Newer
Older
module sfx_z0m_all_surface
!< @brief surface roughness parameterizations
use sfx_phys_const
implicit none
public :: get_dynamic_roughness_ch
public :: get_dynamic_roughness_map
public :: get_dynamic_roughness_ow
public :: get_dynamic_roughness_fetch
public :: get_dynamic_roughness_and
public :: get_dynamic_roughness_coast1
public :: get_dynamic_roughness_coast2
public :: get_dynamic_roughness_coast3
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
! --------------------------------------------------------------------------------
! --------------------------------------------------------------------------------
real, parameter, private :: kappa = 0.40 !< von Karman constant [n/d]
! --------------------------------------------------------------------------------
!< Charnock parameters
!< z0 = Re_visc_min * (nu / u_dyn) + gamma_c * (u_dyn^2 / g)
! --------------------------------------------------------------------------------
real, parameter :: gamma_c = 0.0144
real, parameter :: Re_visc_min = 0.111
real, parameter :: h_charnock = 10.0
real, parameter :: c1_charnock = log(h_charnock * (g / gamma_c))
real, parameter :: c2_charnock = Re_visc_min * nu_air * c1_charnock
real, parameter :: gamma_min = 0.01
real, parameter :: gamma_max = 0.11
real, parameter :: f_c = 100
real, parameter :: eps = 1
! --------------------------------------------------------------------------------
contains
! charnock roughness definition
! --------------------------------------------------------------------------------
subroutine get_dynamic_roughness_ch(z0_m, u_dyn0, U, h, maxiters)
! ----------------------------------------------------------------------------
real, intent(out) :: z0_m !< aerodynamic roughness [m]
real, intent(out) :: u_dyn0 !< dynamic velocity in neutral conditions [m/s]
real, intent(in) :: h !< constant flux layer height [m]
real, intent(in) :: U !< abs(wind speed) [m/s]
integer, intent(in) :: maxiters !< maximum number of iterations
! ----------------------------------------------------------------------------
! --- local variables
real :: Uc ! wind speed at h_charnock [m/s]
real :: a, b, c, c_min
real :: f
integer :: i, j
! ----------------------------------------------------------------------------
Uc = U
a = 0.0
b = 25.0
c_min = log(h_charnock) / kappa
do i = 1, maxiters
f = c1_charnock - 2.0 * log(Uc)
do j = 1, maxiters
c = (f + 2.0 * log(b)) / kappa
! looks like the check should use U10 instead of U
! but note that a1 should be set = 0 in cycle beforehand
if (U <= 8.0e0) a = log(1.0 + c2_charnock * ((b / Uc)**3)) / kappa
c = max(c - a, c_min)
b = c
end do
z0_m = h_charnock * exp(-c * kappa)
z0_m = max(z0_m, 0.000015e0)
Uc = U * log(h_charnock / z0_m) / log(h / z0_m)
end do
! --- define dynamic velocity in neutral conditions
u_dyn0 = Uc / c
end subroutine
! --------------------------------------------------------------------------------
subroutine get_dynamic_roughness_ow(z0_m, u_dyn0, U, h, maxiters)
!Owen 1964
! ----------------------------------------------------------------------------
real, intent(out) :: z0_m !< aerodynamic roughness [m]
real, intent(out) :: u_dyn0 !< dynamic velocity in neutral conditions [m/s]
real, intent(in) :: h !< constant flux layer height [m]
real, intent(in) :: U !< abs(wind speed) [m/s]
integer, intent(in) :: maxiters !< maximum number of iterations
! ----------------------------------------------------------------------------
! --- local variables
real :: Uc ! wind speed at h_charnock [m/s]
real :: b1, b2, Cuz, betta_u, nu_m, C_z0,c
real :: f
integer :: i, j
! ----------------------------------------------------------------------------
Uc=U
C_z0=0.007
betta_u=0.111
nu_m=0.0000133
b1=log(h*g/C_z0)
b2=betta_u*nu_m*g/C_z0
Cuz=25.0
do i = 1, maxiters
f = c1_charnock - 2.0 * log(Uc)
c = (f + 2.0 * log(Cuz)) / kappa
Cuz=(1.0/kappa)*(b1+log(U/Cuz)-log(b2+(U/Cuz)*(U/Cuz)))
if(Cuz==0.0) exit
z0_m=h*exp(-kappa*Cuz)
end do
u_dyn0 = Uc / c
end subroutine
! --------------------------------------------------------------------------------
subroutine get_dynamic_roughness_fetch(z0_m, u_dyn0, U, depth, h, maxiters)
! ----------------------------------------------------------------------------
real, intent(out) :: z0_m !< aerodynamic roughness [m]
real, intent(out) :: u_dyn0 !< dynamic velocity in neutral conditions [m/s]
real, intent(in) :: U !< abs(wind speed) [m/s]
real, intent(in) :: depth !< depth [m]
real, intent(in) :: h !< constant flux layer height [m]
integer, intent(in) :: maxiters !< maximum number of iterations
! ----------------------------------------------------------------------------
! --- local variables
real :: Uc ! wind speed at h_charnock [m/s]
real :: a, b, c, c_min
real :: f
real :: A_lake, B_lake, gamma_c, fetch, c1_charnock_lake, c2_charnock_lake
integer :: i, j
! ----------------------------------------------------------------------------
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
Uc = U
a = 0.0
b = 25.0
c_min = log(h_charnock) / kappa
fetch = 25.0 * depth !25.0 * depth
!< z0 = Re_visc_min * (nu / u_dyn) + gamma_c * (u_dyn^2 / g)
!< gamma_c = gamma_min + (gamma_max - gamma_min) * exp(-min(A_lake, B_lake))
!< А_lake = (fetch * g / U^2)^(1/3) / f_c
!< B_lake = eps (sqrt(depth * g)/U)
do i = 1, maxiters
A_lake = ((fetch * g / (U)**2)**(1/3)) / f_c
B_lake = eps * (sqrt(depth * g)/U)
gamma_c = gamma_min + (gamma_max - gamma_min) * exp(-min(A_lake, B_lake))
!write(*,*) A_lake
!write(*,*) B_lake
c1_charnock_lake = log(h_charnock * (g / gamma_c))
c2_charnock_lake = Re_visc_min * nu_air * c1_charnock_lake
f = c1_charnock_lake - 2.0 * log(Uc)
do j = 1, maxiters
c = (f + 2.0 * log(b)) / kappa
if (U <= 8.0e0) a = log(1.0 + c2_charnock_lake * ((b / Uc)**3)) / kappa
c = max(c - a, c_min)
b = c
end do
z0_m = h_charnock * exp(-c * kappa)
z0_m = max(z0_m, 0.000015e0)
Uc = U * log(h_charnock / z0_m) / log(h / z0_m)
end do
! --- define dynamic velocity in neutral conditions
u_dyn0 = Uc / c
end subroutine
subroutine get_dynamic_roughness_map(z0_m, u_dyn0, U, h, z0m_map)
! ----------------------------------------------------------------------------
real, intent(out) :: z0_m !< aerodynamic roughness [m]
real, intent(out) :: u_dyn0 !< dynamic velocity in neutral conditions [m/s]
real, intent(in) :: h !< constant flux layer height [m]
real, intent(in) :: z0m_map !< aerodynamic roughness from map[m]
real, intent(in) :: U !< abs(wind speed) [m/s]
! ----------------------------------------------------------------------------
real :: h0_m
z0_m=z0m_map
h0_m = h / z0_m
u_dyn0 = U * kappa / log(h0_m)
end subroutine
! --------------------------------------------------------------------------------
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
subroutine get_dynamic_roughness_and(z0_m, u_dyn0, U, h, z0m_map)
! ----------------------------------------------------------------------------
real, intent(out) :: z0_m !< aerodynamic roughness [m]
real, intent(out) :: u_dyn0 !< dynamic velocity in neutral conditions [m/s]
real, intent(in) :: h !< constant flux layer height [m]
real, intent(in) :: z0m_map !< aerodynamic roughness from map[m]
real, intent(in) :: U !< abs(wind speed) [m/s]
! ----------------------------------------------------------------------------
real :: h0_m, u_star_prev, nu, g
real :: tolerance
integer :: max_iterations, iter
nu = 1.7e-5
g = 9.81
u_dyn0 = 0.2
tolerance = 1.0e-5
max_iterations = 10
do iter = 1, max_iterations
u_star_prev = u_dyn0
z0_m = (0.135 * nu / u_dyn0) + (0.035 * u_dyn0**2 / g) * &
(1.0 + exp(-((u_dyn0 - 0.18) / 0.1)**2))
h0_m = h / z0_m
u_dyn0 = U * kappa / log(h0_m)
if (abs(u_dyn0 - u_star_prev) < tolerance) exit
end do
u_dyn0 = U * kappa / log(h0_m)
end subroutine
! --------------------------------------------------------------------------------
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
subroutine get_dynamic_roughness_coast1(z0_m, u_dyn0, U, h, maxiters)
! ----------------------------------------------------------------------------
real, intent(out) :: z0_m !< aerodynamic roughness [m]
real, intent(out) :: u_dyn0 !< dynamic velocity in neutral conditions [m/s]
real, intent(in) :: h !< constant flux layer height [m]
real, intent(in) :: U !< abs(wind speed) [m/s]
integer, intent(in) :: maxiters !< maximum number of iterations
! ----------------------------------------------------------------------------
! Taylor&Yelland formulation
! --- local variables
real :: Uc, c, c_min, a, b ! wind speed at h_charnock [m/s] & Cd^(-1)
real :: pi=3.14159265
real :: hs, Tp, Lp
integer :: i, j
! ----------------------------------------------------------------------------
Uc = U
a = 0
b = 0
c_min = log(h_charnock) / kappa
do i = 1, maxiters
hs = 0.0248*(Uc**2.) !hs is the significant wave height
Tp = 0.729*max(Uc,0.1) !Tp dominant wave period
Lp = g*Tp**2/(2*pi) !Lp is the wavelength of the dominant wave
do j = 1, maxiters
z0_m = 1200.*hs*(hs/Lp)**4.5
c = log(h_charnock / z0_m) / kappa
if (Uc <= 8.0e0) then
a = log(1.0 + c2_charnock * ((b / Uc)**3)) / kappa
c = max(c - a, c_min)
b = c
z0_m = h_charnock * exp(-kappa*c)
end if
end do
z0_m = max( z0_m, 1.27e-7) !These max/mins were suggested by
z0_m = min( z0_m, 2.85e-3) !Davis et al. (2008)
Uc = U * log(h_charnock / z0_m) / log(h / z0_m)
end do
u_dyn0 = Uc * kappa / log (h_charnock / z0_m)
! c = Uc/u_dyn0
! write (*,*) 'out1', u_dyn0
end subroutine
! Hwang
subroutine get_dynamic_roughness_coast2(z0_m, u_dyn0, U, h, maxiters)
! ----------------------------------------------------------------------------
real, intent(out) :: z0_m !< aerodynamic roughness [m]
real, intent(out) :: u_dyn0 !< dynamic velocity in neutral conditions [m/s]
real, intent(in) :: h !< constant flux layer height [m]
real, intent(in) :: U !< abs(wind speed) [m/s]
integer, intent(in) :: maxiters !< maximum number of iterations
! ----------------------------------------------------------------------------
! --- local variables
real :: Uc, c, c1, a, b, c_min ! wind speed at h_charnock [m/s] & Cd^(-1)
integer :: i, j
! ----------------------------------------------------------------------------
Uc = U
a = 0
b = 0
c_min = log(h_charnock) / kappa
do i = 1, maxiters
c1 = 0.016 * Uc**2
do j = 1, maxiters
c = 1.0 / (0.01*sqrt(8.058 + 0.967 * Uc - c1))
if (Uc <= 8.0e0) then
a = log(1.0 + c2_charnock * ((b / Uc)**3)) / kappa
c = max(c - a, c_min)
b = c
end if
end do
z0_m = h_charnock * exp(-kappa*c)
z0_m = max(z0_m, 0.000015e0)
Uc = U * log(h_charnock / z0_m) / log(h / z0_m)
end do
! --- define dynamic velocity in neutral conditions
u_dyn0 = Uc / c
! write (*,*) 'out1', u_dyn0
! --------------------------------------------------------------------------------
end subroutine
! Zhao et al 2015 10^3*z0=15.6*u_dyn0**2/g + 10**(-2)
subroutine get_dynamic_roughness_coast3(z0_m, u_dyn0, U, h, maxiters)
! ----------------------------------------------------------------------------
real, intent(out) :: z0_m !< aerodynamic roughness [m]
real, intent(out) :: u_dyn0 !< dynamic velocity in neutral conditions [m/s]
real, intent(in) :: h !< constant flux layer height [m]
real, intent(in) :: U !< abs(wind speed) [m/s]
integer, intent(in) :: maxiters !< maximum number of iterations
! ----------------------------------------------------------------------------
! --- local variables
real :: Uc, u_dyn, z0_m0 ! wind speed at h_charnock [m/s]
real :: c, c_min, a, b
real :: f1
integer :: i, j
! ----------------------------------------------------------------------------
Uc = U
u_dyn = U / 28.0
a = 0
b = 0
z0_m0=0.082
c_min = log(h_charnock) / kappa
if (Uc >8.00 .AND. Uc <= 35.0e0) then
do i = 1, maxiters
f1 = 15.6*u_dyn**2/g
z0_m0 = 0.001 * (f1 + 0.01)
c = log(h_charnock / z0_m0) / kappa
end do
end if
if (Uc <= 8.0e0) then
do j = 1, maxiters
a = log(1.0 + c2_charnock * ((b / Uc)**3)) / kappa
c = max(c - a, c_min)
b = c
z0_m0 = h_charnock * exp(-c * kappa)
end do
else
z0_m0 = 2.82
end if
z0_m = max(z0_m0, 0.000015e0)
Uc = U * log(h_charnock / z0_m) / log(h / z0_m)
! --- define dynamic velocity in neutral conditions
! u_dyn0 = Uc / c
u_dyn0 = Uc * kappa / log (h_charnock / z0_m)
end subroutine