Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
S
sfx
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
inmcm-mirror
sfx
Commits
9f276a85
Commit
9f276a85
authored
7 months ago
by
Виктория Суязова
Committed by
Anna Shestakova
3 months ago
Browse files
Options
Downloads
Patches
Plain Diff
rename to sfx_z0m/z0t 2
parent
290e523a
No related branches found
No related tags found
No related merge requests found
Changes
2
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
srcF/sfx_z0m_all_surface.f90
+207
-0
207 additions, 0 deletions
srcF/sfx_z0m_all_surface.f90
srcF/sfx_z0t_all_surface.f90
+285
-0
285 additions, 0 deletions
srcF/sfx_z0t_all_surface.f90
with
492 additions
and
0 deletions
srcF/sfx_z0m_all_surface.f90
0 → 100644
+
207
−
0
View file @
9f276a85
module
sfx_z0m_all_surface
!< @brief surface roughness parameterizations
use
sfx_phys_const
implicit
none
public
! --------------------------------------------------------------------------------
! --------------------------------------------------------------------------------
real
,
parameter
,
private
::
kappa
=
0.40
!< von Karman constant [n/d]
! --------------------------------------------------------------------------------
!< Charnock parameters
!< z0 = Re_visc_min * (nu / u_dyn) + gamma_c * (u_dyn^2 / g)
! --------------------------------------------------------------------------------
real
,
parameter
::
gamma_c
=
0.0144
real
,
parameter
::
Re_visc_min
=
0.111
real
,
parameter
::
h_charnock
=
10.0
real
,
parameter
::
c1_charnock
=
log
(
h_charnock
*
(
g
/
gamma_c
))
real
,
parameter
::
c2_charnock
=
Re_visc_min
*
nu_air
*
c1_charnock
real
,
parameter
::
gamma_min
=
0.01
real
,
parameter
::
gamma_max
=
0.11
real
,
parameter
::
f_c
=
100
real
,
parameter
::
eps
=
1
! --------------------------------------------------------------------------------
contains
! charnock roughness definition
! --------------------------------------------------------------------------------
subroutine
get_dynamic_roughness_ch
(
z0_m
,
u_dyn0
,
U
,
h
,
maxiters
)
! ----------------------------------------------------------------------------
real
,
intent
(
out
)
::
z0_m
!< aerodynamic roughness [m]
real
,
intent
(
out
)
::
u_dyn0
!< dynamic velocity in neutral conditions [m/s]
real
,
intent
(
in
)
::
h
!< constant flux layer height [m]
real
,
intent
(
in
)
::
U
!< abs(wind speed) [m/s]
integer
,
intent
(
in
)
::
maxiters
!< maximum number of iterations
! ----------------------------------------------------------------------------
! --- local variables
real
::
Uc
! wind speed at h_charnock [m/s]
real
::
a
,
b
,
c
,
c_min
real
::
f
integer
::
i
,
j
! ----------------------------------------------------------------------------
Uc
=
U
a
=
0.0
b
=
25.0
c_min
=
log
(
h_charnock
)
/
kappa
do
i
=
1
,
maxiters
f
=
c1_charnock
-
2.0
*
log
(
Uc
)
do
j
=
1
,
maxiters
c
=
(
f
+
2.0
*
log
(
b
))
/
kappa
! looks like the check should use U10 instead of U
! but note that a1 should be set = 0 in cycle beforehand
if
(
U
<=
8.0e0
)
a
=
log
(
1.0
+
c2_charnock
*
((
b
/
Uc
)
**
3
))
/
kappa
c
=
max
(
c
-
a
,
c_min
)
b
=
c
end
do
z0_m
=
h_charnock
*
exp
(
-
c
*
kappa
)
z0_m
=
max
(
z0_m
,
0.000015e0
)
Uc
=
U
*
log
(
h_charnock
/
z0_m
)
/
log
(
h
/
z0_m
)
end
do
! --- define dynamic velocity in neutral conditions
u_dyn0
=
Uc
/
c
end
subroutine
! --------------------------------------------------------------------------------
subroutine
get_dynamic_roughness_ow
(
z0_m
,
u_dyn0
,
U
,
h
,
maxiters
)
!Owen 1964
! ----------------------------------------------------------------------------
real
,
intent
(
out
)
::
z0_m
!< aerodynamic roughness [m]
real
,
intent
(
out
)
::
u_dyn0
!< dynamic velocity in neutral conditions [m/s]
real
,
intent
(
in
)
::
h
!< constant flux layer height [m]
real
,
intent
(
in
)
::
U
!< abs(wind speed) [m/s]
integer
,
intent
(
in
)
::
maxiters
!< maximum number of iterations
! ----------------------------------------------------------------------------
! --- local variables
real
::
Uc
! wind speed at h_charnock [m/s]
real
::
b1
,
b2
,
Cuz
,
betta_u
,
nu_m
,
C_z0
,
c
real
::
f
integer
::
i
,
j
! ----------------------------------------------------------------------------
Uc
=
U
C_z0
=
0.007
betta_u
=
0.111
nu_m
=
0.0000133
b1
=
log
(
h
*
g
/
C_z0
)
b2
=
betta_u
*
nu_m
*
g
/
C_z0
Cuz
=
25.0
do
i
=
1
,
maxiters
f
=
c1_charnock
-
2.0
*
log
(
Uc
)
c
=
(
f
+
2.0
*
log
(
Cuz
))
/
kappa
Cuz
=
(
1.0
/
kappa
)
*
(
b1
+
log
(
U
/
Cuz
)
-
log
(
b2
+
(
U
/
Cuz
)
*
(
U
/
Cuz
)))
if
(
Cuz
==
0.0
)
exit
z0_m
=
h
*
exp
(
-
kappa
*
Cuz
)
end
do
u_dyn0
=
Uc
/
c
end
subroutine
! --------------------------------------------------------------------------------
subroutine
get_dynamic_roughness_fetch
(
z0_m
,
u_dyn0
,
U
,
depth
,
h
,
maxiters
)
! ----------------------------------------------------------------------------
real
,
intent
(
out
)
::
z0_m
!< aerodynamic roughness [m]
real
,
intent
(
out
)
::
u_dyn0
!< dynamic velocity in neutral conditions [m/s]
real
,
intent
(
in
)
::
U
!< abs(wind speed) [m/s]
real
,
intent
(
in
)
::
depth
!< depth [m]
real
,
intent
(
in
)
::
h
!< constant flux layer height [m]
integer
,
intent
(
in
)
::
maxiters
!< maximum number of iterations
! ----------------------------------------------------------------------------
! --- local variables
real
::
Uc
! wind speed at h_charnock [m/s]
real
::
a
,
b
,
c
,
c_min
real
::
f
real
::
A_lake
,
B_lake
,
gamma_c
,
fetch
,
c1_charnock_lake
,
c2_charnock_lake
integer
::
i
,
j
! ----------------------------------------------------------------------------
Uc
=
U
a
=
0.0
b
=
25.0
c_min
=
log
(
h_charnock
)
/
kappa
fetch
=
25.0
*
depth
!25.0 * depth
!< z0 = Re_visc_min * (nu / u_dyn) + gamma_c * (u_dyn^2 / g)
!< gamma_c = gamma_min + (gamma_max - gamma_min) * exp(-min(A_lake, B_lake))
!< А_lake = (fetch * g / U^2)^(1/3) / f_c
!< B_lake = eps (sqrt(depth * g)/U)
do
i
=
1
,
maxiters
A_lake
=
((
fetch
*
g
/
(
U
)
**
2
)
**
(
1
/
3
))
/
f_c
B_lake
=
eps
*
(
sqrt
(
depth
*
g
)/
U
)
gamma_c
=
gamma_min
+
(
gamma_max
-
gamma_min
)
*
exp
(
-
min
(
A_lake
,
B_lake
))
!write(*,*) A_lake
!write(*,*) B_lake
c1_charnock_lake
=
log
(
h_charnock
*
(
g
/
gamma_c
))
c2_charnock_lake
=
Re_visc_min
*
nu_air
*
c1_charnock_lake
f
=
c1_charnock_lake
-
2.0
*
log
(
Uc
)
do
j
=
1
,
maxiters
c
=
(
f
+
2.0
*
log
(
b
))
/
kappa
if
(
U
<=
8.0e0
)
a
=
log
(
1.0
+
c2_charnock_lake
*
((
b
/
Uc
)
**
3
))
/
kappa
c
=
max
(
c
-
a
,
c_min
)
b
=
c
end
do
z0_m
=
h_charnock
*
exp
(
-
c
*
kappa
)
z0_m
=
max
(
z0_m
,
0.000015e0
)
Uc
=
U
*
log
(
h_charnock
/
z0_m
)
/
log
(
h
/
z0_m
)
end
do
! --- define dynamic velocity in neutral conditions
u_dyn0
=
Uc
/
c
end
subroutine
subroutine
get_dynamic_roughness_map
(
z0_m
,
u_dyn0
,
U
,
h
,
z0m_map
)
! ----------------------------------------------------------------------------
real
,
intent
(
out
)
::
z0_m
!< aerodynamic roughness [m]
real
,
intent
(
out
)
::
u_dyn0
!< dynamic velocity in neutral conditions [m/s]
real
,
intent
(
in
)
::
h
!< constant flux layer height [m]
real
,
intent
(
in
)
::
z0m_map
!< aerodynamic roughness from map[m]
real
,
intent
(
in
)
::
U
!< abs(wind speed) [m/s]
! ----------------------------------------------------------------------------
real
::
h0_m
z0_m
=
z0m_map
h0_m
=
h
/
z0_m
u_dyn0
=
U
*
kappa
/
log
(
h0_m
)
end
subroutine
! --------------------------------------------------------------------------------
end
module
sfx_z0m_all_surface
\ No newline at end of file
This diff is collapsed.
