Newer
Older
import numpy as np
import matplotlib.pyplot as plt
import os
import sys
import shutil
import natsort
import imageio
from .ProcData import ProcData
import copy
class Plotter:
ani_pngs_dir = "plotter_lib_pngs/"
def __init__(self):
self.filename = None
self.out = None
self.oname = None
self.var = None
self.mval = None
self.function = None
self.file_column_names = None
self.file_data = None
self.plt_max_val = None
self.plt_min_val = None
self.min_y = None
self.max_y = None
self.min_max_var_vals = None
def __check_arg_dim_equiv(self, args):
if args.var != None and args.mval != None:
if len(args.var) != len(args.mval):
print("The count of var assumed to be equal to the count of mval")
sys.exit(-1)
def __get_variable_names(self):
var_names = []
names = d.variable_names
var_names.append(np.array(names, dtype=object))
if(len(var_names) > 1):
for i in range(1, len(var_names)):
if np.equal(var_names[0], var_names[i]).any() != True:
print("All files must have the same variable names")
sys.exit(-1)
elif len(var_names) == 0:
print("Undefined variable names")
sys.exit(-1)
def set(self, args, **kwargs):
self.__check_arg_dim_equiv(args)
self.filename = args.filename
self.out = args.out
self.oname = args.oname
self.var = args.var
self.mval = args.mval
self.function = args.func
self.title = args.title
self.min_y = args.min_y
self.max_y = args.max_y
self.plane_type = args.plane_type
self.slice_position = args.slice_position
if args.levels != None:
self.levels = args.levels
else:
self.levels = 25
self.if_manual_plot = kwargs.get('if_manual_plot', False)
self.if_save_result = kwargs.get('if_save_result', True)
pData = []
for fname in self.filename:
p = ProcData(fname)
p.get_variable_names()
pData.append(p)
if args.func == self.plot or args.func == self.ani_plot or args.func == self.multiple_plot:
elif args.func == self.plot_contour or args.func == self.ani_plot_contour:
if self.var == None and len(self.file_column_names) != 0:
self.var = [self.file_column_names[i] for i in range(self.ndim, len(self.file_column_names))]
p.process_file(self.ndim, self.var, self.mval)
self.fig_count = len(self.var)
if self.oname == None:
fig_names = self.var
fig_end = ".png"
else:
fig_names = self.oname
fig_end = ""
for i in range(self.fig_count):
y_name = self.var[i]
fig = plt.figure()
plt.plot(self.file_data[0].data[x_name], self.file_data[0].data[y_name], linewidth=4)
plt.xlabel(x_name, fontsize=10, fontweight='bold')
plt.ylabel(y_name, fontsize=10, fontweight='bold')
if self.if_manual_plot: plt.show()
else: plt.close(fig)
if self.if_save_result: fig.savefig(self.out + fig_names[i] + fig_end)
def __multiple_plot(self):
os.system("mkdir -p " + self.out)
x_name = self.file_column_names[0]
if self.oname == None:
fig_names = self.var
fig_end = ".png"
else:
fig_names = self.oname
fig_end = ""
for i in range(self.fig_count):
y_name = self.var[i]
fig = plt.figure()
for read_data in self.file_data:
plt.plot(read_data.data[x_name], read_data.data[y_name], linewidth=4)
plt.legend(self.filename)
plt.xlabel(x_name, fontsize=10, fontweight='bold')
plt.ylabel(y_name, fontsize=10, fontweight='bold')
if self.if_manual_plot: plt.show()
else: plt.close(fig)
if self.if_save_result: fig.savefig(self.out + fig_names[i] + fig_end)
def __get_min_max_ax(self):
min_max_var_vals = {var : [] for var in self.var}
for var in self.var:
max_val = np.nanmax(self.file_data[0].data[var])
min_val = np.nanmin(self.file_data[0].data[var])
maval = np.nanmax(data.data[var])
mival = np.nanmin(data.data[var])
if maval > max_val:
max_val = maval
if mival < min_val:
min_val = mival
min_max_var_vals[var] = np.array([min_val, max_val])
max_vals = np.array([min_max_var_vals[var][1] for var in self.var])
min_vals = np.array([min_max_var_vals[var][0] for var in self.var])
max_val = np.max(max_vals)
min_val = np.min(min_vals)
self.min_max_var_vals = np.array([min_val, max_val])
def __ani_plot(self):
if self.if_save_result:
png_names = []
os.system("mkdir -p " + self.out)
os.system("mkdir -p " + self.ani_pngs_dir)
names = natsort.natsorted(self.filename,reverse=False)
if self.max_y == None:
max_val = self.min_max_var_vals[1]
else:
max_val = self.max_y[0]
if self.min_y == None:
min_val = self.min_max_var_vals[0]
else:
min_val = self.min_y[0]
for y_name in self.var:
plt.plot(self.file_data[data_i].data[x_name], self.file_data[data_i].data[y_name], linewidth=4)
plt.legend(self.var)
plt.xlabel(x_name, fontsize=10, fontweight='bold')
figname = os.path.basename(datafile)
plt.close(fig)
fig.savefig(self.ani_pngs_dir + figname.split('.')[0] + '.png')
name = self.ani_pngs_dir + figname.split('.')[0] + '.png'
png_names.append(name)
data_i = data_i + 1
images = []
for file_name in png_names:
images.append(imageio.v2.imread(file_name))
# imageio.mimsave(self.oname[0], images, fps = 5, loop = 0) , duration = 0.04
imageio.mimsave(self.oname[0], images, duration = 0.25, loop = 0)
shutil.rmtree(self.ani_pngs_dir)
def __plot_contour(self):
os.system("mkdir -p " + self.out)
x_name = self.file_column_names[0]
y_name = self.file_column_names[1]
if self.oname == None:
fig_names = self.var
fig_end = ".png"
else:
fig_names = self.oname
fig_end = ""
if self.max_y == None:
max_val = {var:self.min_max_var_vals[var][1] for var in self.var}
else:
max_val = {var:self.max_y[i] for var, i in zip(self.var, list(range(len(self.var))))}
if self.min_y == None:
min_val = {var:self.min_max_var_vals[var][0] for var in self.var}
else:
min_val = {var:self.min_y[i] for var, i in zip(self.var, list(range(len(self.var))))}
if self.title == None:
title = self.var[i]
else:
title = self.title
X = self.file_data[0].data[x_name]
Y = self.file_data[0].data[y_name]
Z = self.file_data[0].data[self.var[i]]
vmin = min_val[self.var[i]]; vmax = max_val[self.var[i]];
levels = np.linspace(vmin, vmax, self.levels)
cp = ax.contourf(X, Y, Z, vmin=vmin, vmax=vmax, levels=levels)
# fig.colorbar(ScalarMappable(norm=cp.norm, cmap=cp.cmap),ticks=range(min_val[self.var[i]], max_val[self.var[i]]))
fig.colorbar(cp) # Add a colorbar to a plot
ax.set_title(title)
ax.set_xlabel(x_name)
ax.set_ylabel(y_name)
if self.if_manual_plot: plt.show()
else: plt.close(fig)
if self.if_save_result: fig.savefig(self.out + fig_names[i] + fig_end)
def __get_min_max_bar(self):
self.filename = natsort.natsorted(self.filename,reverse=False)
self.min_max_var_vals = {var : [] for var in self.var}
max_val = np.nanmax(self.file_data[0].data[var])
min_val = np.nanmin(self.file_data[0].data[var])
maval = np.nanmax(data.data[var])
mival = np.nanmin(data.data[var])
if maval > max_val:
max_val = maval
if mival < min_val:
min_val = mival
self.min_max_var_vals[var] = np.array([min_val, max_val])
def __ani_plot_contour(self):
if self.if_save_result:
# png_names = {var:[] for var in self.var}
os.system("mkdir -p " + self.out)
os.system("mkdir -p " + self.ani_pngs_dir)
x_name = self.file_column_names[0]
y_name = self.file_column_names[1]
if self.oname == None:
fig_names = self.var
fig_end = ".gif"
else:
fig_names = self.oname
fig_end = ""
X = self.file_data[0].data[x_name]
Y = self.file_data[0].data[y_name]
if self.max_y == None:
max_val = {var:self.min_max_var_vals[var][1] for var in self.var}
else:
max_val = {var:self.max_y[i] for var, i in zip(self.var, list(range(len(self.var))))}
if self.min_y == None:
min_val = {var:self.min_max_var_vals[var][0] for var in self.var}
else:
min_val = {var:self.min_y[i] for var, i in zip(self.var, list(range(len(self.var))))}
if self.title == None:
title = var
else:
title = self.title
fig,ax=plt.subplots(1,1)
ax.set_title(title)
ax.set_xlabel(x_name)
ax.set_ylabel(y_name)
Z = data.data[var]
cp = ax.contourf(X, Y, Z, vmin=min_val[var], vmax=max_val[var], levels=levels)
fig.colorbar(cp) # Add a colorbar to a plot
plt.close(fig)
figname = var + str(counter)
fig.savefig(self.ani_pngs_dir + figname + '.png')
name = self.ani_pngs_dir + figname + '.png'
png_names.append(name)
counter += 1
images = []
for file_name in png_names:
images.append(imageio.v2.imread(file_name))
# imageio.mimsave(self.out + fig_names[i] + fig_end, images, fps = 5, loop=0)
imageio.mimsave(self.out + fig_names[i] + fig_end, images, duration = 0.25, loop=0)
# imageio.mimsave(self.oname[0], images, duration = 0.25, loop = 0)
def __avg(self, data, var_name):
cx = data['cx']
cy = data['cy']
cz = data['cz']
flat_matrix_data = np.zeros((cx * cy * cz))
flat_data = data[var_name].flatten()
for k in range(cz):
for j in range(cy):
for i in range(cx):
flat_matrix_data[k * cy * cx + j * cx + i] = flat_data[k * cy * cx + j * cx + i]
matrix_data = np.reshape(flat_matrix_data, (cx, cy, cz), order='F')
avg_data = np.average(matrix_data, axis=(1, 0))
return avg_data
def __avg_plot(self):
os.system("mkdir -p " + self.out)
fig = plt.figure()
x_name = self.file_column_names[2]
x = self.file_data[0].data[x_name]
for var in self.var:
avg_data = self.__avg(self.file_data[0].data, var)
plt.plot(x, avg_data, linewidth=4)
plt.legend(self.var)
plt.xlabel(x_name, fontsize=10, fontweight='bold')
if self.if_manual_plot: plt.show()
else: plt.close(fig)
if self.if_save_result: fig.savefig(self.out + self.oname[0])
def __dump(self):
for name in self.file_column_names:
if self.file_data[0].data[name].shape != self.file_data[1].data[name].shape:
print("Data dimensions do not match")
sys.exit(-1)
diff[name] = self.file_data[0].data[name] - self.file_data[1].data[name]
dim_variables = list(set(self.file_column_names) - set(self.var))
diffProcData = ProcData()
diffProcData.data = diff
basename0 = os.path.basename(self.filename[0])
basename1 = os.path.basename(self.filename[1])
self.title = str(basename0) + ' - ' + str(basename1)
if self.ndim == 1:
self.__get_min_max_ax()
elif self.ndim == 2:
self.__get_min_max_bar()
if self.ndim == 1:
self.__plot()
elif self.ndim == 2:
self.__plot_contour()
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
def __find_closest(self, arr, val):
idx = np.abs(arr - val).argmin()
return idx
def __slice(self):
os.system("mkdir -p " + self.out)
if self.plane_type == 'xy':
x_name = self.file_column_names[0]
y_name = self.file_column_names[1]
z_name = self.file_column_names[2]
arr = self.file_data[0].data[z_name]
pos = self.__find_closest(arr, self.slice_position)
elif self.plane_type == 'yz':
x_name = self.file_column_names[1]
y_name = self.file_column_names[2]
z_name = self.file_column_names[0]
arr = self.file_data[0].data[z_name]
pos = self.__find_closest(arr, self.slice_position)
elif self.plane_type == 'xz':
x_name = self.file_column_names[0]
y_name = self.file_column_names[2]
z_name = self.file_column_names[1]
arr = self.file_data[0].data[z_name]
pos = self.__find_closest(arr, self.slice_position)
if self.oname == None:
fig_names = self.var
fig_end = ".png"
else:
fig_names = self.oname
fig_end = ""
for i in range(self.fig_count):
fig,ax=plt.subplots(1,1)
if self.title == None:
title = self.var[i]
else:
title = self.title
if self.plane_type == 'xy':
Z = self.file_data[0].data[self.var[i]][pos, :, :]
elif self.plane_type == 'xz':
Z = self.file_data[0].data[self.var[i]][:, pos, :]
elif self.plane_type == 'yz':
Z = self.file_data[0].data[self.var[i]][:, :, pos]
X = self.file_data[0].data[x_name]
Y = self.file_data[0].data[y_name]
cp = ax.contourf(X, Y, Z)
fig.colorbar(cp) # Add a colorbar to a plot
ax.set_title(title)
ax.set_xlabel(x_name)
ax.set_ylabel(y_name)
if self.if_manual_plot: plt.show()
else: plt.close(fig)
if self.if_save_result: fig.savefig(self.out + fig_names[i] + fig_end)
self.__plot_contour()
def ani_plot_contour(self):
self.__get_min_max_bar()
return_data = [copy.deepcopy(data.data) for data in self.file_data]
return return_data
def multiple_plot(self):
self.__get_min_max_ax()