Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
S
sfx
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
inmcm-mirror
sfx
Commits
9bdec804
Commit
9bdec804
authored
7 months ago
by
Anna Shestakova
Browse files
Options
Downloads
Patches
Plain Diff
Delete sfx_sheba_noniterative.f90
parent
214d9533
No related branches found
No related tags found
No related merge requests found
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
srcF/sfx_sheba_noniterative.f90
+0
-953
0 additions, 953 deletions
srcF/sfx_sheba_noniterative.f90
with
0 additions
and
953 deletions
srcF/sfx_sheba_noniterative.f90
deleted
100644 → 0
+
0
−
953
View file @
214d9533
#include "../includeF/sfx_def.fi"
module
sfx_sheba_noniterative
<<<<<<<
HEAD
!< @brief main Earth System Model surface flux module
=======
!< @brief SHEBA surface flux module
>>>>>>>
9d99
a415378a2907d460477f87825d027fae071e
! modules used
! --------------------------------------------------------------------------------
#ifdef SFX_CHECK_NAN
use
sfx_common
#endif
use
sfx_data
use
sfx_surface
<<<<<<<
HEAD
use
sfx_sheba_noit_param
=======
use
sfx_sheba_param
>>>>>>>
9d99
a415378a2907d460477f87825d027fae071e
#if defined(INCLUDE_CXX)
use
iso_c_binding
,
only
:
C_LOC
,
C_PTR
,
C_INT
,
C_FLOAT
use
C_FUNC
#endif
! --------------------------------------------------------------------------------
! directives list
! --------------------------------------------------------------------------------
implicit
none
private
! --------------------------------------------------------------------------------
! public interface
! --------------------------------------------------------------------------------
public
::
get_surface_fluxes
public
::
get_surface_fluxes_vec
<<<<<<<
HEAD
=======
public
::
get_psi
>>>>>>>
9d99
a415378a2907d460477f87825d027fae071e
! --------------------------------------------------------------------------------
! --------------------------------------------------------------------------------
type
,
public
::
numericsType
<<<<<<<
HEAD
integer
::
maxiters_convection
=
10
!< maximum (actual) number of iterations in convection
=======
>>>>>>>
9d99
a415378a2907d460477f87825d027fae071e
integer
::
maxiters_charnock
=
10
!< maximum (actual) number of iterations in charnock roughness
end
type
! --------------------------------------------------------------------------------
#if defined(INCLUDE_CXX)
<<<<<<<
HEAD
type
,
BIND
(
C
),
public
::
sfx_sheba_noit_param_C
real
(
C_FLOAT
)
::
kappa
real
(
C_FLOAT
)
::
Pr_t_0_inv
real
(
C_FLOAT
)
::
Pr_t_inf_inv
real
(
C_FLOAT
)
::
alpha_m
real
(
C_FLOAT
)
::
alpha_h
real
(
C_FLOAT
)
::
alpha_h_fix
real
(
C_FLOAT
)
::
Rib_max
real
(
C_FLOAT
)
::
gamma
real
(
C_FLOAT
)
::
zeta_a
end
type
type
,
BIND
(
C
),
public
::
sfx_sheba_noit_numericsType_C
integer
(
C_INT
)
::
maxiters_convection
=======
type
,
BIND
(
C
),
public
::
sfx_sheba_param_C
real
(
C_FLOAT
)
::
kappa
real
(
C_FLOAT
)
::
Pr_t_0_inv
real
(
C_FLOAT
)
::
alpha_m
real
(
C_FLOAT
)
::
alpha_h
real
(
C_FLOAT
)
::
a_m
real
(
C_FLOAT
)
::
b_m
real
(
C_FLOAT
)
::
a_h
real
(
C_FLOAT
)
::
b_h
real
(
C_FLOAT
)
::
c_h
end
type
type
,
BIND
(
C
),
public
::
sfx_sheba_numericsType_C
>>>>>>>
9d99
a415378a2907d460477f87825d027fae071e
integer
(
C_INT
)
::
maxiters_charnock
end
type
INTERFACE
<<<<<<<
HEAD
SUBROUTINE
c_sheba_noit_compute_flux
(
sfx
,
meteo
,
model_param
,
surface_param
,
numerics
,
constants
,
grid_size
)
BIND
(
C
,
&
name
=
"c_sheba_noit_compute_flux"
)
use
sfx_data
use
,
intrinsic
::
ISO_C_BINDING
,
ONLY
:
C_INT
,
C_PTR
Import
::
sfx_sheba_noit_param_C
,
sfx_sheba_noit_numericsType_C
implicit
none
integer
(
C_INT
)
::
grid_size
type
(
C_PTR
),
value
::
sfx
type
(
C_PTR
),
value
::
meteo
type
(
sfx_sheba_noit_param_C
)
::
model_param
type
(
sfx_surface_noit_param
)
::
surface_param
type
(
sfx_sheba_noit_numericsType_C
)
::
numerics
type
(
sfx_phys_constants
)
::
constants
END
SUBROUTINE
c_sheba_noit_compute_flux
=======
SUBROUTINE
c_sheba_compute_flux
(
sfx
,
meteo
,
model_param
,
surface_param
,
numerics
,
constants
,
grid_size
)
BIND
(
C
,
&
name
=
"c_sheba_compute_flux"
)
use
sfx_data
use
,
intrinsic
::
ISO_C_BINDING
,
ONLY
:
C_INT
,
C_PTR
Import
::
sfx_sheba_param_C
,
sfx_sheba_numericsType_C
implicit
none
INTEGER
(
C_INT
)
::
grid_size
type
(
C_PTR
),
value
::
sfx
type
(
C_PTR
),
value
::
meteo
type
(
sfx_sheba_param_C
)
::
model_param
type
(
sfx_surface_param
)
::
surface_param
type
(
sfx_sheba_numericsType_C
)
::
numerics
type
(
sfx_phys_constants
)
::
constants
END
SUBROUTINE
c_sheba_compute_flux
>>>>>>>
9d99
a415378a2907d460477f87825d027fae071e
END
INTERFACE
#endif
contains
<<<<<<<
HEAD
! --------------------------------------------------------------------------------
#if defined(INCLUDE_CXX)
subroutine
set_c_struct_sfx_sheba_noit_param_values
(
sfx_model_param
)
type
(
sfx_sheba_noit_param_C
),
intent
(
inout
)
::
sfx_model_param
sfx_model_param
%
kappa
=
kappa
sfx_model_param
%
Pr_t_0_inv
=
Pr_t_0_inv
sfx_model_param
%
Pr_t_inf_inv
=
Pr_t_inf_inv
sfx_model_param
%
alpha_m
=
alpha_m
sfx_model_param
%
alpha_h
=
alpha_h
sfx_model_param
%
alpha_h_fix
=
alpha_h_fix
sfx_model_param
%
Rib_max
=
Rib_max
sfx_model_param
%
gamma
=
gamma
sfx_model_param
%
zeta_a
=
zeta_a
end
subroutine
set_c_struct_sfx_sheba_noit_param_values
#endif
=======
#if defined(INCLUDE_CXX)
subroutine
set_c_struct_sfx_sheba_param_values
(
sfx_model_param
)
type
(
sfx_sheba_param_C
),
intent
(
inout
)
::
sfx_model_param
sfx_model_param
%
kappa
=
kappa
sfx_model_param
%
Pr_t_0_inv
=
Pr_t_0_inv
sfx_model_param
%
alpha_m
=
alpha_m
sfx_model_param
%
alpha_h
=
alpha_h
sfx_model_param
%
a_m
=
a_m
sfx_model_param
%
b_m
=
b_m
sfx_model_param
%
a_h
=
a_h
sfx_model_param
%
b_h
=
b_h
sfx_model_param
%
c_h
=
c_h
end
subroutine
set_c_struct_sfx_sheba_param_values
#endif
! --------------------------------------------------------------------------------
>>>>>>>
9d99
a415378a2907d460477f87825d027fae071e
subroutine
get_surface_fluxes_vec
(
sfx
,
meteo
,
numerics
,
n
)
