Newer
Older
import numpy as np
import matplotlib.pyplot as plt
import os
import sys
import shutil
import natsort
import imageio
from .ProcData import ProcData
import copy
class Plotter:
ani_pngs_dir = "plotter_lib_pngs/"
def __init__(self):
self.filename = None
self.out = None
self.oname = None
self.var = None
self.mval = None
self.function = None
self.file_column_names = None
self.file_data = None
self.plt_max_val = None
self.plt_min_val = None
self.min_y = None
self.max_y = None
self.min_max_var_vals = None
def __check_arg_dim_equiv(self, args):
if args.var != None and args.mval != None:
if len(args.var) != len(args.mval):
print("The count of var assumed to be equal to the count of mval")
sys.exit(-1)
def __get_variable_names(self):
var_names = []
names = d.variable_names
var_names.append(np.array(names, dtype=object))
if(len(var_names) > 1):
for i in range(1, len(var_names)):
if np.equal(var_names[0], var_names[i]).any() != True:
print("All files must have the same variable names")
sys.exit(-1)
elif len(var_names) == 0:
print("Undefined variable names")
sys.exit(-1)
def set(self, args, **kwargs):
self.__check_arg_dim_equiv(args)
self.filename = args.filename
self.out = args.out
self.oname = args.oname
self.var = args.var
self.mval = args.mval
self.function = args.func
self.title = args.title
self.min_y = args.min_y
self.max_y = args.max_y
self.if_manual_plot = kwargs.get('if_manual_plot', False)
self.if_save_result = kwargs.get('if_save_result', True)
pData = []
for fname in self.filename:
p = ProcData(fname)
p.get_variable_names()
pData.append(p)
self.__get_variable_names()
if args.func != self.dump:
if args.func == self.plot or args.func == self.ani_plot:
elif args.func == self.plot_contour or args.func == self.ani_plot_contour:
if self.var == None and len(self.file_column_names) != 0:
self.var = [self.file_column_names[i] for i in range(self.ndim, len(self.file_column_names))]
p.process_file(self.ndim, self.var, self.mval)
self.fig_count = len(self.var)
plt.plot(self.file_data[0].data[x_name], self.file_data[0].data[y_name], linewidth=4)
plt.legend(self.var)
plt.xlabel(x_name, fontsize=10, fontweight='bold')
if self.if_manual_plot: plt.show()
else: plt.close(fig)
if self.if_save_result: fig.savefig(self.out + self.oname[0])
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
def __get_min_max_ax(self):
min_max_var_vals = {var : [] for var in self.var}
i = 0
for var in self.var:
max_val = self.file_data[i].data[var][0]
min_val = self.file_data[i].data[var][0]
for data in self.file_data:
maval = np.max(data.data[var])
mival = np.min(data.data[var])
if maval > max_val:
max_val = maval
if mival < min_val:
min_val = mival
min_max_var_vals[var] = np.array([min_val, max_val])
i += 1
max_vals = np.array([min_max_var_vals[var][1] for var in self.var])
min_vals = np.array([min_max_var_vals[var][0] for var in self.var])
max_val = np.max(max_vals)
min_val = np.min(min_vals)
self.min_max_var_vals = np.array([min_val, max_val])
def __ani_plot(self):
if self.if_save_result:
png_names = []
os.system("mkdir -p " + self.out)
os.system("mkdir -p " + self.ani_pngs_dir)
names = natsort.natsorted(self.filename,reverse=False)
if self.max_y == None:
max_val = self.min_max_var_vals[1]
else:
max_val = self.max_y[0]
if self.min_y == None:
min_val = self.min_max_var_vals[0]
else:
min_val = self.min_y[0]
plt.plot(self.file_data[data_i].data[x_name], self.file_data[data_i].data[y_name], linewidth=4)
plt.legend(self.var)
plt.xlabel(x_name, fontsize=10, fontweight='bold')
figname = os.path.basename(datafile)
plt.close(fig)
fig.savefig(self.ani_pngs_dir + figname.split('.')[0] + '.png')
name = self.ani_pngs_dir + figname.split('.')[0] + '.png'
png_names.append(name)
data_i = data_i + 1
images = []
for file_name in png_names:
images.append(imageio.v2.imread(file_name))
imageio.mimsave(self.oname[0], images, duration=20, loop = 0)
shutil.rmtree(self.ani_pngs_dir)
def __plot_contour(self):
os.system("mkdir -p " + self.out)
x_name = self.file_column_names[0]
y_name = self.file_column_names[1]
if self.oname == None:
fig_names = self.var
fig_end = ".png"
else:
fig_names = self.oname
fig_end = ""
if self.max_y == None:
max_val = {var:self.min_max_var_vals[var][1] for var in self.var}
else:
max_val = {var:self.max_y[i] for var, i in zip(self.var, list(range(len(self.var))))}
if self.min_y == None:
min_val = {var:self.min_max_var_vals[var][0] for var in self.var}
else:
min_val = {var:self.min_y[i] for var, i in zip(self.var, list(range(len(self.var))))}
# print(min_val, max_val)
if self.title == None:
title = self.var[i]
else:
title = self.title
X = self.file_data[0].data[x_name]
Y = self.file_data[0].data[y_name]
Z = self.file_data[0].data[self.var[i]]
vmin = min_val[self.var[i]]; vmax = max_val[self.var[i]];
levels = np.linspace(vmin, vmax, 25)
cp = ax.contourf(X, Y, Z, vmin=vmin, vmax=vmax, levels=levels)
# fig.colorbar(ScalarMappable(norm=cp.norm, cmap=cp.cmap),ticks=range(min_val[self.var[i]], max_val[self.var[i]]))
fig.colorbar(cp) # Add a colorbar to a plot
ax.set_title(title)
ax.set_xlabel(x_name)
ax.set_ylabel(y_name)
if self.if_manual_plot: plt.show()
else: plt.close(fig)
if self.if_save_result: fig.savefig(self.out + fig_names[i] + fig_end)
def __get_min_max_bar(self):
self.filename = natsort.natsorted(self.filename,reverse=False)
self.min_max_var_vals = {var : [] for var in self.var}
max_val = self.file_data[i].data[var][0][0]
min_val = self.file_data[i].data[var][0][0]
maval = np.max(data.data[var])
mival = np.min(data.data[var])
if maval > max_val:
max_val = maval
if mival < min_val:
min_val = mival
self.min_max_var_vals[var] = np.array([min_val, max_val])
i += 1
def __ani_plot_contour(self):
if self.if_save_result:
# png_names = {var:[] for var in self.var}
os.system("mkdir -p " + self.out)
os.system("mkdir -p " + self.ani_pngs_dir)
x_name = self.file_column_names[0]
y_name = self.file_column_names[1]
if self.oname == None:
fig_names = self.var
fig_end = ".gif"
else:
fig_names = self.oname
fig_end = ""
X = self.file_data[0].data[x_name]
Y = self.file_data[0].data[y_name]
if self.max_y == None:
max_val = {var:self.min_max_var_vals[var][1] for var in self.var}
else:
max_val = {var:self.max_y[i] for var, i in zip(self.var, list(range(len(self.var))))}
if self.min_y == None:
min_val = {var:self.min_max_var_vals[var][0] for var in self.var}
else:
min_val = {var:self.min_y[i] for var, i in zip(self.var, list(range(len(self.var))))}
# print(max_val)
if self.title == None:
title = var
else:
title = self.title
fig,ax=plt.subplots(1,1)
ax.set_title(title)
ax.set_xlabel(x_name)
ax.set_ylabel(y_name)
Z = data.data[var]
cp = ax.contourf(X, Y, Z, vmin=min_val[var], vmax=max_val[var])
fig.colorbar(cp) # Add a colorbar to a plot
plt.close(fig)
figname = var + str(counter)
fig.savefig(self.ani_pngs_dir + figname + '.png')
name = self.ani_pngs_dir + figname + '.png'
png_names.append(name)
counter += 1
images = []
for file_name in png_names:
images.append(imageio.v2.imread(file_name))
imageio.mimsave(self.out + fig_names[i] + fig_end, images, duration = 5, )
i += 1
shutil.rmtree(self.ani_pngs_dir)
def __avg(self, data, var_name):
cx = data['cx']
cy = data['cy']
cz = data['cz']
flat_matrix_data = np.zeros((cx * cy * cz))
flat_data = data[var_name].flatten()
for k in range(cz):
for j in range(cy):
for i in range(cx):
flat_matrix_data[k * cy * cx + j * cx + i] = flat_data[k * cy * cx + j * cx + i]
matrix_data = np.reshape(flat_matrix_data, (cx, cy, cz), order='F')
avg_data = np.average(matrix_data, axis=(1, 0))
return avg_data
def __avg_plot(self):
os.system("mkdir -p " + self.out)
fig = plt.figure()
x_name = self.file_column_names[2]
x = self.file_data[0].data[x_name]
avg_data = self.__avg(self.file_data[0].data, var)
plt.plot(x, avg_data, linewidth=4)
plt.legend(self.var)
plt.xlabel(x_name, fontsize=10, fontweight='bold')
if self.if_manual_plot: plt.show()
else: plt.close(fig)
if self.if_save_result: fig.savefig(self.out + self.oname[0])
def __dump(self):
for name in self.file_column_names:
if self.file_data[0].data[name].shape != self.file_data[1].data[name].shape:
print("Data dimensions do not match")
sys.exit(-1)
diff[name] = self.file_data[0].data[name] - self.file_data[1].data[name]
dim_variables = list(set(self.file_column_names) - set(self.var))
diffProcData = ProcData()
diffProcData.data = diff
basename0 = os.path.basename(self.filename[0])
basename1 = os.path.basename(self.filename[1])
self.title = str(basename0) + ' - ' + str(basename1)
if self.ndim == 1:
self.__plot()
elif self.ndim == 2:
self.__plot_contour()
self.__ani_plot()
def avg_plot(self):
self.__avg_plot()
def plot_contour(self):
self.__plot_contour()
def ani_plot_contour(self):
self.__get_min_max_bar()
self.__plot_diff()
def get_data(self):
# filenames = [os.path.basename(name) for name in self.filename]
# return_data = {name : copy.deepcopy(data.data) for name, data in zip(filenames, self.file_data)}
return_data = [copy.deepcopy(data.data) for data in self.file_data]