfx = sfxDataType(zeta = NaN, Rib = NaN, &
Re = NaN, B = NaN, z0_m = NaN, z0_t = NaN, &
Rib_conv_lim = NaN, &
Cm = NaN, Ct = NaN, Km = NaN, Pr_t_inv = NaN)
return
end if
#endif
! --- shadowing names for clarity
U = meteo%U
Tsemi = meteo%Tsemi
dT = meteo%dT
dQ = meteo%dQ
h = meteo%h
z0_m = meteo%z0_m
! --- define surface type
if (z0_m < 0.0) then
surface_type = surface_ocean
else
surface_type = surface_land
end if
if (surface_type == surface_ocean) then
! --- define surface roughness [momentum] & dynamic velocity in neutral conditions
call get_charnock_roughness(z0_m, u_dyn0, U, h, numerics%maxiters_charnock)
! --- define relative height
h0_m = h / z0_m
endif
if (surface_type == surface_land) then
! --- define relative height
h0_m = h / z0_m
! --- define dynamic velocity in neutral conditions
u_dyn0 = U * kappa / log(h0_m)
end if
! --- define thermal roughness & B = log(z0_m / z0_h)
Re = u_dyn0 * z0_m / nu_air
call get_thermal_roughness(z0_t, B, z0_m, Re, surface_type)
! --- define relative height [thermal]
h0_t = h / z0_t
! --- define Ri-bulk
Rib = (g / Tsemi) * h * (dT + 0.61e0 * Tsemi * dQ) / U**2
! --- get the fluxes
! ----------------------------------------------------------------------------
if(Rib > 0)then
call get_dynamic_scales_noniterative(Udyn, Tdyn, Qdyn, zeta, &
U, dT, dQ, h, z0_m, z0_t, Rib)
else
call get_dynamic_scales(Udyn, Tdyn, Qdyn, zeta, &
U, Tsemi, dT, dQ, h, z0_m, z0_t, (g / Tsemi), 10)
end if
! ----------------------------------------------------------------------------
call get_phi(phi_m, phi_h, zeta)
! ----------------------------------------------------------------------------
! --- define transfer coeff. (momentum) & (heat)
Cm = 0.0
if (U > 0.0) then
Cm = Udyn / U
end if
Ct = 0.0
if (abs(dT) > 0.0) then
Ct = Tdyn / dT
end if
! --- define eddy viscosity & inverse Prandtl number
Km = kappa * Cm * U * h / phi_m
Pr_t_inv = phi_m / phi_h
! --- setting output
sfx = sfxDataType(zeta = zeta, Rib = Rib, &
Re = Re, B = B, z0_m = z0_m, z0_t = z0_t, &
Rib_conv_lim = 0.0, &
Cm = Cm, Ct = Ct, Km = Km, Pr_t_inv = Pr_t_inv)
end subroutine get_surface_fluxes
! --------------------------------------------------------------------------------
!< @brief get dynamic scales
! --------------------------------------------------------------------------------
subroutine get_dynamic_scales(Udyn, Tdyn, Qdyn, zeta, &
U, Tsemi, dT, dQ, z, z0_m, z0_t, beta, maxiters)
! ----------------------------------------------------------------------------
real, intent(out) :: Udyn, Tdyn, Qdyn !< dynamic scales
real, intent(out) :: zeta !< = z/L
real, intent(in) :: U !< abs(wind speed) at z
real, intent(in) :: Tsemi !< semi-sum of temperature at z and at surface
real, intent(in) :: dT, dQ !< temperature & humidity difference between z and at surface
real, intent(in) :: z !< constant flux layer height
real, intent(in) :: z0_m, z0_t !< roughness parameters
real, intent(in) :: beta !< buoyancy parameter
integer, intent(in) :: maxiters !< maximum number of iterations
! ----------------------------------------------------------------------------
! --- local variables
real, parameter :: gamma = 0.61
real :: psi_m, psi_h
real :: psi0_m, psi0_h
real :: Linv
integer :: i
! ----------------------------------------------------------------------------
Udyn = kappa * U / log(z / z0_m)
Tdyn = kappa * dT * Pr_t_0_inv / log(z / z0_t)
Qdyn = kappa * dQ * Pr_t_0_inv / log(z / z0_t)
zeta = 0.0
! --- no wind
if (Udyn < 1e-5) return
Linv = kappa * beta * (Tdyn + gamma * Qdyn * Tsemi) / (Udyn * Udyn)
zeta = z * Linv
! --- near neutral case
if (Linv < 1e-5) return
do i = 1, maxiters
call get_psi(psi_m, psi_h, zeta)
call get_psi_mh(psi0_m, psi0_h, z0_m * Linv, z0_t * Linv)
Udyn = kappa * U / (log(z / z0_m) - (psi_m - psi0_m))
Tdyn = kappa * dT * Pr_t_0_inv / (log(z / z0_t) - (psi_h - psi0_h))
Qdyn = kappa * dQ * Pr_t_0_inv / (log(z / z0_t) - (psi_h - psi0_h))
if (Udyn < 1e-5) exit
Linv = kappa * beta * (Tdyn + gamma * Qdyn * Tsemi) / (Udyn * Udyn)
zeta = z * Linv
end do
end subroutine get_dynamic_scales
subroutine get_dynamic_scales_noniterative(Udyn, Tdyn, Qdyn, zeta, &
U, dT, dQ, z, z0_m, z0_t, Rib)
! ----------------------------------------------------------------------------
real, parameter :: gamma = 2.91, zeta_a = 3.6
real, intent(out) :: Udyn, Tdyn, Qdyn !< dynamic scales
real, intent(out) :: zeta !< = z/L
real, intent(in) :: U !< abs(wind speed) at z
real, intent(in) :: dT, dQ !< temperature & humidity difference between z and at surface
real, intent(in) :: z !< constant flux layer height
real, intent(in) :: z0_m, z0_t !< roughness parameters
real, intent(in) :: Rib !< bulk Richardson number
! ----------------------------------------------------------------------------
! --- local variables
real :: psi_m, psi_h
real :: psi0_m, psi0_h
real :: C1,A1,A2,lne,lnet,Ribl
! ----------------------------------------------------------------------------
Ribl = (Rib*Pr_t_0_inv) * (1 - z0_t / z) / ((1 - z0_m / z)**2)
call get_psi(psi_m, psi_h, zeta_a)
call get_psi_mh(psi0_m, psi0_h, zeta_a * z0_m / z, zeta_a * z0_t / z)
lne = log(z/z0_m)
lnet = log(z/z0_t)
C1 = (lne**2)/lnet
A1 = ((lne - psi_m + psi0_m)**(2*(gamma-1))) &
& / ((zeta_a**(gamma-1))*((lnet-(psi_h-psi0_h)*Pr_t_0_inv)**(gamma-1)))
A2 = ((lne - psi_m + psi0_m)**2) / (lnet-(psi_h-psi0_h)*Pr_t_0_inv) - C1
zeta = C1 * Ribl + A1 * A2 * (Ribl**gamma)
call get_psi(psi_m, psi_h, zeta)
call get_psi_mh(psi0_m, psi0_h, zeta * z0_m / z, zeta * z0_t /z)
Udyn = kappa * U / (log(z / z0_m) - (psi_m - psi0_m))
Tdyn = kappa * dT * Pr_t_0_inv / (log(z / z0_t) - (psi_h - psi0_h))
Qdyn = kappa * dQ * Pr_t_0_inv / (log(z / z0_t) - (psi_h - psi0_h))
end subroutine get_dynamic_scales_noniterative
! --------------------------------------------------------------------------------
! stability functions
! --------------------------------------------------------------------------------
subroutine get_phi(phi_m, phi_h, zeta)
!< @brief stability functions (momentum) & (heat): neutral case
! ----------------------------------------------------------------------------
real, intent(out) :: phi_m, phi_h !< stability functions
real, intent(in) :: zeta !< = z/L
! ----------------------------------------------------------------------------
if (zeta >= 0.0) then
phi_m = 1.0 + (a_m * zeta * (1.0 + zeta)**(1.0 / 3.0)) / (1.0 + b_m * zeta)
phi_h = 1.0 + (a_h * zeta + b_h * zeta * zeta) / (1.0 + c_h * zeta + zeta * zeta)
else
phi_m = (1.0 - alpha_m * zeta)**(-0.25)
