Newer
Older
module sfx_z0m_all_surface
!< @brief surface roughness parameterizations
use sfx_phys_const
implicit none
public :: get_dynamic_roughness_ch
public :: get_dynamic_roughness_map
public :: get_dynamic_roughness_ow
public :: get_dynamic_roughness_fetch
public :: get_dynamic_roughness_and
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
! --------------------------------------------------------------------------------
! --------------------------------------------------------------------------------
real, parameter, private :: kappa = 0.40 !< von Karman constant [n/d]
! --------------------------------------------------------------------------------
!< Charnock parameters
!< z0 = Re_visc_min * (nu / u_dyn) + gamma_c * (u_dyn^2 / g)
! --------------------------------------------------------------------------------
real, parameter :: gamma_c = 0.0144
real, parameter :: Re_visc_min = 0.111
real, parameter :: h_charnock = 10.0
real, parameter :: c1_charnock = log(h_charnock * (g / gamma_c))
real, parameter :: c2_charnock = Re_visc_min * nu_air * c1_charnock
real, parameter :: gamma_min = 0.01
real, parameter :: gamma_max = 0.11
real, parameter :: f_c = 100
real, parameter :: eps = 1
! --------------------------------------------------------------------------------
contains
! charnock roughness definition
! --------------------------------------------------------------------------------
subroutine get_dynamic_roughness_ch(z0_m, u_dyn0, U, h, maxiters)
! ----------------------------------------------------------------------------
real, intent(out) :: z0_m !< aerodynamic roughness [m]
real, intent(out) :: u_dyn0 !< dynamic velocity in neutral conditions [m/s]
real, intent(in) :: h !< constant flux layer height [m]
real, intent(in) :: U !< abs(wind speed) [m/s]
integer, intent(in) :: maxiters !< maximum number of iterations
! ----------------------------------------------------------------------------
! --- local variables
real :: Uc ! wind speed at h_charnock [m/s]
real :: a, b, c, c_min
real :: f
integer :: i, j
! ----------------------------------------------------------------------------
Uc = U
a = 0.0
b = 25.0
c_min = log(h_charnock) / kappa
do i = 1, maxiters
f = c1_charnock - 2.0 * log(Uc)
do j = 1, maxiters
c = (f + 2.0 * log(b)) / kappa
! looks like the check should use U10 instead of U
! but note that a1 should be set = 0 in cycle beforehand
if (U <= 8.0e0) a = log(1.0 + c2_charnock * ((b / Uc)**3)) / kappa
c = max(c - a, c_min)
b = c
end do
z0_m = h_charnock * exp(-c * kappa)
z0_m = max(z0_m, 0.000015e0)
Uc = U * log(h_charnock / z0_m) / log(h / z0_m)
end do
! --- define dynamic velocity in neutral conditions
u_dyn0 = Uc / c
end subroutine
! --------------------------------------------------------------------------------
subroutine get_dynamic_roughness_ow(z0_m, u_dyn0, U, h, maxiters)
!Owen 1964
! ----------------------------------------------------------------------------
real, intent(out) :: z0_m !< aerodynamic roughness [m]
real, intent(out) :: u_dyn0 !< dynamic velocity in neutral conditions [m/s]
real, intent(in) :: h !< constant flux layer height [m]
real, intent(in) :: U !< abs(wind speed) [m/s]
integer, intent(in) :: maxiters !< maximum number of iterations
! ----------------------------------------------------------------------------
! --- local variables
real :: Uc ! wind speed at h_charnock [m/s]
real :: b1, b2, Cuz, betta_u, nu_m, C_z0,c
real :: f
integer :: i, j
! ----------------------------------------------------------------------------
Uc=U
C_z0=0.007
betta_u=0.111
nu_m=0.0000133
b1=log(h*g/C_z0)
b2=betta_u*nu_m*g/C_z0
Cuz=25.0
do i = 1, maxiters
f = c1_charnock - 2.0 * log(Uc)
c = (f + 2.0 * log(Cuz)) / kappa
Cuz=(1.0/kappa)*(b1+log(U/Cuz)-log(b2+(U/Cuz)*(U/Cuz)))
if(Cuz==0.0) exit
z0_m=h*exp(-kappa*Cuz)
end do
u_dyn0 = Uc / c
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
end subroutine
! --------------------------------------------------------------------------------
subroutine get_dynamic_roughness_fetch(z0_m, u_dyn0, U, depth, h, maxiters)
! ----------------------------------------------------------------------------
real, intent(out) :: z0_m !< aerodynamic roughness [m]
real, intent(out) :: u_dyn0 !< dynamic velocity in neutral conditions [m/s]
real, intent(in) :: U !< abs(wind speed) [m/s]
real, intent(in) :: depth !< depth [m]
real, intent(in) :: h !< constant flux layer height [m]
integer, intent(in) :: maxiters !< maximum number of iterations
! ----------------------------------------------------------------------------
! --- local variables
real :: Uc ! wind speed at h_charnock [m/s]
real :: a, b, c, c_min
real :: f
real :: A_lake, B_lake, gamma_c, fetch, c1_charnock_lake, c2_charnock_lake
integer :: i, j
! ----------------------------------------------------------------------------
Uc = U
a = 0.0
b = 25.0
c_min = log(h_charnock) / kappa
fetch = 25.0 * depth !25.0 * depth
!< z0 = Re_visc_min * (nu / u_dyn) + gamma_c * (u_dyn^2 / g)
!< gamma_c = gamma_min + (gamma_max - gamma_min) * exp(-min(A_lake, B_lake))
!< А_lake = (fetch * g / U^2)^(1/3) / f_c
!< B_lake = eps (sqrt(depth * g)/U)
do i = 1, maxiters
A_lake = ((fetch * g / (U)**2)**(1/3)) / f_c
B_lake = eps * (sqrt(depth * g)/U)
gamma_c = gamma_min + (gamma_max - gamma_min) * exp(-min(A_lake, B_lake))
!write(*,*) A_lake
!write(*,*) B_lake
c1_charnock_lake = log(h_charnock * (g / gamma_c))
c2_charnock_lake = Re_visc_min * nu_air * c1_charnock_lake
f = c1_charnock_lake - 2.0 * log(Uc)
do j = 1, maxiters
c = (f + 2.0 * log(b)) / kappa
if (U <= 8.0e0) a = log(1.0 + c2_charnock_lake * ((b / Uc)**3)) / kappa
c = max(c - a, c_min)
b = c
end do
z0_m = h_charnock * exp(-c * kappa)
z0_m = max(z0_m, 0.000015e0)
Uc = U * log(h_charnock / z0_m) / log(h / z0_m)
end do
! --- define dynamic velocity in neutral conditions
u_dyn0 = Uc / c
end subroutine
subroutine get_dynamic_roughness_map(z0_m, u_dyn0, U, h, z0m_map)
! ----------------------------------------------------------------------------
real, intent(out) :: z0_m !< aerodynamic roughness [m]
real, intent(out) :: u_dyn0 !< dynamic velocity in neutral conditions [m/s]
real, intent(in) :: h !< constant flux layer height [m]
real, intent(in) :: z0m_map !< aerodynamic roughness from map[m]
real, intent(in) :: U !< abs(wind speed) [m/s]
! ----------------------------------------------------------------------------
real :: h0_m
z0_m=z0m_map
h0_m = h / z0_m
u_dyn0 = U * kappa / log(h0_m)
end subroutine
! --------------------------------------------------------------------------------
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
subroutine get_dynamic_roughness_and(z0_m, u_dyn0, U, h, z0m_map)
! ----------------------------------------------------------------------------
real, intent(out) :: z0_m !< aerodynamic roughness [m]
real, intent(out) :: u_dyn0 !< dynamic velocity in neutral conditions [m/s]
real, intent(in) :: h !< constant flux layer height [m]
real, intent(in) :: z0m_map !< aerodynamic roughness from map[m]
real, intent(in) :: U !< abs(wind speed) [m/s]
! ----------------------------------------------------------------------------
real :: h0_m, u_star_prev, nu, g
real :: tolerance
integer :: max_iterations, iter
nu = 1.7e-5
g = 9.81
u_dyn0 = 0.2
tolerance = 1.0e-5
max_iterations = 10
do iter = 1, max_iterations
u_star_prev = u_dyn0
z0_m = (0.135 * nu / u_dyn0) + (0.035 * u_dyn0**2 / g) * &
(1.0 + exp(-((u_dyn0 - 0.18) / 0.1)**2))
h0_m = h / z0_m
u_dyn0 = U * kappa / log(h0_m)
if (abs(u_dyn0 - u_star_prev) < tolerance) exit
end do
u_dyn0 = U * kappa / log(h0_m)
end subroutine
! --------------------------------------------------------------------------------