diff --git a/CMakeLists.txt b/CMakeLists.txt index 39e636a6c21b711c709aa4864de7c52b3f2ccadf..8dcb6779bf338a2fbc79d440745086aa2ba7b7a4 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -88,6 +88,7 @@ set(SOURCES_F srcF/sfx_most.f90 srcF/sfx_most_param.f90 srcF/sfx_sheba.f90 + srcF/sfx_sheba_noniterative.f90 srcF/sfx_sheba_param.f90 srcF/sfx_fc_wrapper.F90 srcF/sfx_api_inmcm.f90 diff --git a/srcF/sfx_config.f90 b/srcF/sfx_config.f90 index 99f7b22e57e362426e34c9f20a0275bc9ddef4cb..3fde2a0995da10b521591349c02afe7ba8e98d57 100644 --- a/srcF/sfx_config.f90 +++ b/srcF/sfx_config.f90 @@ -19,11 +19,13 @@ module sfx_config integer, parameter :: model_log = 1 !< LOG simplified model integer, parameter :: model_most = 2 !< MOST model integer, parameter :: model_sheba = 3 !< SHEBA model + integer, parameter :: model_sheba_noit = 4 !< SHEBA model noniterative character(len = 16), parameter :: model_esm_tag = 'esm' character(len = 16), parameter :: model_log_tag = 'log' character(len = 16), parameter :: model_most_tag = 'most' character(len = 16), parameter :: model_sheba_tag = 'sheba' + character(len = 16), parameter :: model_sheba_noit_tag = 'sheba_noit' !> @brief dataset enum def. integer, parameter :: dataset_mosaic = 1 !< MOSAiC campaign @@ -68,6 +70,8 @@ contains id = model_most else if (trim(tag) == trim(model_sheba_tag)) then id = model_sheba + else if (trim(tag) == trim(model_sheba_noit_tag)) then + id = model_sheba_noit end if end function @@ -86,6 +90,8 @@ contains tag = model_most_tag else if (id == model_sheba) then tag = model_sheba_tag + else if (id == model_sheba_noit) then + tag = model_sheba_noit_tag end if end function diff --git a/srcF/sfx_run.f90 b/srcF/sfx_run.f90 index 03d2a9ee4b8ba3ef668abf64af31cedb66001823..eec3f6ea7eb0196907298ea8892b6a21113a3482 100644 --- a/srcF/sfx_run.f90 +++ b/srcF/sfx_run.f90 @@ -40,6 +40,9 @@ contains use sfx_sheba, only: & get_surface_fluxes_vec_sheba => get_surface_fluxes_vec, & numericsType_sheba => numericsType + use sfx_sheba_noniterative, only: & + get_surface_fluxes_vec_sheba_noit => get_surface_fluxes_vec, & + numericsType_sheba_noit => numericsType ! -------------------------------------------------------------------------------- character(len=*), intent(in) :: filename_out @@ -59,6 +62,7 @@ contains type(numericsType_log) :: numerics_log !< surface flux module (LOG) numerics parameters type(numericsType_most) :: numerics_most !< surface flux module (MOST) numerics parameters type(numericsType_sheba) :: numerics_sheba !< surface flux module (SHEBA) numerics parameters + type(numericsType_sheba_noit) :: numerics_sheba_noit !< surface flux module (SHEBA) numerics parameters integer :: num !< number of 'cells' in input ! -------------------------------------------------------------------------------- @@ -147,6 +151,8 @@ contains call get_surface_fluxes_vec_most(sfx, meteo, numerics_most, num) else if (model == model_sheba) then call get_surface_fluxes_vec_sheba(sfx, meteo, numerics_sheba, num) + else if (model == model_sheba_noit) then + call get_surface_fluxes_vec_sheba_noit(sfx, meteo, numerics_sheba_noit, num) end if @@ -233,7 +239,7 @@ contains write(*, *) ' --help' write(*, *) ' print usage options' write(*, *) ' --model [key]' - write(*, *) ' key = esm (default) || log || most || sheba' + write(*, *) ' key = esm (default) || log || most || sheba || sheba_noit' write(*, *) ' --dataset [key]' write(*, *) ' key = mosaic (default) || irgason || sheba' write(*, *) ' = lake || papa || toga || user [filename] [param]' diff --git a/srcF/sfx_sheba_noniterative.f90 b/srcF/sfx_sheba_noniterative.f90 new file mode 100644 index 0000000000000000000000000000000000000000..dad747ae09fef45ede28a4053159db27e0b1433f --- /dev/null +++ b/srcF/sfx_sheba_noniterative.f90 @@ -0,0 +1,514 @@ +#include "../includeF/sfx_def.fi" + +module sfx_sheba_noniterative + !< @brief SHEBA surface flux module + + ! modules used + ! -------------------------------------------------------------------------------- +#ifdef SFX_CHECK_NAN + use sfx_common +#endif + use sfx_data + use sfx_surface + use sfx_sheba_param + +#if defined(INCLUDE_CXX) + use iso_c_binding, only: C_LOC, C_PTR, C_INT, C_FLOAT + use C_FUNC +#endif + ! -------------------------------------------------------------------------------- + + ! directives list + ! -------------------------------------------------------------------------------- + implicit none + private + ! -------------------------------------------------------------------------------- + + ! public interface + ! -------------------------------------------------------------------------------- + public :: get_surface_fluxes + public :: get_surface_fluxes_vec + public :: get_psi + ! -------------------------------------------------------------------------------- + + ! -------------------------------------------------------------------------------- + type, public :: numericsType + integer :: maxiters_charnock = 10 !< maximum (actual) number of iterations in charnock roughness + end type + ! -------------------------------------------------------------------------------- + +#if defined(INCLUDE_CXX) + type, BIND(C), public :: sfx_sheba_param_C + real(C_FLOAT) :: kappa + real(C_FLOAT) :: Pr_t_0_inv + + real(C_FLOAT) :: alpha_m + real(C_FLOAT) :: alpha_h + real(C_FLOAT) :: a_m + real(C_FLOAT) :: b_m + real(C_FLOAT) :: a_h + real(C_FLOAT) :: b_h + real(C_FLOAT) :: c_h + end type + + type, BIND(C), public :: sfx_sheba_numericsType_C + integer(C_INT) :: maxiters_charnock + end type + + INTERFACE + SUBROUTINE c_sheba_compute_flux(sfx, meteo, model_param, surface_param, numerics, constants, grid_size) BIND(C, & + name="c_sheba_compute_flux") + use sfx_data + use, intrinsic :: ISO_C_BINDING, ONLY: C_INT, C_PTR + Import :: sfx_sheba_param_C, sfx_sheba_numericsType_C + implicit none + INTEGER(C_INT) :: grid_size + type(C_PTR), value :: sfx + type(C_PTR), value :: meteo + type(sfx_sheba_param_C) :: model_param + type(sfx_surface_param) :: surface_param + type(sfx_sheba_numericsType_C) :: numerics + type(sfx_phys_constants) :: constants + END SUBROUTINE c_sheba_compute_flux + END INTERFACE +#endif + +contains + +#if defined(INCLUDE_CXX) + subroutine set_c_struct_sfx_sheba_param_values(sfx_model_param) + type (sfx_sheba_param_C), intent(inout) :: sfx_model_param + sfx_model_param%kappa = kappa + sfx_model_param%Pr_t_0_inv = Pr_t_0_inv + + sfx_model_param%alpha_m = alpha_m + sfx_model_param%alpha_h = alpha_h + sfx_model_param%a_m = a_m + sfx_model_param%b_m = b_m + sfx_model_param%a_h = a_h + sfx_model_param%b_h = b_h + sfx_model_param%c_h = c_h + end subroutine set_c_struct_sfx_sheba_param_values +#endif + + ! -------------------------------------------------------------------------------- + subroutine get_surface_fluxes_vec(sfx, meteo, numerics, n) + !< @brief surface flux calculation for array data + !< @details contains C/C++ & CUDA interface + ! ---------------------------------------------------------------------------- + type (sfxDataVecType), intent(inout) :: sfx + + type (meteoDataVecType), intent(in) :: meteo + type (numericsType), intent(in) :: numerics + integer, intent(in) :: n + ! ---------------------------------------------------------------------------- + + ! --- local variables + type (meteoDataType) meteo_cell + type (sfxDataType) sfx_cell + integer i + ! ---------------------------------------------------------------------------- +#if defined(INCLUDE_CXX) + type (meteoDataVecTypeC), target :: meteo_c !< meteorological data (input) + type (sfxDataVecTypeC), target :: sfx_c !< surface flux data (output) + type(C_PTR) :: meteo_c_ptr, sfx_c_ptr + type (sfx_sheba_param_C) :: model_param + type (sfx_surface_param) :: surface_param + type (sfx_sheba_numericsType_C) :: numerics_c + type (sfx_phys_constants) :: phys_constants + + numerics_c%maxiters_charnock = numerics%maxiters_charnock + + phys_constants%Pr_m = Pr_m; + phys_constants%nu_air = nu_air; + phys_constants%g = g; + + call set_c_struct_sfx_sheba_param_values(model_param) + call set_c_struct_sfx_surface_param_values(surface_param) + call set_meteo_vec_c(meteo, meteo_c) + call set_sfx_vec_c(sfx, sfx_c) + + meteo_c_ptr = C_LOC(meteo_c) + sfx_c_ptr = C_LOC(sfx_c) + + call c_sheba_compute_flux(sfx_c_ptr, meteo_c_ptr, model_param, surface_param, numerics_c, phys_constants, n) +#else + do i = 1, n + meteo_cell = meteoDataType(& + h = meteo%h(i), & + U = meteo%U(i), dT = meteo%dT(i), Tsemi = meteo%Tsemi(i), dQ = meteo%dQ(i), & + z0_m = meteo%z0_m(i)) + + call get_surface_fluxes(sfx_cell, meteo_cell, numerics) + + call push_sfx_data(sfx, sfx_cell, i) + end do +#endif + end subroutine get_surface_fluxes_vec + ! -------------------------------------------------------------------------------- + + ! -------------------------------------------------------------------------------- + subroutine get_surface_fluxes(sfx, meteo, numerics) + !< @brief surface flux calculation for single cell + !< @details contains C/C++ interface + ! ---------------------------------------------------------------------------- +#ifdef SFX_CHECK_NAN + use ieee_arithmetic +#endif + + type (sfxDataType), intent(out) :: sfx + + type (meteoDataType), intent(in) :: meteo + type (numericsType), intent(in) :: numerics + ! ---------------------------------------------------------------------------- + + ! --- meteo derived datatype name shadowing + ! ---------------------------------------------------------------------------- + real :: h !< constant flux layer height [m] + real :: U !< abs(wind speed) at 'h' [m/s] + real :: dT !< difference between potential temperature at 'h' and at surface [K] + real :: Tsemi !< semi-sum of potential temperature at 'h' and at surface [K] + real :: dQ !< difference between humidity at 'h' and at surface [g/g] + real :: z0_m !< surface aerodynamic roughness (should be < 0 for water bodies surface) + ! ---------------------------------------------------------------------------- + + ! --- local variables + ! ---------------------------------------------------------------------------- + real z0_t !< thermal roughness [m] + real B !< = ln(z0_m / z0_t) [n/d] + real h0_m, h0_t !< = h / z0_m, h / z0_h [n/d] + + real u_dyn0 !< dynamic velocity in neutral conditions [m/s] + real Re !< roughness Reynolds number = u_dyn0 * z0_m / nu [n/d] + + real zeta !< = z/L [n/d] + real Rib !< bulk Richardson number + + real Udyn, Tdyn, Qdyn !< dynamic scales + + real phi_m, phi_h !< stability functions (momentum) & (heat) [n/d] + + real Km !< eddy viscosity coeff. at h [m^2/s] + real Pr_t_inv !< invese Prandt number [n/d] + + real Cm, Ct !< transfer coeff. for (momentum) & (heat) [n/d] + + integer surface_type !< surface type = (ocean || land) + + +#ifdef SFX_CHECK_NAN + real NaN +#endif + ! ---------------------------------------------------------------------------- + +#ifdef SFX_CHECK_NAN + ! --- checking if arguments are finite + if (.not.(is_finite(meteo%U).and.is_finite(meteo%Tsemi).and.is_finite(meteo%dT).and.is_finite(meteo%dQ) & + .and.is_finite(meteo%z0_m).and.is_finite(meteo%h))) then + + NaN = ieee_value(0.0, ieee_quiet_nan) ! setting NaN + sfx = sfxDataType(zeta = NaN, Rib = NaN, & + Re = NaN, B = NaN, z0_m = NaN, z0_t = NaN, & + Rib_conv_lim = NaN, & + Cm = NaN, Ct = NaN, Km = NaN, Pr_t_inv = NaN) + return + end if +#endif + + ! --- shadowing names for clarity + U = meteo%U + Tsemi = meteo%Tsemi + dT = meteo%dT + dQ = meteo%dQ + h = meteo%h + z0_m = meteo%z0_m + + ! --- define surface type + if (z0_m < 0.0) then + surface_type = surface_ocean + else + surface_type = surface_land + end if + + if (surface_type == surface_ocean) then + ! --- define surface roughness [momentum] & dynamic velocity in neutral conditions + call get_charnock_roughness(z0_m, u_dyn0, U, h, numerics%maxiters_charnock) + ! --- define relative height + h0_m = h / z0_m + endif + if (surface_type == surface_land) then + ! --- define relative height + h0_m = h / z0_m + ! --- define dynamic velocity in neutral conditions + u_dyn0 = U * kappa / log(h0_m) + end if + + ! --- define thermal roughness & B = log(z0_m / z0_h) + Re = u_dyn0 * z0_m / nu_air + call get_thermal_roughness(z0_t, B, z0_m, Re, surface_type) + + ! --- define relative height [thermal] + h0_t = h / z0_t + + ! --- define Ri-bulk + Rib = (g / Tsemi) * h * (dT + 0.61e0 * Tsemi * dQ) / U**2 + + ! --- get the fluxes + ! ---------------------------------------------------------------------------- + if(Rib > 0)then + call get_dynamic_scales_noniterative(Udyn, Tdyn, Qdyn, zeta, & + U, dT, dQ, h, z0_m, z0_t, Rib) + else + call get_dynamic_scales(Udyn, Tdyn, Qdyn, zeta, & + U, Tsemi, dT, dQ, h, z0_m, z0_t, (g / Tsemi), 10) + end if + + ! ---------------------------------------------------------------------------- + + call get_phi(phi_m, phi_h, zeta) + ! ---------------------------------------------------------------------------- + + ! --- define transfer coeff. (momentum) & (heat) + Cm = 0.0 + if (U > 0.0) then + Cm = Udyn / U + end if + Ct = 0.0 + if (abs(dT) > 0.0) then + Ct = Tdyn / dT + end if + + ! --- define eddy viscosity & inverse Prandtl number + Km = kappa * Cm * U * h / phi_m + Pr_t_inv = phi_m / phi_h + + ! --- setting output + sfx = sfxDataType(zeta = zeta, Rib = Rib, & + Re = Re, B = B, z0_m = z0_m, z0_t = z0_t, & + Rib_conv_lim = 0.0, & + Cm = Cm, Ct = Ct, Km = Km, Pr_t_inv = Pr_t_inv) + + end subroutine get_surface_fluxes + ! -------------------------------------------------------------------------------- + + !< @brief get dynamic scales + ! -------------------------------------------------------------------------------- + subroutine get_dynamic_scales(Udyn, Tdyn, Qdyn, zeta, & + U, Tsemi, dT, dQ, z, z0_m, z0_t, beta, maxiters) + ! ---------------------------------------------------------------------------- + real, intent(out) :: Udyn, Tdyn, Qdyn !< dynamic scales + real, intent(out) :: zeta !< = z/L + + real, intent(in) :: U !< abs(wind speed) at z + real, intent(in) :: Tsemi !< semi-sum of temperature at z and at surface + real, intent(in) :: dT, dQ !< temperature & humidity difference between z and at surface + real, intent(in) :: z !< constant flux layer height + real, intent(in) :: z0_m, z0_t !< roughness parameters + real, intent(in) :: beta !< buoyancy parameter + + integer, intent(in) :: maxiters !< maximum number of iterations + ! ---------------------------------------------------------------------------- + + ! --- local variables + real, parameter :: gamma = 0.61 + + real :: psi_m, psi_h + real :: psi0_m, psi0_h + real :: Linv + integer :: i + ! ---------------------------------------------------------------------------- + + + Udyn = kappa * U / log(z / z0_m) + Tdyn = kappa * dT * Pr_t_0_inv / log(z / z0_t) + Qdyn = kappa * dQ * Pr_t_0_inv / log(z / z0_t) + zeta = 0.0 + + ! --- no wind + if (Udyn < 1e-5) return + + Linv = kappa * beta * (Tdyn + gamma * Qdyn * Tsemi) / (Udyn * Udyn) + zeta = z * Linv + + ! --- near neutral case + if (Linv < 1e-5) return + + do i = 1, maxiters + + call get_psi(psi_m, psi_h, zeta) + call get_psi_mh(psi0_m, psi0_h, z0_m * Linv, z0_t * Linv) + + Udyn = kappa * U / (log(z / z0_m) - (psi_m - psi0_m)) + Tdyn = kappa * dT * Pr_t_0_inv / (log(z / z0_t) - (psi_h - psi0_h)) + Qdyn = kappa * dQ * Pr_t_0_inv / (log(z / z0_t) - (psi_h - psi0_h)) + + if (Udyn < 1e-5) exit + + Linv = kappa * beta * (Tdyn + gamma * Qdyn * Tsemi) / (Udyn * Udyn) + zeta = z * Linv + end do + + end subroutine get_dynamic_scales + + + subroutine get_dynamic_scales_noniterative(Udyn, Tdyn, Qdyn, zeta, & + U, dT, dQ, z, z0_m, z0_t, Rib) + ! ---------------------------------------------------------------------------- + real, parameter :: gamma = 2.91, zeta_a = 3.6 + + real, intent(out) :: Udyn, Tdyn, Qdyn !< dynamic scales + real, intent(out) :: zeta !< = z/L + + real, intent(in) :: U !< abs(wind speed) at z + real, intent(in) :: dT, dQ !< temperature & humidity difference between z and at surface + real, intent(in) :: z !< constant flux layer height + real, intent(in) :: z0_m, z0_t !< roughness parameters + real, intent(in) :: Rib !< bulk Richardson number + + ! ---------------------------------------------------------------------------- + + ! --- local variables + real :: psi_m, psi_h + real :: psi0_m, psi0_h + real :: C1,A1,A2,lne,lnet,Ribl + ! ---------------------------------------------------------------------------- + + Ribl = (Rib*Pr_t_0_inv) * (1 - z0_t / z) / ((1 - z0_m / z)**2) + + call get_psi(psi_m, psi_h, zeta_a) + call get_psi_mh(psi0_m, psi0_h, zeta_a * z0_m / z, zeta_a * z0_t / z) + + lne = log(z/z0_m) + lnet = log(z/z0_t) + C1 = (lne**2)/lnet + A1 = ((lne - psi_m + psi0_m)**(2*(gamma-1))) & +& / ((zeta_a**(gamma-1))*((lnet-(psi_h-psi0_h)*Pr_t_0_inv)**(gamma-1))) + A2 = ((lne - psi_m + psi0_m)**2) / (lnet-(psi_h-psi0_h)*Pr_t_0_inv) - C1 + + zeta = C1 * Ribl + A1 * A2 * (Ribl**gamma) + + call get_psi(psi_m, psi_h, zeta) + call get_psi_mh(psi0_m, psi0_h, zeta * z0_m / z, zeta * z0_t /z) + + Udyn = kappa * U / (log(z / z0_m) - (psi_m - psi0_m)) + Tdyn = kappa * dT * Pr_t_0_inv / (log(z / z0_t) - (psi_h - psi0_h)) + Qdyn = kappa * dQ * Pr_t_0_inv / (log(z / z0_t) - (psi_h - psi0_h)) + + + end subroutine get_dynamic_scales_noniterative + ! -------------------------------------------------------------------------------- + + ! stability functions + ! -------------------------------------------------------------------------------- + subroutine get_phi(phi_m, phi_h, zeta) + !< @brief stability functions (momentum) & (heat): neutral case + ! ---------------------------------------------------------------------------- + real, intent(out) :: phi_m, phi_h !< stability functions + + real, intent(in) :: zeta !< = z/L + ! ---------------------------------------------------------------------------- + + + if (zeta >= 0.0) then + phi_m = 1.0 + (a_m * zeta * (1.0 + zeta)**(1.0 / 3.0)) / (1.0 + b_m * zeta) + phi_h = 1.0 + (a_h * zeta + b_h * zeta * zeta) / (1.0 + c_h * zeta + zeta * zeta) + else + phi_m = (1.0 - alpha_m * zeta)**(-0.25) + phi_h = (1.0 - alpha_h * zeta)**(-0.5) + end if + + end subroutine + ! -------------------------------------------------------------------------------- + + ! universal functions + ! -------------------------------------------------------------------------------- + subroutine get_psi(psi_m, psi_h, zeta) + !< @brief universal functions (momentum) & (heat): neutral case + ! ---------------------------------------------------------------------------- + real, intent(out) :: psi_m, psi_h !< universal functions + + real, intent(in) :: zeta !< = z/L + ! ---------------------------------------------------------------------------- + + ! --- local variables + real :: x_m, x_h + real :: q_m, q_h + ! ---------------------------------------------------------------------------- + + + if (zeta >= 0.0) then + + q_m = ((1.0 - b_m) / b_m)**(1.0 / 3.0) + q_h = sqrt(c_h * c_h - 4.0) + + x_m = (1.0 + zeta)**(1.0 / 3.0) + x_h = zeta + + psi_m = -3.0 * (a_m / b_m) * (x_m - 1.0) + 0.5 * (a_m / b_m) * q_m * (& + 2.0 * log((x_m + q_m) / (1.0 + q_m)) - & + log((x_m * x_m - x_m * q_m + q_m * q_m) / (1.0 - q_m + q_m * q_m)) + & + 2.0 * sqrt(3.0) * (& + atan((2.0 * x_m - q_m) / (sqrt(3.0) * q_m)) - & + atan((2.0 - q_m) / (sqrt(3.0) * q_m)))) + + psi_h = -0.5 * b_h * log(1.0 + c_h * x_h + x_h * x_h) + & + ((-a_h / q_h) + ((b_h * c_h) / (2.0 * q_h))) * (& + log((2.0 * x_h + c_h - q_h) / (2.0 * x_h + c_h + q_h)) - & + log((c_h - q_h) / (c_h + q_h))) + else + x_m = (1.0 - alpha_m * zeta)**(0.25) + x_h = (1.0 - alpha_h * zeta)**(0.25) + + psi_m = (4.0 * atan(1.0) / 2.0) + 2.0 * log(0.5 * (1.0 + x_m)) + log(0.5 * (1.0 + x_m * x_m)) - 2.0 * atan(x_m) + psi_h = 2.0 * log(0.5 * (1.0 + x_h * x_h)) + end if + + end subroutine + + + subroutine get_psi_mh(psi_m, psi_h, zeta_m, zeta_h) + !< @brief universal functions (momentum) & (heat): neutral case + ! ---------------------------------------------------------------------------- + real, intent(out) :: psi_m, psi_h !< universal functions + + real, intent(in) :: zeta_m, zeta_h !< = z/L + ! ---------------------------------------------------------------------------- + + ! --- local variables + real :: x_m, x_h + real :: q_m, q_h + ! ---------------------------------------------------------------------------- + + + if (zeta_m >= 0.0) then + q_m = ((1.0 - b_m) / b_m)**(1.0 / 3.0) + x_m = (1.0 + zeta_m)**(1.0 / 3.0) + + psi_m = -3.0 * (a_m / b_m) * (x_m - 1.0) + 0.5 * (a_m / b_m) * q_m * (& + 2.0 * log((x_m + q_m) / (1.0 + q_m)) - & + log((x_m * x_m - x_m * q_m + q_m * q_m) / (1.0 - q_m + q_m * q_m)) + & + 2.0 * sqrt(3.0) * (& + atan((2.0 * x_m - q_m) / (sqrt(3.0) * q_m)) - & + atan((2.0 - q_m) / (sqrt(3.0) * q_m)))) + else + x_m = (1.0 - alpha_m * zeta_m)**(0.25) + psi_m = (4.0 * atan(1.0) / 2.0) + 2.0 * log(0.5 * (1.0 + x_m)) + log(0.5 * (1.0 + x_m * x_m)) - 2.0 * atan(x_m) + end if + + if (zeta_h >= 0.0) then + q_h = sqrt(c_h * c_h - 4.0) + x_h = zeta_h + + psi_h = -0.5 * b_h * log(1.0 + c_h * x_h + x_h * x_h) + & + ((-a_h / q_h) + ((b_h * c_h) / (2.0 * q_h))) * (& + log((2.0 * x_h + c_h - q_h) / (2.0 * x_h + c_h + q_h)) - & + log((c_h - q_h) / (c_h + q_h))) + else + x_h = (1.0 - alpha_h * zeta_h)**(0.25) + psi_h = 2.0 * log(0.5 * (1.0 + x_h * x_h)) + end if + + end subroutine + ! -------------------------------------------------------------------------------- + +end module sfx_sheba_noniterative \ No newline at end of file