Newer
Older
import json
from random import shuffle
import os
import sys
import numpy as np
#from scipy.stats import truncnorm, beta, uniform
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
SURFACE = 0
ROAD = -1
TREE = -2
ROAD_COLOR = (64, 61, 57)
SURFACE_COLOR = (96, 108, 56)
TREE_COLOR = (58, 90, 64)
def uniform_(low, upper):
return uniform(low, upper - low)
class Splitter:
def __init__(self, min_distance, min_block_width, rng):
self.min_distance = min_distance
self.min_block_width = min_block_width
self.rng = rng
self.split_distance = self.min_block_width * 2 + self.min_distance + 1
def gen(self, x1, y1, x2, y2):
self.blocks = []
self.gen_blocks(x1, y1, x2, y2)
return self.blocks
def gen_blocks(self, top_left_x, top_left_y, bottom_right_x, bottom_right_y):
width = bottom_right_x - top_left_x
height = bottom_right_y - top_left_y
if width > self.split_distance and height > self.split_distance:
split_x = self.rng.integers(top_left_x + self.min_block_width + 1, bottom_right_x - self.min_block_width - self.min_distance)
split_y = self.rng.integers(top_left_y + self.min_block_width + 1, bottom_right_y - self.min_block_width - self.min_distance)
self.gen_blocks(top_left_x, top_left_y, split_x, split_y)
self.gen_blocks(split_x + self.min_distance, top_left_y, bottom_right_x, split_y)
self.gen_blocks(top_left_x, split_y + self.min_distance, split_x, bottom_right_y)
self.gen_blocks(split_x + self.min_distance, split_y + self.min_distance, bottom_right_x, bottom_right_y)
elif width > self.split_distance and height >= self.min_block_width:
split_x = self.rng.integers(top_left_x + self.min_block_width + 1, bottom_right_x - self.min_block_width - self.min_distance)
self.gen_blocks(top_left_x, top_left_y, split_x, bottom_right_y)
self.gen_blocks(split_x + self.min_distance, top_left_y, bottom_right_x, bottom_right_y)
elif height > self.split_distance and width >= self.min_block_width:
split_y = self.rng.integers(top_left_y + self.min_block_width + 1, bottom_right_y - self.min_block_width - self.min_distance)
self.gen_blocks(top_left_x, top_left_y, bottom_right_x, split_y)
self.gen_blocks(top_left_x, split_y + self.min_distance, bottom_right_x, bottom_right_y)
else: # width <= self.split_width and height <= self.split_width:
self.blocks.append((top_left_x, top_left_y, bottom_right_x, bottom_right_y))
class LCZ:
def __init__(self, config_path='config.json', output_folder='.', seed=None):
self.rng = np.random.default_rng(seed)
self.config = self.load_config(config_path)
self.output_folder = output_folder
if not os.path.exists(output_folder):
os.mkdir(output_folder)
self.width = self.config['width']
self.height = self.config['height']
self.total_area = self.config['width'] * self.config['height']
self.config_building_area = self.total_area * self.config['building_surface_fraction']
self.mean_street_width = self.config['mean_height_of_roughness_elements'] / self.config['aspect_ratio'] # == ширина улицы, так как все улицы имеют одинаковую ширину
self.config_tree_area = self.total_area * self.config['pervious_surface_fraction']
self.min_building_height = self.config['min_building_height']
self.max_building_height = self.config['max_building_height']
self.possible_buildings = []
self.n_buildings = 0
self.real_building_area = 0
self.buildings = []
self.n_trees = 0
self.real_tree_area = 0
self.trees = []
self.building_heights = np.array([])
self.tree_heights = np.array([])
self.min_building_distance = max(int(self.mean_street_width), 1)
max_n_street = (self.total_area - self.config_building_area) / (self.mean_street_width * min(self.width, self.height)) - 1
self.min_building_width = 2 * (int(self.config_building_area / (min(self.width, self.height) * max_n_street))) # int((max(self.width, self.height) - max_n_street * self.mean_street_width) / max_n_street)
self.split_width = self.min_building_width * 2 + self.min_building_distance + 1
self.gen_buildings_v2()
def check_params(self):
real_mean_height = np.mean(self.building_heights)
real_std_height = np.std(self.building_heights)
real_max_building_height = np.max(self.building_heights)
real_min_building_height = np.min(self.building_heights)
real = f"""
generated LCZ params:
std of height of roughness elements: {real_std_height}
mean height of roughness elements: {real_mean_height}
max height of roughness elements: {real_max_building_height}
min height of roughness elements: {real_min_building_height}
aspect ratio: {real_mean_height / self.mean_street_width}
building surface fraction: {self.real_building_area / self.total_area}
"""
desired = f"""
desired LCZ params:
std of height of roughness elements: {self.config['standard_deviation_of_roughness_elements']}
mean height of roughness elements: {self.config['mean_height_of_roughness_elements']}
max height of roughness elements: {self.config['max_building_height']}
min height of roughness elements: {self.config['min_building_height']}
aspect ratio: {self.config['aspect_ratio']}
building surface fraction: {self.config['building_surface_fraction']}
"""
print(real)
print(desired)
def gen_building_heights(self):
self.building_heights = self.rng.uniform(self.min_building_height, self.max_building_height + 1, self.n_buildings)
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
def gen_buildings(self):
splitter = Splitter(self.min_building_distance, self.min_building_width, self.rng)
possible_buildings = splitter.gen(self.min_building_distance, self.min_building_distance, self.width - self.min_building_distance, self.height - self.min_building_distance)
shuffle(possible_buildings)
while self.real_building_area < self.config_building_area:
building = possible_buildings.pop()
self.buildings.append(building)
self.real_building_area += self.area(building)
self.n_buildings += 1
if not possible_buildings:
print("end of area for buildings")
break
self.gen_building_heights()
def gen_buildings_v2(self):
self.main_road = int((3/2) * self.min_building_distance)
self.road = 2 * self.min_building_distance - self.main_road
splitter_big = Splitter(self.main_road, self.width // 5, self.rng)
blocks = splitter_big.gen(self.min_building_distance, self.min_building_distance, self.width - self.min_building_distance, self.height - self.min_building_distance)
splitter_small = Splitter(self.road, self.min_building_width, self.rng)
possible_buildings = []
for block in blocks:
possible_buildings += splitter_small.gen(*block)
shuffle(possible_buildings)
self.possible_buildings = possible_buildings[:]
while self.real_building_area < self.config_building_area:
building = possible_buildings.pop()
self.buildings.append(building)
self.real_building_area += self.area(building)
self.n_buildings += 1
if not possible_buildings:
print("end of area for buildings")
break
# while self.real_tree_area < self.config_tree_area:
# tree = possible_buildings.pop()
# self.trees.append(tree)
# self.real_tree_area += self.area(tree)
# self.n_trees += 1
# if not possible_buildings:
# print("end of area for trees")
# print(self.trees)
# break
self.gen_building_heights()
def area(self, bbox):
return (bbox[2] - bbox[0]) * (bbox[3] - bbox[1])
def add_building(self, lcz, bbox, height=2):
lcz[bbox[1]:bbox[3], bbox[0]:bbox[2]] = height
def add_tree(self, lcz, bbox, height=2):
dx, dy = (bbox[2] - bbox[0]) / 2, (bbox[3] - bbox[1]) / 2
r = min([dx, dy])
cx = bbox[0] + dx
cy = bbox[1] + dy
yy, xx = np.mgrid[:self.height, :self.width]
circle = (xx - cx) ** 2 + (yy - cy) ** 2 <= r ** 2
lcz[circle] = height
def load_config(self, config_path):
return json.load(open(config_path, 'r', encoding='utf-8'))
def put_buildings(self, lcz):
for i in range(self.n_buildings):
self.add_building(lcz, self.buildings[i], self.building_heights[i])
def put_trees(self, lcz):
for i in range(self.n_trees):
self.add_tree(lcz, self.trees[i], height=16)
def to_model_input_building(self, filename='lcz.txt'):
lcz = self.to_height_map()
with open(os.path.join(self.output_folder, filename), "w", encoding='utf-8') as file:
file.write(f"{self.height} {self.width}\n")
file.write("\n".join([" ".join(list(map(str, row))) for row in lcz]))
def to_model_input_tree(self, filename='lcz.txt'):
lcz = self.to_height_map(False, True)
with open(os.path.join(self.output_folder, filename), "w", encoding='utf-8') as file:
file.write(f"{self.height} {self.width}\n")
file.write("\n".join([" ".join(list(map(str, row))) for row in lcz]))
def to_model_input_road(self, filename='lcz.txt'):
lcz = np.ones((self.height, self.width), dtype=int)
for bbox in self.possible_buildings:
self.add_building(lcz, bbox, 0)
with open(os.path.join(self.output_folder, filename), "w", encoding='utf-8') as file:
file.write(f"{self.height} {self.width}\n")
file.write("\n".join([" ".join(list(map(str, row))) for row in lcz]))
def to_height_map(self, dtype=np.int64, building=True, tree=False):
lcz = np.zeros((self.height, self.width), dtype=dtype)
if building:
self.put_buildings(lcz)
if tree:
self.put_trees(lcz)
return lcz
def model_input_to_height_map(self, filename='map.txt'):
height_map = np.array([list(map(int, row.split())) for row in open(filename).read().split("\n")])
return height_map
if __name__ == '__main__':
import sys
if sys.argc > 1:
t = sys.argv[1]
lcz = LCZ(config_path=f'configs/{t}.json')
lcz.to_model_input_building('map.txt')
sys.exit(0)
lcz_types = ['compact_high_rise', 'compact_mid_rise', 'compact_low_rise', 'open_high_rise', 'open_mid_rise', 'open_low_rise', 'lightweight_low_rise', 'large_low_rise', 'sparsley_build', 'heavy_industry']
fig, axs = plt.subplots(2, 2, figsize=(10, 6))
lcz_type = "open_mid_rise"
out_folder = "."
for i, ax in enumerate(axs.flat):
lcz = LCZ(config_path=f'configs/{lcz_type}.json', output_folder=out_folder)
lcz.to_model_input_building(f'lcz_{i + 1}_building.txt')
lcz.to_model_input_tree(f'lcz_{i + 1}_tree.txt')
lcz.to_model_input_road(f'lcz_{i + 1}_road.txt')
lcz.check_params()
height_map = lcz.to_height_map()
im = ax.imshow(height_map, cmap='viridis', origin='lower')
ax.set_title(f"{lcz_type} {i}")
fig.colorbar(im, ax=ax, shrink=0.3)
plt.tight_layout()
plt.savefig(f'{out_folder}/height_maps_mid_rise.png')
plt.show()