Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
#pragma once
#include "../includeC/sfx_data.h"
#include "../includeCU/sfx_math.cuh"
template<typename T>
FUCNTION_DECLARATION_SPECIFIER void get_convection_lim(T &zeta_lim, T &Rib_lim, T &f_m_lim, T &f_h_lim,
const T h0_m, const T h0_t, const T B,
const sfx_esm_param& param)
{
T psi_m, psi_h, f_m, f_h, c;
c = pow(param.Pr_t_inf_inv / param.Pr_t_0_inv, 4);
zeta_lim = (2.0 * param.alpha_h - c * param.alpha_m -
sqrt( (c * param.alpha_m)*(c * param.alpha_m) + 4.0 * c * param.alpha_h * (param.alpha_h - param.alpha_m))) / (2.0 * param.alpha_h*param.alpha_h);
f_m_lim = pow(1.0 - param.alpha_m * zeta_lim, 0.25);
f_h_lim = sqrt(1.0 - param.alpha_h * zeta_lim);
f_m = zeta_lim / h0_m;
f_h = zeta_lim / h0_t;
if (fabs(B) < 1.0e-10) f_h = f_m;
f_m = pow(1.0 - param.alpha_m * f_m, 0.25);
f_h = sqrt(1.0 - param.alpha_h_fix * f_h);
psi_m = 2.0 * (atan(f_m_lim) - atan(f_m)) + log((f_m_lim - 1.0) * (f_m + 1.0)/((f_m_lim + 1.0) * (f_m - 1.0)));
psi_h = log((f_h_lim - 1.0) * (f_h + 1.0)/((f_h_lim + 1.0) * (f_h - 1.0))) / param.Pr_t_0_inv;
Rib_lim = zeta_lim * psi_h / (psi_m * psi_m);
}
template<typename T>
FUCNTION_DECLARATION_SPECIFIER void get_psi_stable(T &psi_m, T &psi_h, T &zeta,
const T Rib, const T h0_m, const T h0_t, const T B,
const sfx_esm_param& param)
{
T Rib_coeff, psi0_m, psi0_h, phi, c;
psi0_m = log(h0_m);
psi0_h = B / psi0_m;
Rib_coeff = param.beta_m * Rib;
c = (psi0_h + 1.0) / param.Pr_t_0_inv - 2.0 * Rib_coeff;
zeta = psi0_m * (sqrt(c*c + 4.0 * Rib_coeff * (1.0 - Rib_coeff)) - c) / (2.0 * param.beta_m * (1.0 - Rib_coeff));
phi = param.beta_m * zeta;
psi_m = psi0_m + phi;
psi_h = (psi0_m + B) / param.Pr_t_0_inv + phi;
}
template<typename T>
FUCNTION_DECLARATION_SPECIFIER void get_psi_convection(T &psi_m, T &psi_h, T &zeta,
const T Rib, const T h0_m, const T h0_t, const T B,
const T zeta_conv_lim, const T f_m_conv_lim, const T f_h_conv_lim,
const sfx_esm_param& param,
const sfx_esm_numericsTypeC& numerics)
{
T zeta0_m, zeta0_h, f0_m, f0_h, p_m, p_h, a_m, a_h, c_lim, f;
p_m = 2.0 * atan(f_m_conv_lim) + log((f_m_conv_lim - 1.0) / (f_m_conv_lim + 1.0));
p_h = log((f_h_conv_lim - 1.0) / (f_h_conv_lim + 1.0));
zeta = zeta_conv_lim;
for (int i = 1; i <= numerics.maxiters_convection + 1; i++)
{
zeta0_m = zeta / h0_m;
zeta0_h = zeta / h0_t;
if (fabs(B) < 1.0e-10)
zeta0_h = zeta0_m;
f0_m = pow(1.0 - param.alpha_m * zeta0_m, 0.25);
f0_h = sqrt(1.0 - param.alpha_h_fix * zeta0_h);
a_m = -2.0*atan(f0_m) + log((f0_m + 1.0)/(f0_m - 1.0));
a_h = log((f0_h + 1.0)/(f0_h - 1.0));
c_lim = pow(zeta_conv_lim / zeta, 1.0 / 3.0);
f = 3.0 * (1.0 - c_lim);
psi_m = f / f_m_conv_lim + p_m + a_m;
psi_h = (f / f_h_conv_lim + p_h + a_h) / param.Pr_t_0_inv;
if (i == numerics.maxiters_convection + 1)
break;
zeta = Rib * psi_m * psi_m / psi_h;
}
}
template<typename T>
FUCNTION_DECLARATION_SPECIFIER void get_psi_neutral(T &psi_m, T &psi_h, T &zeta,
const T h0_m, const T h0_t, const T B,
const sfx_esm_param& param)
{
zeta = 0.0;
psi_m = log(h0_m);
psi_h = log(h0_t) / param.Pr_t_0_inv;
if (fabs(B) < 1.0e-10)
psi_h = psi_m / param.Pr_t_0_inv;
}
template<typename T>
FUCNTION_DECLARATION_SPECIFIER void get_psi_semi_convection(T &psi_m, T &psi_h, T &zeta,
const T Rib, const T h0_m, const T h0_t, const T B,
const sfx_esm_param& param,
const sfx_esm_numericsTypeC& numerics)
{
T zeta0_m, zeta0_h, f0_m, f0_h, f_m, f_h;
psi_m = log(h0_m);
psi_h = log(h0_t);
if (fabs(B) < 1.0e-10)
psi_h = psi_m;
zeta = Rib * param.Pr_t_0_inv * psi_m * psi_m / psi_h;
for (int i = 1; i <= numerics.maxiters_convection + 1; i++)
{
zeta0_m = zeta / h0_m;
zeta0_h = zeta / h0_t;
if (fabs(B) < 1.0e-10)
zeta0_h = zeta0_m;
f_m = pow(1.0 - param.alpha_m * zeta, 0.25e0);
f_h = sqrt(1.0 - param.alpha_h_fix * zeta);
f0_m = pow(1.0 - param.alpha_m * zeta0_m, 0.25e0);
f0_h = sqrt(1.0 - param.alpha_h_fix * zeta0_h);
f0_m = sfx_math::max(f0_m, T(1.000001e0));
f0_h = sfx_math::max(f0_h, T(1.000001e0));
psi_m = log((f_m - 1.0e0)*(f0_m + 1.0e0)/((f_m + 1.0e0)*(f0_m - 1.0e0))) + 2.0e0*(atan(f_m) - atan(f0_m));
psi_h = log((f_h - 1.0e0)*(f0_h + 1.0e0)/((f_h + 1.0e0)*(f0_h - 1.0e0))) / param.Pr_t_0_inv;
if (i == numerics.maxiters_convection + 1)
break;
zeta = Rib * psi_m * psi_m / psi_h;
}
}