phi_h = (1.0 - alpha_h * zeta)**(-0.5)
end if
end subroutine
! --------------------------------------------------------------------------------
! universal functions
! --------------------------------------------------------------------------------
subroutine get_psi(psi_m, psi_h, zeta)
!< @brief universal functions (momentum) & (heat): neutral case
! ----------------------------------------------------------------------------
real, intent(out) :: psi_m, psi_h !< universal functions
real, intent(in) :: zeta !< = z/L
! ----------------------------------------------------------------------------
! --- local variables
real :: x_m, x_h
real :: q_m, q_h
! ----------------------------------------------------------------------------
if (zeta >= 0.0) then
q_m = ((1.0 - b_m) / b_m)**(1.0 / 3.0)
q_h = sqrt(c_h * c_h - 4.0)
x_m = (1.0 + zeta)**(1.0 / 3.0)
x_h = zeta
psi_m = -3.0 * (a_m / b_m) * (x_m - 1.0) + 0.5 * (a_m / b_m) * q_m * (&
2.0 * log((x_m + q_m) / (1.0 + q_m)) - &
log((x_m * x_m - x_m * q_m + q_m * q_m) / (1.0 - q_m + q_m * q_m)) + &
2.0 * sqrt(3.0) * (&
atan((2.0 * x_m - q_m) / (sqrt(3.0) * q_m)) - &
atan((2.0 - q_m) / (sqrt(3.0) * q_m))))
psi_h = -0.5 * b_h * log(1.0 + c_h * x_h + x_h * x_h) + &
((-a_h / q_h) + ((b_h * c_h) / (2.0 * q_h))) * (&
log((2.0 * x_h + c_h - q_h) / (2.0 * x_h + c_h + q_h)) - &
log((c_h - q_h) / (c_h + q_h)))
else
x_m = (1.0 - alpha_m * zeta)**(0.25)
x_h = (1.0 - alpha_h * zeta)**(0.25)
psi_m = (4.0 * atan(1.0) / 2.0) + 2.0 * log(0.5 * (1.0 + x_m)) + log(0.5 * (1.0 + x_m * x_m)) - 2.0 * atan(x_m)
psi_h = 2.0 * log(0.5 * (1.0 + x_h * x_h))
end if
end subroutine
subroutine get_psi_mh(psi_m, psi_h, zeta_m, zeta_h)
!< @brief universal functions (momentum) & (heat): neutral case
! ----------------------------------------------------------------------------
real, intent(out) :: psi_m, psi_h !< universal functions
real, intent(in) :: zeta_m, zeta_h !< = z/L
! ----------------------------------------------------------------------------
! --- local variables
real :: x_m, x_h
real :: q_m, q_h
! ----------------------------------------------------------------------------
if (zeta_m >= 0.0) then
q_m = ((1.0 - b_m) / b_m)**(1.0 / 3.0)
x_m = (1.0 + zeta_m)**(1.0 / 3.0)
psi_m = -3.0 * (a_m / b_m) * (x_m - 1.0) + 0.5 * (a_m / b_m) * q_m * (&
2.0 * log((x_m + q_m) / (1.0 + q_m)) - &
log((x_m * x_m - x_m * q_m + q_m * q_m) / (1.0 - q_m + q_m * q_m)) + &
2.0 * sqrt(3.0) * (&
atan((2.0 * x_m - q_m) / (sqrt(3.0) * q_m)) - &
atan((2.0 - q_m) / (sqrt(3.0) * q_m))))
else
x_m = (1.0 - alpha_m * zeta_m)**(0.25)
psi_m = (4.0 * atan(1.0) / 2.0) + 2.0 * log(0.5 * (1.0 + x_m)) + log(0.5 * (1.0 + x_m * x_m)) - 2.0 * atan(x_m)
end if
if (zeta_h >= 0.0) then
q_h = sqrt(c_h * c_h - 4.0)
x_h = zeta_h
psi_h = -0.5 * b_h * log(1.0 + c_h * x_h + x_h * x_h) + &
((-a_h / q_h) + ((b_h * c_h) / (2.0 * q_h))) * (&
log((2.0 * x_h + c_h - q_h) / (2.0 * x_h + c_h + q_h)) - &
log((c_h - q_h) / (c_h + q_h)))
else
x_h = (1.0 - alpha_h * zeta_h)**(0.25)
psi_h = 2.0 * log(0.5 * (1.0 + x_h * x_h))
end if
end subroutine
! --------------------------------------------------------------------------------
end module sfx_sheba_noniterative
\ No newline at end of file
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment