Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
S
supersvd
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Maria Tarasevich
supersvd
Commits
62bffdd4
Commit
62bffdd4
authored
4 years ago
by
Maria Tarasevich
Browse files
Options
Downloads
Patches
Plain Diff
Initial commit
parents
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
main.py
+67
-0
67 additions, 0 deletions
main.py
supersvd.py
+106
-0
106 additions, 0 deletions
supersvd.py
with
173 additions
and
0 deletions
main.py
0 → 100644
+
67
−
0
View file @
62bffdd4
# vim: et sts=4 ts=4
import
argparse
import
numpy
as
np
from
supersvd
import
supersvd
def
main
():
parser
=
argparse
.
ArgumentParser
()
parser
.
add_argument
(
"
--type
"
,
choices
=
[
'
real
'
,
'
double
'
],
default
=
'
real
'
,
help
=
"
Data type, default is
'
%(default)s
'"
)
parser
.
add_argument
(
"
-x
"
,
metavar
=
"
X.STD
"
,
required
=
True
,
help
=
"
X data input file name
"
)
parser
.
add_argument
(
"
-y
"
,
metavar
=
"
Y.STD
"
,
required
=
True
,
help
=
"
Y data input file name
"
)
parser
.
add_argument
(
"
-t
"
,
"
--time
"
,
type
=
int
,
required
=
True
,
help
=
"
Length of the time interval
"
)
parser
.
add_argument
(
"
-k
"
,
type
=
int
,
default
=
3
,
help
=
"
Number of singular values, default is %(default)d
"
)
parser
.
add_argument
(
"
-xv
"
,
help
=
"
X singular vectors output file name, if necessary
"
)
parser
.
add_argument
(
"
-yv
"
,
help
=
"
Y singular vectors output file name, if necessary
"
)
parser
.
add_argument
(
"
-xc
"
,
help
=
"
X time coefficients output file name, if necessary
"
)
parser
.
add_argument
(
"
-yc
"
,
help
=
"
Y time coefficients output file name, if necessary
"
)
parser
.
add_argument
(
"
-stat
"
,
help
=
"
Correlation and variance values in CSV, if necessary
"
)
parser
.
add_argument
(
"
--dont-subtract-mean
"
,
dest
=
"
elim_mean
"
,
help
=
"
Disable subtracting of the time mean from input
"
,
action
=
"
store_false
"
)
args
=
parser
.
parse_args
()
if
args
.
type
==
'
real
'
:
dtype
=
np
.
float32
else
:
dtype
=
np
.
float64
t
=
args
.
time
X
=
np
.
fromfile
(
args
.
x
,
dtype
=
dtype
).
reshape
(
t
,
-
1
)
Y
=
np
.
fromfile
(
args
.
y
,
dtype
=
dtype
).
reshape
(
t
,
-
1
)
svd
=
supersvd
(
X
,
Y
,
args
.
k
,
args
.
elim_mean
)
if
args
.
xv
is
not
None
:
svd
.
x_vect
.
tofile
(
args
.
xv
)
if
args
.
yv
is
not
None
:
svd
.
y_vect
.
tofile
(
args
.
yv
)
if
args
.
xc
is
not
None
:
svd
.
x_coeff
.
tofile
(
args
.
xc
)
if
args
.
yc
is
not
None
:
svd
.
y_coeff
.
tofile
(
args
.
yc
)
if
args
.
stat
is
not
None
:
f
=
open
(
args
.
stat
,
'
w
'
)
f
.
write
(
'
number,corrcoeff,x_varfrac,y_varfrac,covfrac
\n
'
)
for
i
in
range
(
args
.
k
):
print
(
'
Singular value number:
'
,
i
+
1
)
corrcoeff
=
100
*
svd
.
corrcoeff
[
i
]
x_varfrac
=
100
*
svd
.
x_variance_fraction
[
i
]
y_varfrac
=
100
*
svd
.
y_variance_fraction
[
i
]
covfrac
=
100
*
svd
.
eigenvalue_fraction
[
i
]
if
args
.
stat
is
not
None
:
f
.
write
(
'
%d,%f,%f,%f,%f
\n
'
%
(
i
+
1
,
corrcoeff
,
x_varfrac
,
y_varfrac
,
covfrac
))
print
(
'
Time series correlation coefficient:
'
,
'
%8.4f%%
'
%
corrcoeff
)
print
(
args
.
x
,
'
variance fraction:
'
,
'
%8.4f%%
'
%
x_varfrac
)
print
(
args
.
y
,
'
variance fraction:
'
,
'
%8.4f%%
'
%
y_varfrac
)
print
(
'
Covariance fraction:
'
,
'
%8.4f%%
'
%
covfrac
)
if
args
.
stat
is
not
None
:
f
.
close
()
if
__name__
==
"
__main__
"
:
main
()
This diff is collapsed.
Click to expand it.
supersvd.py
0 → 100644
+
106
−
0
View file @
62bffdd4
# vim: ts=4 sts=4 et
import
numpy
as
_np
from
scipy.sparse
import
linalg
as
_spla
from
collections
import
namedtuple
SuperSvdResult
=
namedtuple
(
'
SuperSvdResult
'
,
[
'
x_coeff
'
,
'
y_coeff
'
,
'
corrcoeff
'
,
'
x_variance_fraction
'
,
'
y_variance_fraction
'
,
'
x_vect
'
,
'
y_vect
'
,
'
eigenvalue_fraction
'
,
'
eigenvalues
'
,
])
def
supersvd
(
X
,
Y
,
k
=
3
,
eliminate_mean
=
True
):
"""
X and Y - the input data for which correlation is seeked
dim(X) = nT x nX
dim(Y) = nT x nY
nX and nY may be multidimensional
k is the number of seeked pairs
Each array is decomposed into
X[t, i] = Xm[i] + sqrt(size(X)) sum_e XC[e, t] XV[e, i]
Y[t, j] = Ym[j] + sqrt(size(Y)) sum_e YC[e, t] YV[e, j]
Xm[i] = mean(X[t, i], t)
Ym[j] = mean(Y[t, j], t)
||YC[e, :]||_2 = ||XC[e, :]||_2 = 1 for each e
XV and YV form an orthogonal basis, i.e.
sum_i XV[e, i] XV[e
'
, i] = 0
sum_j YV[e, j] YV[e
'
, j] = 0
when e != e
'
Returns
XC: k x nT
YC: k x nT
XV: k x nX
YV: k x nY
EF: k, fraction of covariance, explained by k-th pair
"""
nTX
,
*
nX
=
X
.
shape
nTY
,
*
nY
=
Y
.
shape
assert
nTX
==
nTY
nT
=
nTX
Xorig
=
X
Yorig
=
Y
X
=
Xorig
.
reshape
(
nT
,
-
1
)
Y
=
Yorig
.
reshape
(
nT
,
-
1
)
if
eliminate_mean
:
X
=
X
-
X
.
mean
(
axis
=
0
)
Y
=
Y
-
Y
.
mean
(
axis
=
0
)
# Norming makes eigenvalues ~O(1)
COV
=
(
X
.
T
@
Y
)
/
nT
/
(
X
.
shape
[
1
]
*
Y
.
shape
[
1
])
**
0.25
U
,
S
,
Vt
=
_spla
.
svds
(
COV
,
k
=
k
)
perm
=
_np
.
argsort
(
-
S
)
S
=
S
[
perm
]
XV
=
U
.
T
[
perm
,
:]
YV
=
Vt
[
perm
,
:]
XC
=
(
XV
@
X
.
T
)
/
_np
.
sqrt
(
X
.
size
)
YC
=
(
YV
@
Y
.
T
)
/
_np
.
sqrt
(
Y
.
size
)
xnorm
=
_np
.
linalg
.
norm
(
XC
,
axis
=
1
)
ynorm
=
_np
.
linalg
.
norm
(
YC
,
axis
=
1
)
XC
/=
xnorm
.
reshape
(
-
1
,
1
)
YC
/=
ynorm
.
reshape
(
-
1
,
1
)
XV
*=
xnorm
.
reshape
(
-
1
,
1
)
YV
*=
ynorm
.
reshape
(
-
1
,
1
)
S2
=
S
**
2
EF
=
S2
/
_np
.
linalg
.
norm
(
COV
,
'
fro
'
)
**
2
CORR
=
_np
.
einsum
(
'
ij,ij->i
'
,
XC
,
YC
)
Xvar
=
_np
.
var
(
X
)
Yvar
=
_np
.
var
(
Y
)
Xvar_frac
=
_np
.
zeros_like
(
CORR
)
Yvar_frac
=
_np
.
zeros_like
(
CORR
)
for
e
in
range
(
k
):
Xvar_frac
[
e
]
=
_np
.
var
(
_np
.
sqrt
(
X
.
size
)
*
_np
.
outer
(
XC
[
e
,
:],
XV
[
e
,
:]))
Yvar_frac
[
e
]
=
_np
.
var
(
_np
.
sqrt
(
Y
.
size
)
*
_np
.
outer
(
YC
[
e
,
:],
YV
[
e
,
:]))
Xvar_frac
/=
Xvar
Yvar_frac
/=
Yvar
return
SuperSvdResult
(
x_coeff
=
XC
,
y_coeff
=
YC
,
corrcoeff
=
CORR
,
x_variance_fraction
=
Xvar_frac
,
y_variance_fraction
=
Yvar_frac
,
x_vect
=
XV
.
reshape
(
k
,
*
nX
),
y_vect
=
YV
.
reshape
(
k
,
*
nY
),
eigenvalue_fraction
=
EF
,
eigenvalues
=
S2
,
)
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment