Newer
Older
module sfx_esm
!> @brief main Earth System Model surface flux module
! modules used
! --------------------------------------------------------------------------------
#ifdef SFX_CHECK_NAN
use sfx_common
#endif

Evgeny Mortikov
committed
use sfx_data
use sfx_roughness
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
use sfx_esm_param
! --------------------------------------------------------------------------------
! directives list
! --------------------------------------------------------------------------------
implicit none
private
! --------------------------------------------------------------------------------
! public interface
! --------------------------------------------------------------------------------
public :: get_surface_fluxes
public :: get_surface_fluxes_vec
! --------------------------------------------------------------------------------
! --------------------------------------------------------------------------------
type, public :: numericsType
integer :: maxiters_convection = 10 !> maximum (actual) number of iterations in convection
integer :: maxiters_charnock = 10 !> maximum (actual) number of iterations in charnock roughness
end type
! --------------------------------------------------------------------------------
contains
! --------------------------------------------------------------------------------
subroutine get_surface_fluxes_vec(sfx, meteo, numerics, n)
!> @brief surface flux calculation for array data
!> @details contains C/C++ & CUDA interface
! ----------------------------------------------------------------------------
type (sfxDataVecType), intent(inout) :: sfx
type (meteoDataVecType), intent(in) :: meteo
type (numericsType), intent(in) :: numerics
integer, intent(in) :: n
! ----------------------------------------------------------------------------
! --- local variables
type (meteoDataType) meteo_cell
type (sfxDataType) sfx_cell
integer i
! ----------------------------------------------------------------------------
do i = 1, n
#ifdef SFX_FORCE_DEPRECATED_CODE
#else
meteo_cell = meteoDataType(&
h = meteo%h(i), &
U = meteo%U(i), dT = meteo%dT(i), Tsemi = meteo%Tsemi(i), dQ = meteo%dQ(i), &
z0_m = meteo%z0_m(i))
call get_surface_fluxes(sfx_cell, meteo_cell, numerics)
call push_sfx_data(sfx, sfx_cell, i)
#endif
end do
end subroutine get_surface_fluxes_vec
! --------------------------------------------------------------------------------
! --------------------------------------------------------------------------------
subroutine get_surface_fluxes(sfx, meteo, numerics)
!> @brief surface flux calculation for single cell
!> @details contains C/C++ interface
! ----------------------------------------------------------------------------
#ifdef SFX_CHECK_NAN
use ieee_arithmetic
#endif
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
type (sfxDataType), intent(out) :: sfx
type (meteoDataType), intent(in) :: meteo
type (numericsType), intent(in) :: numerics
! ----------------------------------------------------------------------------
! --- meteo derived datatype name shadowing
! ----------------------------------------------------------------------------
real :: h !> constant flux layer height [m]
real :: U !> abs(wind speed) at 'h' [m/s]
real :: dT !> difference between potential temperature at 'h' and at surface [K]
real :: Tsemi !> semi-sum of potential temperature at 'h' and at surface [K]
real :: dQ !> difference between humidity at 'h' and at surface [g/g]
real :: z0_m !> surface aerodynamic roughness (should be < 0 for water bodies surface)
! ----------------------------------------------------------------------------
! --- local variables
! ----------------------------------------------------------------------------
real z0_t !> thermal roughness [m]
real B !> = ln(z0_m / z0_t) [n/d]
real h0_m, h0_t !> = h / z0_m, h / z0_h [n/d]
real u_dyn0 !> dynamic velocity in neutral conditions [m/s]
real Re !> roughness Reynolds number = u_dyn0 * z0_m / nu [n/d]
real zeta !> = z/L [n/d]
real Rib !> bulk Richardson number
real zeta_conv_lim !> z/L critical value for matching free convection limit [n/d]
real Rib_conv_lim !> Ri-bulk critical value for matching free convection limit [n/d]
real f_m_conv_lim !> stability function (momentum) value in free convection limit [n/d]
real f_h_conv_lim !> stability function (heat) value in free convection limit [n/d]
real psi_m, psi_h !> universal functions (momentum) & (heat) [n/d]
real phi_m, phi_h !> stability functions (momentum) & (heat) [n/d]
real Km !> eddy viscosity coeff. at h [m^2/s]
real Pr_t_inv !> invese Prandt number [n/d]
real Cm, Ct !> transfer coeff. for (momentum) & (heat) [n/d]
integer surface_type !> surface type = (ocean || land)
real fval !> just a shortcut for partial calculations
#ifdef SFX_CHECK_NAN
real NaN
#endif
! ----------------------------------------------------------------------------
#ifdef SFX_CHECK_NAN
! --- checking if arguments are finite
if (.not.(is_finite(meteo%U).and.is_finite(meteo%Tsemi).and.is_finite(meteo%dT).and.is_finite(meteo%dQ) &
.and.is_finite(meteo%z0_m).and.is_finite(meteo%h))) then
NaN = ieee_value(0.0, ieee_quiet_nan) ! setting NaN
sfx = sfxDataType(zeta = NaN, Rib = NaN, &
Re = NaN, B = NaN, z0_m = NaN, z0_t = NaN, &
Rib_conv_lim = NaN, &
Cm = NaN, Ct = NaN, Km = NaN, Pr_t_inv = NaN)
return
end if
#endif
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
! --- shadowing names for clarity
U = meteo%U
Tsemi = meteo%Tsemi
dT = meteo%dT
dQ = meteo%dQ
h = meteo%h
z0_m = meteo%z0_m
! --- define surface type
if (z0_m < 0.0) then
surface_type = surface_ocean
else
surface_type = surface_land
end if
if (surface_type == surface_ocean) then
! --- define surface roughness [momentum] & dynamic velocity in neutral conditions
call get_charnock_roughness(z0_m, u_dyn0, U, h, numerics%maxiters_charnock)
! --- define relative height
h0_m = h / z0_m
endif
if (surface_type == surface_land) then
! --- define relative height
h0_m = h / z0_m
! --- define dynamic velocity in neutral conditions
u_dyn0 = U * kappa / log(h0_m)
end if
! --- define B = log(z0_m / z0_h)
Re = u_dyn0 * z0_m / nu_air
if(Re <= Re_rough_min) then
B = B1_rough * alog(B3_rough * Re) + B2_rough
else
! *: B4 takes into account Re value at z' ~ O(10) z0
B = B4_rough * (Re**B2_rough)
end if
! --- apply max restriction based on surface type
if (surface_type == surface_ocean) then
B = min(B, B_max_ocean)
endif
if (surface_type == surface_land) then
B = min(B, B_max_land)
end if
! --- define roughness [thermal]
z0_t = z0_m / exp(B)
! --- define relative height [thermal]
h0_t = h / z0_t
! --- define Ri-bulk
Rib = (g / Tsemi) * h * (dT + 0.61e0 * Tsemi * dQ) / U**2
! --- define free convection transition zeta = z/L value
call get_convection_lim(zeta_conv_lim, Rib_conv_lim, f_m_conv_lim, f_h_conv_lim, &
h0_m, h0_t, B)
! --- get the fluxes
! ----------------------------------------------------------------------------
if (Rib > 0.0) then
! --- stable stratification block
! --- restrict bulk Ri value
! *: note that this value is written to output
Rib = min(Rib, Rib_max)
call get_psi_stable(psi_m, psi_h, zeta, Rib, h0_m, h0_t, B)
fval = beta_m * zeta
phi_m = 1.0 + fval
phi_h = 1.0/Pr_t_0_inv + fval
else if (Rib < Rib_conv_lim) then
! --- strong instability block
call get_psi_convection(psi_m, psi_h, zeta, Rib, &
zeta_conv_lim, f_m_conv_lim, f_h_conv_lim, h0_m, h0_t, B, numerics%maxiters_convection)
fval = (zeta_conv_lim / zeta)**(1.0/3.0)
phi_m = fval / f_m_conv_lim
phi_h = fval / (Pr_t_0_inv * f_h_conv_lim)
else if (Rib > -0.001) then
! --- nearly neutral [-0.001, 0] block
call get_psi_neutral(psi_m, psi_h, zeta, h0_m, h0_t, B)
phi_m = 1.0
phi_h = 1.0 / Pr_t_0_inv
else
! --- weak & semistrong instability block
call get_psi_semi_convection(psi_m, psi_h, zeta, Rib, h0_m, h0_t, B, numerics%maxiters_convection)
phi_m = (1.0 - alpha_m * zeta)**(-0.25)
phi_h = 1.0 / (Pr_t_0_inv * sqrt(1.0 - alpha_h_fix * zeta))
end if
! ----------------------------------------------------------------------------
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
! --- define transfer coeff. (momentum) & (heat)
Cm = kappa / psi_m
Ct = kappa / psi_h
! --- define eddy viscosity & inverse Prandtl number
Km = kappa * Cm * U * h / phi_m
Pr_t_inv = phi_m / phi_h
! --- setting output
sfx = sfxDataType(zeta = zeta, Rib = Rib, &
Re = Re, B = B, z0_m = z0_m, z0_t = z0_t, &
Rib_conv_lim = Rib_conv_lim, &
Cm = Cm, Ct = Ct, Km = Km, Pr_t_inv = Pr_t_inv)
end subroutine get_surface_fluxes
! --------------------------------------------------------------------------------
! convection universal functions shortcuts
! --------------------------------------------------------------------------------
function f_m_conv(zeta)
! ----------------------------------------------------------------------------
real :: f_m_conv
real, intent(in) :: zeta
! ----------------------------------------------------------------------------
f_m_conv = (1.0 - alpha_m * zeta)**0.25
end function f_m_conv
function f_h_conv(zeta)
! ----------------------------------------------------------------------------
real :: f_h_conv
real, intent(in) :: zeta
! ----------------------------------------------------------------------------
f_h_conv = (1.0 - alpha_h * zeta)**0.5
end function f_h_conv
! --------------------------------------------------------------------------------
! universal functions
! --------------------------------------------------------------------------------
subroutine get_psi_neutral(psi_m, psi_h, zeta, h0_m, h0_t, B)
!> @brief universal functions (momentum) & (heat): neutral case
! ----------------------------------------------------------------------------
real, intent(out) :: psi_m, psi_h !> universal functions
real, intent(out) :: zeta !> = z/L
real, intent(in) :: h0_m, h0_t !> = z/z0_m, z/z0_h
real, intent(in) :: B !> = log(z0_m / z0_h)
! ----------------------------------------------------------------------------
zeta = 0.0
psi_m = log(h0_m)
psi_h = log(h0_t) / Pr_t_0_inv
if (abs(B) < 1.0e-10) psi_h = psi_m / Pr_t_0_inv
end subroutine
subroutine get_psi_stable(psi_m, psi_h, zeta, Rib, h0_m, h0_t, B)
!> @brief universal functions (momentum) & (heat): stable case
! ----------------------------------------------------------------------------
real, intent(out) :: psi_m, psi_h !> universal functions [n/d]
real, intent(out) :: zeta !> = z/L [n/d]
real, intent(in) :: Rib !> bulk Richardson number [n/d]
real, intent(in) :: h0_m, h0_t !> = z/z0_m, z/z0_h [n/d]
real, intent(in) :: B !> = log(z0_m / z0_h) [n/d]
! ----------------------------------------------------------------------------
! --- local variables
real :: Rib_coeff
real :: psi0_m, psi0_h
real :: phi
real :: c
! ----------------------------------------------------------------------------
psi0_m = alog(h0_m)
psi0_h = B / psi0_m
Rib_coeff = beta_m * Rib
c = (psi0_h + 1.0) / Pr_t_0_inv - 2.0 * Rib_coeff
zeta = psi0_m * (sqrt(c**2 + 4.0 * Rib_coeff * (1.0 - Rib_coeff)) - c) / &
(2.0 * beta_m * (1.0 - Rib_coeff))
phi = beta_m * zeta
psi_m = psi0_m + phi
psi_h = (psi0_m + B) / Pr_t_0_inv + phi
end subroutine
subroutine get_psi_semi_convection(psi_m, psi_h, zeta, Rib, h0_m, h0_t, B, maxiters)
!> @brief universal functions (momentum) & (heat): semi-strong convection case
! ----------------------------------------------------------------------------
real, intent(out) :: psi_m, psi_h !> universal functions [n/d]
real, intent(out) :: zeta !> = z/L [n/d]
real, intent(in) :: Rib !> bulk Richardson number [n/d]
real, intent(in) :: h0_m, h0_t !> = z/z0_m, z/z0_h [n/d]
real, intent(in) :: B !> = log(z0_m / z0_h) [n/d]
integer, intent(in) :: maxiters !> maximum number of iterations
! --- local variables
real :: zeta0_m, zeta0_h
real :: f0_m, f0_h
real :: f_m, f_h
integer :: i
! ----------------------------------------------------------------------------
psi_m = log(h0_m)
psi_h = log(h0_t)
if (abs(B) < 1.0e-10) psi_h = psi_m
zeta = Rib * Pr_t_0_inv * psi_m**2 / psi_h
do i = 1, maxiters + 1
zeta0_m = zeta / h0_m
zeta0_h = zeta / h0_t
if (abs(B) < 1.0e-10) zeta0_h = zeta0_m
f_m = (1.0 - alpha_m * zeta)**0.25e0
f_h = sqrt(1.0 - alpha_h_fix * zeta)
f0_m = (1.0 - alpha_m * zeta0_m)**0.25e0
f0_h = sqrt(1.0 - alpha_h_fix * zeta0_h)
f0_m = max(f0_m, 1.000001e0)
f0_h = max(f0_h, 1.000001e0)
psi_m = log((f_m - 1.0e0)*(f0_m + 1.0e0)/((f_m + 1.0e0)*(f0_m - 1.0e0))) + 2.0e0*(atan(f_m) - atan(f0_m))
psi_h = log((f_h - 1.0e0)*(f0_h + 1.0e0)/((f_h + 1.0e0)*(f0_h - 1.0e0))) / Pr_t_0_inv
! *: don't update zeta = z/L at last iteration
if (i == maxiters + 1) exit
zeta = Rib * psi_m**2 / psi_h
end do
end subroutine
subroutine get_psi_convection(psi_m, psi_h, zeta, Rib, &
zeta_conv_lim, f_m_conv_lim, f_h_conv_lim, &
h0_m, h0_t, B, maxiters)
!> @brief universal functions (momentum) & (heat): fully convective case
! ----------------------------------------------------------------------------
real, intent(out) :: psi_m, psi_h !> universal functions [n/d]
real, intent(out) :: zeta !> = z/L [n/d]
real, intent(in) :: Rib !> bulk Richardson number [n/d]
real, intent(in) :: h0_m, h0_t !> = z/z0_m, z/z0_h [n/d]
real, intent(in) :: B !> = log(z0_m / z0_h) [n/d]
integer, intent(in) :: maxiters !> maximum number of iterations
real, intent(in) :: zeta_conv_lim !> convective limit zeta
real, intent(in) :: f_m_conv_lim, f_h_conv_lim !> universal function shortcuts in limiting case
! ----------------------------------------------------------------------------
! --- local variables
real :: zeta0_m, zeta0_h
real :: f0_m, f0_h
real :: p_m, p_h
real :: a_m, a_h
real :: c_lim, f
integer :: i
! ----------------------------------------------------------------------------
p_m = 2.0 * atan(f_m_conv_lim) + log((f_m_conv_lim - 1.0) / (f_m_conv_lim + 1.0))
p_h = log((f_h_conv_lim - 1.0) / (f_h_conv_lim + 1.0))
zeta = zeta_conv_lim
do i = 1, maxiters + 1
zeta0_m = zeta / h0_m
zeta0_h = zeta / h0_t
if (abs(B) < 1.0e-10) zeta0_h = zeta0_m
f0_m = (1.0 - alpha_m * zeta0_m)**0.25
f0_h = sqrt(1.0 - alpha_h_fix * zeta0_h)
a_m = -2.0*atan(f0_m) + log((f0_m + 1.0)/(f0_m - 1.0))
a_h = log((f0_h + 1.0)/(f0_h - 1.0))
c_lim = (zeta_conv_lim / zeta)**(1.0 / 3.0)
f = 3.0 * (1.0 - c_lim)
psi_m = f / f_m_conv_lim + p_m + a_m
psi_h = (f / f_h_conv_lim + p_h + a_h) / Pr_t_0_inv
! *: don't update zeta = z/L at last iteration
if (i == maxiters + 1) exit
zeta = Rib * psi_m**2 / psi_h
end do
end subroutine
! --------------------------------------------------------------------------------
! convection limit definition
! --------------------------------------------------------------------------------
subroutine get_convection_lim(zeta_lim, Rib_lim, f_m_lim, f_h_lim, &
h0_m, h0_t, B)
! ----------------------------------------------------------------------------
real, intent(out) :: zeta_lim !> limiting value of z/L
real, intent(out) :: Rib_lim !> limiting value of Ri-bulk
real, intent(out) :: f_m_lim, f_h_lim !> limiting values of universal functions shortcuts
real, intent(in) :: h0_m, h0_t !> = z/z0_m, z/z0_h [n/d]
real, intent(in) :: B !> = log(z0_m / z0_h) [n/d]
! ----------------------------------------------------------------------------
! --- local variables
real :: psi_m, psi_h
real :: f_m, f_h
real :: c
! ----------------------------------------------------------------------------
! --- define limiting value of zeta = z / L
c = (Pr_t_inf_inv / Pr_t_0_inv)**4
zeta_lim = (2.0 * alpha_h - c * alpha_m - &
sqrt((c * alpha_m)**2 + 4.0 * c * alpha_h * (alpha_h - alpha_m))) / (2.0 * alpha_h**2)
f_m_lim = f_m_conv(zeta_lim)
f_h_lim = f_h_conv(zeta_lim)
! --- universal functions
f_m = zeta_lim / h0_m
f_h = zeta_lim / h0_t
if (abs(B) < 1.0e-10) f_h = f_m
f_m = (1.0 - alpha_m * f_m)**0.25
f_h = sqrt(1.0 - alpha_h_fix * f_h)
psi_m = 2.0 * (atan(f_m_lim) - atan(f_m)) + alog((f_m_lim - 1.0) * (f_m + 1.0)/((f_m_lim + 1.0) * (f_m - 1.0)))
psi_h = alog((f_h_lim - 1.0) * (f_h + 1.0)/((f_h_lim + 1.0) * (f_h - 1.0))) / Pr_t_0_inv
! --- bulk Richardson number
Rib_lim = zeta_lim * psi_h / (psi_m * psi_m)
end subroutine
! --------------------------------------------------------------------------------
end module sfx_esm