@@ -15,32 +15,34 @@ Python tool to perform maximal covariance analysis and calculating empirical ort
...
@@ -15,32 +15,34 @@ Python tool to perform maximal covariance analysis and calculating empirical ort
количество пар максимально скоррелированных мод (по умолчанию 3) и значение переключателя режима вычитания из поля его среднего по времени значения
количество пар максимально скоррелированных мод (по умолчанию 3) и значение переключателя режима вычитания из поля его среднего по времени значения
(по умолчанию `True`, то есть из поля _вычитается_ его среднее по времени значение).
(по умолчанию `True`, то есть из поля _вычитается_ его среднее по времени значение).
Пусть $`X(t), Y(t)`$ --- два меняющихся во времени поля, максимально скоррелированные моды которых мы ищем, причём $\operatorname{dim}(X)=nT \times nX$\footnote{Здесь и далее размерности массивов указаны в порядке, принятом в \texttt{C} и \texttt{Python}. В \texttt{Fortran} размерности массивов следует развернуть в обратном порядке} и $\operatorname{dim}(Y)\hm=nT \times nY$, где $nX$ и $nY$ могут быть одним или несколькими измерениями массивов (в случае среднемесячных данных INMCM $nX$ и $nY$ --- $120 \times 180$).
Пусть $`X(t), Y(t)`$ — два меняющихся во времени поля, максимально скоррелированные моды которых мы ищем, причём $`\operatorname{dim}(X)=nT \times nX`$[^1] и $`\operatorname{dim}(Y)=nT \times nY`$, где $`nX`$ и $`nY`$ могут быть одним или несколькими измерениями массивов (в случае среднемесячных данных INMCM $`nX`$ и $`nY`$ — $`120 \times 180`$).
Функция \texttt{supersvd} вычисляет разложение вида:
\begin{equation}
[^1]:Здесь и далее размерности массивов указаны в порядке, принятом в `C` и `Python`. В `Fortran` размерности массивов следует развернуть в обратном порядке.
а $k$ --- количество пар максимально скоррелированных мод. В \eqref{eq:svd} каждое новое слагаемое получается максимизацией корреляции между $XC_k(t)$ и $YC_k(t)$, а
а $`k`$ — количество пар максимально скоррелированных мод. В формуле выше каждое новое слагаемое получается максимизацией корреляции между $`XC_k(t)`$ и $`YC_k(t)`$, а
$XV_k, YV_k$~--- два семейства ортогональных пространственных мод.
$`XV_k, YV_k`$ — два семейства ортогональных пространственных мод.