#pragma once #include "../includeC/sfx_data.h" #include "../includeCU/sfx_math.cuh" template<typename T> FUCNTION_DECLARATION_SPECIFIER void get_convection_lim(T &zeta_lim, T &Rib_lim, T &f_m_lim, T &f_h_lim, const T h0_m, const T h0_t, const T B, const sfx_esm_param& param) { T psi_m, psi_h, f_m, f_h, c; c = pow(param.Pr_t_inf_inv / param.Pr_t_0_inv, 4); zeta_lim = (2.0 * param.alpha_h - c * param.alpha_m - sqrt( (c * param.alpha_m)*(c * param.alpha_m) + 4.0 * c * param.alpha_h * (param.alpha_h - param.alpha_m))) / (2.0 * param.alpha_h*param.alpha_h); f_m_lim = pow(1.0 - param.alpha_m * zeta_lim, 0.25); f_h_lim = sqrt(1.0 - param.alpha_h * zeta_lim); f_m = zeta_lim / h0_m; f_h = zeta_lim / h0_t; if (fabs(B) < 1.0e-10) f_h = f_m; f_m = pow(1.0 - param.alpha_m * f_m, 0.25); f_h = sqrt(1.0 - param.alpha_h_fix * f_h); psi_m = 2.0 * (atan(f_m_lim) - atan(f_m)) + log((f_m_lim - 1.0) * (f_m + 1.0)/((f_m_lim + 1.0) * (f_m - 1.0))); psi_h = log((f_h_lim - 1.0) * (f_h + 1.0)/((f_h_lim + 1.0) * (f_h - 1.0))) / param.Pr_t_0_inv; Rib_lim = zeta_lim * psi_h / (psi_m * psi_m); } template<typename T> FUCNTION_DECLARATION_SPECIFIER void get_psi_stable(T &psi_m, T &psi_h, T &zeta, const T Rib, const T h0_m, const T h0_t, const T B, const sfx_esm_param& param) { T Rib_coeff, psi0_m, psi0_h, phi, c; psi0_m = log(h0_m); psi0_h = B / psi0_m; Rib_coeff = param.beta_m * Rib; c = (psi0_h + 1.0) / param.Pr_t_0_inv - 2.0 * Rib_coeff; zeta = psi0_m * (sqrt(c*c + 4.0 * Rib_coeff * (1.0 - Rib_coeff)) - c) / (2.0 * param.beta_m * (1.0 - Rib_coeff)); phi = param.beta_m * zeta; psi_m = psi0_m + phi; psi_h = (psi0_m + B) / param.Pr_t_0_inv + phi; } template<typename T> FUCNTION_DECLARATION_SPECIFIER void get_psi_convection(T &psi_m, T &psi_h, T &zeta, const T Rib, const T h0_m, const T h0_t, const T B, const T zeta_conv_lim, const T f_m_conv_lim, const T f_h_conv_lim, const sfx_esm_param& param, const sfx_esm_numericsTypeC& numerics) { T zeta0_m, zeta0_h, f0_m, f0_h, p_m, p_h, a_m, a_h, c_lim, f; p_m = 2.0 * atan(f_m_conv_lim) + log((f_m_conv_lim - 1.0) / (f_m_conv_lim + 1.0)); p_h = log((f_h_conv_lim - 1.0) / (f_h_conv_lim + 1.0)); zeta = zeta_conv_lim; for (int i = 1; i <= numerics.maxiters_convection + 1; i++) { zeta0_m = zeta / h0_m; zeta0_h = zeta / h0_t; if (fabs(B) < 1.0e-10) zeta0_h = zeta0_m; f0_m = pow(1.0 - param.alpha_m * zeta0_m, 0.25); f0_h = sqrt(1.0 - param.alpha_h_fix * zeta0_h); a_m = -2.0*atan(f0_m) + log((f0_m + 1.0)/(f0_m - 1.0)); a_h = log((f0_h + 1.0)/(f0_h - 1.0)); c_lim = pow(zeta_conv_lim / zeta, 1.0 / 3.0); f = 3.0 * (1.0 - c_lim); psi_m = f / f_m_conv_lim + p_m + a_m; psi_h = (f / f_h_conv_lim + p_h + a_h) / param.Pr_t_0_inv; if (i == numerics.maxiters_convection + 1) break; zeta = Rib * psi_m * psi_m / psi_h; } } template<typename T> FUCNTION_DECLARATION_SPECIFIER void get_psi_neutral(T &psi_m, T &psi_h, T &zeta, const T h0_m, const T h0_t, const T B, const sfx_esm_param& param) { zeta = 0.0; psi_m = log(h0_m); psi_h = log(h0_t) / param.Pr_t_0_inv; if (fabs(B) < 1.0e-10) psi_h = psi_m / param.Pr_t_0_inv; } template<typename T> FUCNTION_DECLARATION_SPECIFIER void get_psi_semi_convection(T &psi_m, T &psi_h, T &zeta, const T Rib, const T h0_m, const T h0_t, const T B, const sfx_esm_param& param, const sfx_esm_numericsTypeC& numerics) { T zeta0_m, zeta0_h, f0_m, f0_h, f_m, f_h; psi_m = log(h0_m); psi_h = log(h0_t); if (fabs(B) < 1.0e-10) psi_h = psi_m; zeta = Rib * param.Pr_t_0_inv * psi_m * psi_m / psi_h; for (int i = 1; i <= numerics.maxiters_convection + 1; i++) { zeta0_m = zeta / h0_m; zeta0_h = zeta / h0_t; if (fabs(B) < 1.0e-10) zeta0_h = zeta0_m; f_m = pow(1.0 - param.alpha_m * zeta, 0.25e0); f_h = sqrt(1.0 - param.alpha_h_fix * zeta); f0_m = pow(1.0 - param.alpha_m * zeta0_m, 0.25e0); f0_h = sqrt(1.0 - param.alpha_h_fix * zeta0_h); f0_m = sfx_math::max(f0_m, T(1.000001e0)); f0_h = sfx_math::max(f0_h, T(1.000001e0)); psi_m = log((f_m - 1.0e0)*(f0_m + 1.0e0)/((f_m + 1.0e0)*(f0_m - 1.0e0))) + 2.0e0*(atan(f_m) - atan(f0_m)); psi_h = log((f_h - 1.0e0)*(f0_h + 1.0e0)/((f_h + 1.0e0)*(f0_h - 1.0e0))) / param.Pr_t_0_inv; if (i == numerics.maxiters_convection + 1) break; zeta = Rib * psi_m * psi_m / psi_h; } }