Click to expand it.
srcF/sfx_z0t_all_surface.f90
0 → 100644
+
285
−
0
View file @
9f276a85
module
sfx_z0t_all_surface
!< @brief surface thermal roughness parameterizations
implicit
none
public
! --------------------------------------------------------------------------------
real
,
parameter
,
private
::
kappa
=
0.40
!< von Karman constant [n/d]
real
,
parameter
,
private
::
Pr_m
=
0.71
!< molecular Prandtl number (air) [n/d]
!< Re fully roughness minimum value [n/d]
real
,
parameter
::
Re_rough_min
=
16.3
!< roughness model coeff. [n/d]
!< --- transitional mode
!< B = log(z0_m / z0_t) = B1 * log(B3 * Re) + B2
real
,
parameter
::
B1_rough
=
5.0
/
6.0
real
,
parameter
::
B2_rough
=
0.45
real
,
parameter
::
B3_rough
=
kappa
*
Pr_m
!< --- fully rough mode (Re > Re_rough_min)
!< B = B4 * Re^(B2)
real
,
parameter
::
B4_rough
=
(
0.14
*
(
30.0
**
B2_rough
))
*
(
Pr_m
**
0.8
)
real
,
parameter
::
B_max_ocean
=
8.0
real
,
parameter
::
B_max_land
=
2.0
contains
! thermal roughness definition by Kazakov, Lykosov
! --------------------------------------------------------------------------------
subroutine
get_thermal_roughness_kl_land
(
z0_t
,
B
,
&
z0_m
,
Re
)
! ----------------------------------------------------------------------------
real
,
intent
(
out
)
::
z0_t
!< thermal roughness [m]
real
,
intent
(
out
)
::
B
!< = log(z0_m / z0_t) [n/d]
real
,
intent
(
in
)
::
z0_m
!< aerodynamic roughness [m]
real
,
intent
(
in
)
::
Re
!< roughness Reynolds number [n/d]
! ----------------------------------------------------------------------------
!--- define B = log(z0_m / z0_t)
if
(
Re
<=
Re_rough_min
)
then
B
=
B1_rough
*
alog
(
B3_rough
*
Re
)
+
B2_rough
else
! *: B4 takes into account Re value at z' ~ O(10) z0
B
=
B4_rough
*
(
Re
**
B2_rough
)
end
if
B
=
min
(
B
,
B_max_land
)
z0_t
=
z0_m
/
exp
(
B
)
end
subroutine
! --------------------------------------------------------------------------------
! --------------------------------------------------------------------------------
subroutine
get_thermal_roughness_kl_water
(
z0_t
,
B
,
&
z0_m
,
Re
)
! ----------------------------------------------------------------------------
real
,
intent
(
out
)
::
z0_t
!< thermal roughness [m]
real
,
intent
(
out
)
::
B
!< = log(z0_m / z0_t) [n/d]
real
,
intent
(
in
)
::
z0_m
!< aerodynamic roughness [m]
real
,
intent
(
in
)
::
Re
!< roughness Reynolds number [n/d]
! ----------------------------------------------------------------------------
!--- define B = log(z0_m / z0_t)
if
(
Re
<=
Re_rough_min
)
then
B
=
B1_rough
*
alog
(
B3_rough
*
Re
)
+
B2_rough
else
! *: B4 takes into account Re value at z' ~ O(10) z0
B
=
B4_rough
*
(
Re
**
B2_rough
)
end
if
B
=
min
(
B
,
B_max_ocean
)
z0_t
=
z0_m
/
exp
(
B
)
end
subroutine
! thermal roughness definition by Chen, F., Zhang, Y., 2009.
! --------------------------------------------------------------------------------
subroutine
get_thermal_roughness_cz
(
z0_t
,
B
,
&
z0_m
,
Re
)
! ----------------------------------------------------------------------------
real
,
intent
(
out
)
::
z0_t
!< thermal roughness [m]
real
,
intent
(
out
)
::
B
!< = log(z0_m / z0_t) [n/d]
real
,
intent
(
in
)
::
z0_m
!< aerodynamic roughness [m]
real
,
intent
(
in
)
::
Re
!< roughness Reynolds number [n/d]
B
=
(
kappa
*
10.0
**
(
-0.4
*
z0_m
/
0.07
))
*
(
Re
**
0.45
)
!Chen and Zhang
! --- define roughness [thermal]
z0_t
=
z0_m
/
exp
(
B
)
end
subroutine
! --------------------------------------------------------------------------------
! thermal roughness definition by Zilitinkevich, S., 1995.
! --------------------------------------------------------------------------------
subroutine
get_thermal_roughness_zi
(
z0_t
,
B
,
&
z0_m
,
Re
)
! ----------------------------------------------------------------------------
real
,
intent
(
out
)
::
z0_t
!< thermal roughness [m]
real
,
intent
(
out
)
::
B
!< = log(z0_m / z0_t) [n/d]
real
,
intent
(
in
)
::
z0_m
!< aerodynamic roughness [m]
real
,
intent
(
in
)
::
Re
!< roughness Reynolds number [n/d]
B
=
0.1
*
kappa
*
(
Re
**
0.5
)
!6-Zilitinkevich
! --- define roughness [thermal]
z0_t
=
z0_m
/
exp
(
B
)
end
subroutine
! --------------------------------------------------------------------------------
! thermal roughness definition by Cahill, A.T., Parlange, M.B., Albertson, J.D., 1997.
! It is better to use for dynamic surfaces such as sand
! --------------------------------------------------------------------------------
subroutine
get_thermal_roughness_ca
(
z0_t
,
B
,
&
z0_m
,
Re
)
! ----------------------------------------------------------------------------
real
,
intent
(
out
)
::
z0_t
!< thermal roughness [m]
real
,
intent
(
out
)
::
B
!< = log(z0_m / z0_t) [n/d]
real
,
intent
(
in
)
::
z0_m
!< aerodynamic roughness [m]
real
,
intent
(
in
)
::
Re
!< roughness Reynolds number [n/d]
B
=
2.46
*
(
Re
**
0.25
)
-3.8
!4-Cahill et al.
! --- define roughness [thermal]
z0_t
=
z0_m
/
exp
(
B
)
end
subroutine
! --------------------------------------------------------------------------------
! thermal roughness definition by Brutsaert W., 2003.
! --------------------------------------------------------------------------------
subroutine
get_thermal_roughness_br
(
z0_t
,
B
,
&
z0_m
,
Re
)
! ----------------------------------------------------------------------------
real
,
intent
(
out
)
::
z0_t
!< thermal roughness [m]
real
,
intent
(
out
)
::
B
!< = log(z0_m / z0_t) [n/d]
real
,
intent
(
in
)
::
z0_m
!< aerodynamic roughness [m]
real
,
intent
(
in
)
::
Re
!< roughness Reynolds number [n/d]
B
=
2.46
*
(
Re
**
0.25
)
-2.0
!Brutsaert
! --- define roughness [thermal]
z0_t
=
z0_m
/
exp
(
B
)
end
subroutine
! --------------------------------------------------------------------------------
! thermal roughness definition by Owen P. R., Thomson W. R., 1963.
! --------------------------------------------------------------------------------
subroutine
get_thermal_roughness_ot
(
z0_t
,
B
,
&
z0_m
,
Re
)
! ----------------------------------------------------------------------------
real
,
intent
(
out
)
::
z0_t
!< thermal roughness [m]
real
,
intent
(
out
)
::
B
!< = log(z0_m / z0_t) [n/d]
real
,
intent
(
in
)
::
z0_m
!< aerodynamic roughness [m]
real
,
intent
(
in
)
::
Re
!< roughness Reynolds number [n/d]
B
=
kappa
*
(
Re
**
0.45
)
!Owen P. R., Thomson W. R.
! --- define roughness [thermal]
z0_t
=
z0_m
/
exp
(
B
)
end
subroutine
! --------------------------------------------------------------------------------
! thermal roughness definition by Duynkerke P. G., 1992.
!It is better to use for surfaces wiht forest
! --------------------------------------------------------------------------------
subroutine
get_thermal_roughness_du
(
z0_t
,
B
,
&
z0_m
,
u_dyn
,
LAI
)
! ----------------------------------------------------------------------------
real
,
intent
(
out
)
::
z0_t
!< thermal roughness [m]
real
,
intent
(
out
)
::
B
!< = log(z0_m / z0_t) [n/d]
real
,
intent
(
in
)
::
z0_m
!< aerodynamic roughness [m]
real
,
intent
(
in
)
::
u_dyn
!< dynamic velocity [m/s]
real
,
intent
(
in
)
::
LAI
!< leaf-area index
B
=
(
13
*
u_dyn
**
0.4
)/
LAI
+0.85
!Duynkerke P. G., 1992.
! --- define roughness [thermal]
z0_t
=
z0_m
/
exp
(
B
)
end
subroutine
! --------------------------------------------------------------------------------
! thermal roughness definition z0_t = C*z0_m
! --------------------------------------------------------------------------------
subroutine
get_thermal_roughness_zm
(
z0_t
,
B
,
&
z0_m
,
Czm
)
! ----------------------------------------------------------------------------
real
,
intent
(
out
)
::
z0_t
!< thermal roughness [m]
real
,
intent
(
out
)
::
B
!< = log(z0_m / z0_t) [n/d]
real
,
intent
(
in
)
::
z0_m
!< aerodynamic roughness [m]
real
,
intent
(
in
)
::
Czm
!< proportionality coefficient
z0_t
=
Czm
*
z0_m
B
=
log
(
z0_m
/
z0_t
)
end
subroutine
! --------------------------------------------------------------------------------
! thermal roughness definition by Chen and Zhang and Zilitinkevich
! --------------------------------------------------------------------------------
subroutine
get_thermal_roughness_mix
(
z0_t
,
B
,
&
z0_m
,
u_dyn
,
Re
)
! ----------------------------------------------------------------------------
real
,
intent
(
out
)
::
z0_t
!< thermal roughness [m]
real
,
intent
(
out
)
::
B
!< = log(z0_m / z0_t) [n/d]
real
,
intent
(
in
)
::
z0_m
!< aerodynamic roughness [m]
real
,
intent
(
in
)
::
u_dyn
!< dynamic velocity [m/s]
real
,
intent
(
in
)
::
Re
!< roughness Reynolds number [n/d]
real
,
parameter
::
u_dyn_th
=
0.17
!< dynamic velocity treshhold [m/s]
if
(
u_dyn
<=
u_dyn_th
)
then
B
=
0.1
*
kappa
*
(
Re
**
0.5
)
!Zilitinkevich
else
B
=
(
kappa
*
10.0
**
(
-0.4
*
z0_m
/
0.07
))
*
(
Re
**
0.45
)
!Chen and Zhang
end
if
! --- define roughness [thermal]
z0_t
=
z0_m
/
exp
(
B
)
end
subroutine
! --------------------------------------------------------------------------------
subroutine
get_thermal_roughness_re
(
z0_t
,
B
,
&
z0_m
,
Re
)
! ----------------------------------------------------------------------------
real
,
intent
(
out
)
::
z0_t
!< thermal roughness [m]
real
,
intent
(
out
)
::
B
!< = log(z0_m / z0_t) [n/d]
real
,
intent
(
in
)
::
z0_m
!< aerodynamic roughness [m]
real
,
intent
(
in
)
::
Re
!< roughness Reynolds number [n/d]
B
=
alog
(
-0.56
*
(
4.0
*
(
Re
)
**
(
0.5
)
-3.4
))
!Repina, 2023
! --- define roughness [thermal]
z0_t
=
z0_m
/
exp
(
B
)
end
subroutine
end
module
sfx_z0t_all_surface
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment