Skip to content
Snippets Groups Projects
Commit c639aa34 authored by 数学の武士's avatar 数学の武士
Browse files

Arithmetic fabs fix

parent c9f3ad26
No related branches found
No related tags found
No related merge requests found
Pipeline #1567 failed
......@@ -18,7 +18,7 @@ FUCNTION_DECLARATION_SPECIFIER void get_convection_lim(T &zeta_lim, T &Rib_lim,
f_m = zeta_lim / h0_m;
f_h = zeta_lim / h0_t;
if (fabs(B) < 1.0e-10) f_h = f_m;
if (fabsf(B) < 1.0e-10) f_h = f_m;
f_m = powf(1.0 - param.alpha_m * f_m, 0.25);
f_h = sqrtf(1.0 - param.alpha_h_fix * f_h);
......@@ -67,7 +67,7 @@ FUCNTION_DECLARATION_SPECIFIER void get_psi_convection(T &psi_m, T &psi_h, T &ze
{
zeta0_m = zeta / h0_m;
zeta0_h = zeta / h0_t;
if (fabs(B) < 1.0e-10)
if (fabsf(B) < 1.0e-10)
zeta0_h = zeta0_m;
f0_m = powf(1.0 - param.alpha_m * zeta0_m, 0.25);
......@@ -97,7 +97,7 @@ FUCNTION_DECLARATION_SPECIFIER void get_psi_neutral(T &psi_m, T &psi_h, T &zeta,
zeta = 0.0;
psi_m = logf(h0_m);
psi_h = logf(h0_t) / param.Pr_t_0_inv;
if (fabs(B) < 1.0e-10)
if (fabsf(B) < 1.0e-10)
psi_h = psi_m / param.Pr_t_0_inv;
}
......@@ -112,7 +112,7 @@ FUCNTION_DECLARATION_SPECIFIER void get_psi_semi_convection(T &psi_m, T &psi_h,
psi_m = logf(h0_m);
psi_h = logf(h0_t);
if (fabs(B) < 1.0e-10)
if (fabsf(B) < 1.0e-10)
psi_h = psi_m;
zeta = Rib * param.Pr_t_0_inv * psi_m * psi_m / psi_h;
......@@ -121,7 +121,7 @@ FUCNTION_DECLARATION_SPECIFIER void get_psi_semi_convection(T &psi_m, T &psi_h,
{
zeta0_m = zeta / h0_m;
zeta0_h = zeta / h0_t;
if (fabs(B) < 1.0e-10)
if (fabsf(B) < 1.0e-10)
zeta0_h = zeta0_m;
f_m = powf(1.0 - param.alpha_m * zeta, 0.25e0);
......
......@@ -79,7 +79,7 @@ __global__ void sfx_kernel::compute_flux(sfxDataVecTypeC sfx,
if (U > 0.0)
Cm = Udyn / U;
Ct = 0.0;
if (fabs(dT) > 0.0)
if (fabsf(dT) > 0.0)
Ct = Tdyn / dT;
// --- define eddy viscosity & inverse Prandtl number
......
......@@ -82,7 +82,7 @@ void FluxSheba<T, memIn, memOut, MemType::CPU>::compute_flux()
if (U > 0.0)
Cm = Udyn / U;
Ct = 0.0;
if (fabs(dT) > 0.0)
if (fabsf(dT) > 0.0)
Ct = Tdyn / dT;
// --- define eddy viscosity & inverse Prandtl number
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment