Newer
Older
! modules used
! --------------------------------------------------------------------------------
#ifdef SFX_CHECK_NAN
use sfx_common
#endif

Evgeny Mortikov
committed
use sfx_data

Evgeny Mortikov
committed
use sfx_surface
! --------------------------------------------------------------------------------
! directives list
! --------------------------------------------------------------------------------
implicit none
private
! --------------------------------------------------------------------------------
! public interface
! --------------------------------------------------------------------------------
public :: get_surface_fluxes
public :: get_surface_fluxes_vec

Виктория Суязова
committed
integer z0m_id
integer z0t_id
! --------------------------------------------------------------------------------
! --------------------------------------------------------------------------------
type, public :: numericsType
integer :: maxiters_convection = 10 !< maximum (actual) number of iterations in convection
integer :: maxiters_charnock = 10 !< maximum (actual) number of iterations in charnock roughness
end type
! --------------------------------------------------------------------------------
#if defined(INCLUDE_CXX)
type, BIND(C), public :: sfx_esm_param_C
real(C_FLOAT) :: kappa
real(C_FLOAT) :: Pr_t_0_inv
real(C_FLOAT) :: Pr_t_inf_inv
real(C_FLOAT) :: alpha_m
real(C_FLOAT) :: alpha_h
real(C_FLOAT) :: alpha_h_fix
real(C_FLOAT) :: beta_m
real(C_FLOAT) :: beta_h
real(C_FLOAT) :: Rib_max
end type
type, BIND(C), public :: sfx_esm_numericsType_C
integer(C_INT) :: maxiters_convection
integer(C_INT) :: maxiters_charnock
end type
INTERFACE
SUBROUTINE c_esm_compute_flux(sfx, meteo, model_param, surface_param, numerics, constants, grid_size) BIND(C, &
name="c_esm_compute_flux")
use sfx_data
use, intrinsic :: ISO_C_BINDING, ONLY: C_INT, C_PTR
Import :: sfx_esm_param_C, sfx_esm_numericsType_C
implicit none
integer(C_INT) :: grid_size
type(C_PTR), value :: sfx
type(C_PTR), value :: meteo
type(sfx_esm_param_C) :: model_param
type(sfx_surface_param) :: surface_param
type(sfx_esm_numericsType_C) :: numerics
type(sfx_phys_constants) :: constants
contains
! --------------------------------------------------------------------------------
#if defined(INCLUDE_CXX)
subroutine set_c_struct_sfx_esm_param_values(sfx_model_param)
sfx_model_param%kappa = kappa
sfx_model_param%Pr_t_0_inv = Pr_t_0_inv
sfx_model_param%Pr_t_inf_inv = Pr_t_inf_inv
sfx_model_param%alpha_m = alpha_m
sfx_model_param%alpha_h = alpha_h
sfx_model_param%alpha_h_fix = alpha_h_fix
sfx_model_param%beta_m = beta_m
sfx_model_param%beta_h = beta_h
sfx_model_param%Rib_max = Rib_max
end subroutine set_c_struct_sfx_esm_param_values
#endif
subroutine get_surface_fluxes_vec(sfx, meteo, numerics, n)
!< @brief surface flux calculation for array data
!< @details contains C/C++ & CUDA interface
! ----------------------------------------------------------------------------
type (sfxDataVecType), intent(inout) :: sfx
type (meteoDataVecType), intent(in) :: meteo
type (numericsType), intent(in) :: numerics
integer, intent(in) :: n
! ----------------------------------------------------------------------------
! --- local variables
type (meteoDataType) meteo_cell
type (sfxDataType) sfx_cell
integer i
! ----------------------------------------------------------------------------
type (meteoDataVecTypeC), target :: meteo_c !< meteorological data (input)
type (sfxDataVecTypeC), target :: sfx_c !< surface flux data (output)
type(C_PTR) :: meteo_c_ptr, sfx_c_ptr
type (sfx_phys_constants) :: phys_constants
numerics_c%maxiters_convection = numerics%maxiters_convection
numerics_c%maxiters_charnock = numerics%maxiters_charnock
phys_constants%Pr_m = Pr_m;
phys_constants%nu_air = nu_air;
phys_constants%g = g;
call set_c_struct_sfx_esm_param_values(model_param)
call set_c_struct_sfx_surface_param_values(surface_param)
call set_meteo_vec_c(meteo, meteo_c)
call set_sfx_vec_c(sfx, sfx_c)
call c_esm_compute_flux(sfx_c_ptr, meteo_c_ptr, model_param, surface_param, numerics_c, phys_constants, n)

Evgeny Mortikov
committed
#ifdef SFX_FORCE_DEPRECATED_ESM_CODE
#else
meteo_cell = meteoDataType(&
h = meteo%h(i), &
U = meteo%U(i), dT = meteo%dT(i), Tsemi = meteo%Tsemi(i), dQ = meteo%dQ(i), &

Виктория Суязова
committed
z0_m = meteo%z0_m(i), depth=meteo%depth(i), lai=meteo%lai(i), surface_type=meteo%surface_type(i))
call get_surface_fluxes(sfx_cell, meteo_cell, numerics)
call push_sfx_data(sfx, sfx_cell, i)
#endif
end do
end subroutine get_surface_fluxes_vec
! --------------------------------------------------------------------------------
! --------------------------------------------------------------------------------
subroutine get_surface_fluxes(sfx, meteo, numerics)
!< @brief surface flux calculation for single cell
!< @details contains C/C++ interface
! ----------------------------------------------------------------------------
#ifdef SFX_CHECK_NAN
use ieee_arithmetic
#endif
type (sfxDataType), intent(out) :: sfx
type (meteoDataType), intent(in) :: meteo
type (numericsType), intent(in) :: numerics
! ----------------------------------------------------------------------------
! --- meteo derived datatype name shadowing
! ----------------------------------------------------------------------------
real :: h !< constant flux layer height [m]
real :: U !< abs(wind speed) at 'h' [m/s]
real :: dT !< difference between potential temperature at 'h' and at surface [K]
real :: Tsemi !< semi-sum of potential temperature at 'h' and at surface [K]
real :: dQ !< difference between humidity at 'h' and at surface [g/g]
real :: z0_m !< surface aerodynamic roughness (should be < 0 for water bodies surface)

Виктория Суязова
committed
real :: depth
real :: lai
! ----------------------------------------------------------------------------
! --- local variables
! ----------------------------------------------------------------------------
real z0_t !< thermal roughness [m]
real B !< = ln(z0_m / z0_t) [n/d]
real h0_m, h0_t !< = h / z0_m, h / z0_h [n/d]
real u_dyn0 !< dynamic velocity in neutral conditions [m/s]
real Re !< roughness Reynolds number = u_dyn0 * z0_m / nu [n/d]
real zeta !< = z/L [n/d]
real Rib !< bulk Richardson number
real zeta_conv_lim !< z/L critical value for matching free convection limit [n/d]
real Rib_conv_lim !< Ri-bulk critical value for matching free convection limit [n/d]
real f_m_conv_lim !< stability function (momentum) value in free convection limit [n/d]
real f_h_conv_lim !< stability function (heat) value in free convection limit [n/d]
real psi_m, psi_h !< universal functions (momentum) & (heat) [n/d]
real phi_m, phi_h !< stability functions (momentum) & (heat) [n/d]
real Km !< eddy viscosity coeff. at h [m^2/s]
real Pr_t_inv !< invese Prandt number [n/d]
real Cm, Ct !< transfer coeff. for (momentum) & (heat) [n/d]
#ifdef SFX_CHECK_NAN
real NaN
#endif
! ----------------------------------------------------------------------------
#ifdef SFX_CHECK_NAN
! --- checking if arguments are finite
if (.not.(is_finite(meteo%U).and.is_finite(meteo%Tsemi).and.is_finite(meteo%dT).and.is_finite(meteo%dQ) &
.and.is_finite(meteo%z0_m).and.is_finite(meteo%h))) then
NaN = ieee_value(0.0, ieee_quiet_nan) ! setting NaN
sfx = sfxDataType(zeta = NaN, Rib = NaN, &
Re = NaN, B = NaN, z0_m = NaN, z0_t = NaN, &
Rib_conv_lim = NaN, &
Cm = NaN, Ct = NaN, Km = NaN, Pr_t_inv = NaN)
return
end if
#endif
! --- shadowing names for clarity
U = meteo%U
Tsemi = meteo%Tsemi
dT = meteo%dT
dQ = meteo%dQ
h = meteo%h

Виктория Суязова
committed
depth = meteo%depth
lai = meteo%lai
surface_type=meteo%surface_type

Виктория Суязова
committed
call get_dynamic_roughness_definition(surface_type, ocean_z0m_id, land_z0m_id, lake_z0m_id, snow_z0m_id, &
forest_z0m_id, usersf_z0m_id, ice_z0m_id, z0m_id)

Виктория Суязова
committed
call get_dynamic_roughness_all(z0_m, u_dyn0, U, depth, h, numerics%maxiters_charnock, z0_m1, z0m_id)

Виктория Суязова
committed
call get_thermal_roughness_definition(surface_type, ocean_z0t_id, land_z0t_id, lake_z0t_id, snow_z0t_id, &
forest_z0t_id, usersf_z0t_id, ice_z0t_id, z0t_id)

Виктория Суязова
committed

Виктория Суязова
committed
call get_thermal_roughness_all(z0_t, B, z0_m, Re, u_dyn0, lai, z0t_id)
! --- define relative height
h0_m = h / z0_m
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
! --- define relative height [thermal]
h0_t = h / z0_t
! --- define Ri-bulk
Rib = (g / Tsemi) * h * (dT + 0.61e0 * Tsemi * dQ) / U**2
! --- define free convection transition zeta = z/L value
call get_convection_lim(zeta_conv_lim, Rib_conv_lim, f_m_conv_lim, f_h_conv_lim, &
h0_m, h0_t, B)
! --- get the fluxes
! ----------------------------------------------------------------------------
if (Rib > 0.0) then
! --- stable stratification block
! --- restrict bulk Ri value
! *: note that this value is written to output
Rib = min(Rib, Rib_max)
call get_psi_stable(psi_m, psi_h, zeta, Rib, h0_m, h0_t, B)
fval = beta_m * zeta
phi_m = 1.0 + fval
phi_h = 1.0/Pr_t_0_inv + fval
else if (Rib < Rib_conv_lim) then
! --- strong instability block
call get_psi_convection(psi_m, psi_h, zeta, Rib, &
zeta_conv_lim, f_m_conv_lim, f_h_conv_lim, h0_m, h0_t, B, numerics%maxiters_convection)
fval = (zeta_conv_lim / zeta)**(1.0/3.0)
phi_m = fval / f_m_conv_lim
phi_h = fval / (Pr_t_0_inv * f_h_conv_lim)
else if (Rib > -0.001) then
! --- nearly neutral [-0.001, 0] block
call get_psi_neutral(psi_m, psi_h, h0_m, h0_t, B)
zeta = 0.0
phi_m = 1.0
phi_h = 1.0 / Pr_t_0_inv
else
! --- weak & semistrong instability block
call get_psi_semi_convection(psi_m, psi_h, zeta, Rib, h0_m, h0_t, B, numerics%maxiters_convection)
phi_m = (1.0 - alpha_m * zeta)**(-0.25)
phi_h = 1.0 / (Pr_t_0_inv * sqrt(1.0 - alpha_h_fix * zeta))
end if
! ----------------------------------------------------------------------------
! --- define transfer coeff. (momentum) & (heat)
Cm = kappa / psi_m
Ct = kappa / psi_h
! --- define eddy viscosity & inverse Prandtl number
Km = kappa * Cm * U * h / phi_m
Pr_t_inv = phi_m / phi_h
! --- setting output
sfx = sfxDataType(zeta = zeta, Rib = Rib, &
Re = Re, B = B, z0_m = z0_m, z0_t = z0_t, &
Rib_conv_lim = Rib_conv_lim, &
Cm = Cm, Ct = Ct, Km = Km, Pr_t_inv = Pr_t_inv)
end subroutine get_surface_fluxes
! --------------------------------------------------------------------------------
! convection universal functions shortcuts
! --------------------------------------------------------------------------------
function f_m_conv(zeta)
! ----------------------------------------------------------------------------
real :: f_m_conv
real, intent(in) :: zeta
! ----------------------------------------------------------------------------
f_m_conv = (1.0 - alpha_m * zeta)**0.25
end function f_m_conv
function f_h_conv(zeta)
! ----------------------------------------------------------------------------
real :: f_h_conv
real, intent(in) :: zeta
! ----------------------------------------------------------------------------
f_h_conv = (1.0 - alpha_h * zeta)**0.5
end function f_h_conv
! --------------------------------------------------------------------------------
! universal functions
! --------------------------------------------------------------------------------
subroutine get_psi_neutral(psi_m, psi_h, h0_m, h0_t, B)
!< @brief universal functions (momentum) & (heat): neutral case
! ----------------------------------------------------------------------------
real, intent(in) :: h0_m, h0_t !< = z/z0_m, z/z0_h
real, intent(in) :: B !< = log(z0_m / z0_h)
! ----------------------------------------------------------------------------
psi_m = log(h0_m)
psi_h = log(h0_t) / Pr_t_0_inv
!*: this looks redundant z0_t = z0_m in case |B| ~ 0
if (abs(B) < 1.0e-10) psi_h = psi_m / Pr_t_0_inv
end subroutine
subroutine get_psi_stable(psi_m, psi_h, zeta, Rib, h0_m, h0_t, B)
!< @brief universal functions (momentum) & (heat): stable case
! ----------------------------------------------------------------------------
real, intent(out) :: psi_m, psi_h !< universal functions [n/d]
real, intent(out) :: zeta !< = z/L [n/d]
real, intent(in) :: Rib !< bulk Richardson number [n/d]
real, intent(in) :: h0_m, h0_t !< = z/z0_m, z/z0_h [n/d]
real, intent(in) :: B !< = log(z0_m / z0_h) [n/d]
! ----------------------------------------------------------------------------
! --- local variables
real :: Rib_coeff
real :: psi0_m, psi0_h
real :: phi
real :: c
! ----------------------------------------------------------------------------
psi0_m = alog(h0_m)
psi0_h = B / psi0_m
Rib_coeff = beta_m * Rib
c = (psi0_h + 1.0) / Pr_t_0_inv - 2.0 * Rib_coeff
zeta = psi0_m * (sqrt(c**2 + 4.0 * Rib_coeff * (1.0 - Rib_coeff)) - c) / &
(2.0 * beta_m * (1.0 - Rib_coeff))
phi = beta_m * zeta
psi_m = psi0_m + phi
psi_h = (psi0_m + B) / Pr_t_0_inv + phi
end subroutine
subroutine get_psi_semi_convection(psi_m, psi_h, zeta, Rib, h0_m, h0_t, B, maxiters)
!< @brief universal functions (momentum) & (heat): semi-strong convection case
! ----------------------------------------------------------------------------
real, intent(out) :: psi_m, psi_h !< universal functions [n/d]
real, intent(out) :: zeta !< = z/L [n/d]
real, intent(in) :: Rib !< bulk Richardson number [n/d]
real, intent(in) :: h0_m, h0_t !< = z/z0_m, z/z0_h [n/d]
real, intent(in) :: B !< = log(z0_m / z0_h) [n/d]
integer, intent(in) :: maxiters !< maximum number of iterations
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
! --- local variables
real :: zeta0_m, zeta0_h
real :: f0_m, f0_h
real :: f_m, f_h
integer :: i
! ----------------------------------------------------------------------------
psi_m = log(h0_m)
psi_h = log(h0_t)
if (abs(B) < 1.0e-10) psi_h = psi_m
zeta = Rib * Pr_t_0_inv * psi_m**2 / psi_h
do i = 1, maxiters + 1
zeta0_m = zeta / h0_m
zeta0_h = zeta / h0_t
if (abs(B) < 1.0e-10) zeta0_h = zeta0_m
f_m = (1.0 - alpha_m * zeta)**0.25e0
f_h = sqrt(1.0 - alpha_h_fix * zeta)
f0_m = (1.0 - alpha_m * zeta0_m)**0.25e0
f0_h = sqrt(1.0 - alpha_h_fix * zeta0_h)
f0_m = max(f0_m, 1.000001e0)
f0_h = max(f0_h, 1.000001e0)
psi_m = log((f_m - 1.0e0)*(f0_m + 1.0e0)/((f_m + 1.0e0)*(f0_m - 1.0e0))) + 2.0e0*(atan(f_m) - atan(f0_m))
psi_h = log((f_h - 1.0e0)*(f0_h + 1.0e0)/((f_h + 1.0e0)*(f0_h - 1.0e0))) / Pr_t_0_inv
! *: don't update zeta = z/L at last iteration
if (i == maxiters + 1) exit
zeta = Rib * psi_m**2 / psi_h
end do
end subroutine
subroutine get_psi_convection(psi_m, psi_h, zeta, Rib, &
zeta_conv_lim, f_m_conv_lim, f_h_conv_lim, &
h0_m, h0_t, B, maxiters)
!< @brief universal functions (momentum) & (heat): fully convective case
! ----------------------------------------------------------------------------
real, intent(out) :: psi_m, psi_h !< universal functions [n/d]
real, intent(out) :: zeta !< = z/L [n/d]
real, intent(in) :: Rib !< bulk Richardson number [n/d]
real, intent(in) :: h0_m, h0_t !< = z/z0_m, z/z0_h [n/d]
real, intent(in) :: B !< = log(z0_m / z0_h) [n/d]
integer, intent(in) :: maxiters !< maximum number of iterations
real, intent(in) :: zeta_conv_lim !< convective limit zeta
real, intent(in) :: f_m_conv_lim, f_h_conv_lim !< universal function shortcuts in limiting case
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
! ----------------------------------------------------------------------------
! --- local variables
real :: zeta0_m, zeta0_h
real :: f0_m, f0_h
real :: p_m, p_h
real :: a_m, a_h
real :: c_lim, f
integer :: i
! ----------------------------------------------------------------------------
p_m = 2.0 * atan(f_m_conv_lim) + log((f_m_conv_lim - 1.0) / (f_m_conv_lim + 1.0))
p_h = log((f_h_conv_lim - 1.0) / (f_h_conv_lim + 1.0))
zeta = zeta_conv_lim
do i = 1, maxiters + 1
zeta0_m = zeta / h0_m
zeta0_h = zeta / h0_t
if (abs(B) < 1.0e-10) zeta0_h = zeta0_m
f0_m = (1.0 - alpha_m * zeta0_m)**0.25
f0_h = sqrt(1.0 - alpha_h_fix * zeta0_h)
a_m = -2.0*atan(f0_m) + log((f0_m + 1.0)/(f0_m - 1.0))
a_h = log((f0_h + 1.0)/(f0_h - 1.0))
c_lim = (zeta_conv_lim / zeta)**(1.0 / 3.0)
f = 3.0 * (1.0 - c_lim)
psi_m = f / f_m_conv_lim + p_m + a_m
psi_h = (f / f_h_conv_lim + p_h + a_h) / Pr_t_0_inv
! *: don't update zeta = z/L at last iteration
if (i == maxiters + 1) exit
zeta = Rib * psi_m**2 / psi_h
end do
end subroutine
! --------------------------------------------------------------------------------
! convection limit definition
! --------------------------------------------------------------------------------
subroutine get_convection_lim(zeta_lim, Rib_lim, f_m_lim, f_h_lim, &
h0_m, h0_t, B)
! ----------------------------------------------------------------------------
real, intent(out) :: zeta_lim !< limiting value of z/L
real, intent(out) :: Rib_lim !< limiting value of Ri-bulk
real, intent(out) :: f_m_lim, f_h_lim !< limiting values of universal functions shortcuts
real, intent(in) :: h0_m, h0_t !< = z/z0_m, z/z0_h [n/d]
real, intent(in) :: B !< = log(z0_m / z0_h) [n/d]
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
! ----------------------------------------------------------------------------
! --- local variables
real :: psi_m, psi_h
real :: f_m, f_h
real :: c
! ----------------------------------------------------------------------------
! --- define limiting value of zeta = z / L
c = (Pr_t_inf_inv / Pr_t_0_inv)**4
zeta_lim = (2.0 * alpha_h - c * alpha_m - &
sqrt((c * alpha_m)**2 + 4.0 * c * alpha_h * (alpha_h - alpha_m))) / (2.0 * alpha_h**2)
f_m_lim = f_m_conv(zeta_lim)
f_h_lim = f_h_conv(zeta_lim)
! --- universal functions
f_m = zeta_lim / h0_m
f_h = zeta_lim / h0_t
if (abs(B) < 1.0e-10) f_h = f_m
f_m = (1.0 - alpha_m * f_m)**0.25
f_h = sqrt(1.0 - alpha_h_fix * f_h)
psi_m = 2.0 * (atan(f_m_lim) - atan(f_m)) + alog((f_m_lim - 1.0) * (f_m + 1.0)/((f_m_lim + 1.0) * (f_m - 1.0)))
psi_h = alog((f_h_lim - 1.0) * (f_h + 1.0)/((f_h_lim + 1.0) * (f_h - 1.0))) / Pr_t_0_inv
! --- bulk Richardson number
Rib_lim = zeta_lim * psi_h / (psi_m * psi_m)
end subroutine
! --------------------------------------------------------------------------------
end module sfx_esm