!< @brief surface flux calculation for array data
!< @details contains C/C++ & CUDA interface
! ----------------------------------------------------------------------------
type
(
sfxDataVecType
),
intent
(
inout
)
::
sfx
type
(
meteoDataVecType
),
intent
(
in
)
::
meteo
type
(
numericsType
),
intent
(
in
)
::
numerics
integer
,
intent
(
in
)
::
n
! ----------------------------------------------------------------------------
! --- local variables
type
(
meteoDataType
)
meteo_cell
type
(
sfxDataType
)
sfx_cell
integer
i
! ----------------------------------------------------------------------------
#if defined(INCLUDE_CXX)
type
(
meteoDataVecTypeC
),
target
::
meteo_c
!< meteorological data (input)
type
(
sfxDataVecTypeC
),
target
::
sfx_c
!< surface flux data (output)
type
(
C_PTR
)
::
meteo_c_ptr
,
sfx_c_ptr
<<<<<<<
HEAD
type
(
sfx_sheba_noit_param_C
)
::
model_param
type
(
sfx_surface_param
)
::
surface_param
type
(
sfx_sheba_noit_numericsType_C
)
::
numerics_c
type
(
sfx_phys_constants
)
::
phys_constants
numerics_c
%
maxiters_convection
=
numerics
%
maxiters_convection
=======
type
(
sfx_sheba_param_C
)
::
model_param
type
(
sfx_surface_param
)
::
surface_param
type
(
sfx_sheba_numericsType_C
)
::
numerics_c
type
(
sfx_phys_constants
)
::
phys_constants
>>>>>>>
9d99
a415378a2907d460477f87825d027fae071e
numerics_c
%
maxiters_charnock
=
numerics
%
maxiters_charnock
phys_constants
%
Pr_m
=
Pr_m
;
phys_constants
%
nu_air
=
nu_air
;
phys_constants
%
g
=
g
;
<<<<<<<
HEAD
call
set_c_struct_sfx_sheba_noit_param_values
(
model_param
)
call
set_c_struct_sfx_surface_param_values
(
surface_param
)
call
set_meteo_vec_c
(
meteo
,
meteo_c
)
call
set_sfx_vec_c
(
sfx
,
sfx_c
)
meteo_c_ptr
=
C_LOC
(
meteo_c
)
sfx_c_ptr
=
C_LOC
(
sfx_c
)
call
c_sheba_noit_compute_flux
(
sfx_c_ptr
,
meteo_c_ptr
,
model_param
,
surface_param
,
numerics_c
,
phys_constants
,
n
)
#else
do
i
=
1
,
n
#ifdef SFX_FORCE_DEPRECATED_sheba_CODE
#else
=======
call
set_c_struct_sfx_sheba_param_values
(
model_param
)
call
set_c_struct_sfx_surface_param_values
(
surface_param
)
call
set_meteo_vec_c
(
meteo
,
meteo_c
)
call
set_sfx_vec_c
(
sfx
,
sfx_c
)
meteo_c_ptr
=
C_LOC
(
meteo_c
)
sfx_c_ptr
=
C_LOC
(
sfx_c
)
call
c_sheba_compute_flux
(
sfx_c_ptr
,
meteo_c_ptr
,
model_param
,
surface_param
,
numerics_c
,
phys_constants
,
n
)
#else
do
i
=
1
,
n
>>>>>>>
9d99
a415378a2907d460477f87825d027fae071e
meteo_cell
=
meteoDataType
(&
h
=
meteo
%
h
(
i
),
&
U
=
meteo
%
U
(
i
),
dT
=
meteo
%
dT
(
i
),
Tsemi
=
meteo
%
Tsemi
(
i
),
dQ
=
meteo
%
dQ
(
i
),
&
z0_m
=
meteo
%
z0_m
(
i
))
call
get_surface_fluxes
(
sfx_cell
,
meteo_cell
,
numerics
)
call
push_sfx_data
(
sfx
,
sfx_cell
,
i
)
<<<<<<<
HEAD
#endif
end
do
#endif
=======
end
do
#endif
>>>>>>>
9d99
a415378a2907d460477f87825d027fae071e
end
subroutine
get_surface_fluxes_vec
! --------------------------------------------------------------------------------
! --------------------------------------------------------------------------------
subroutine
get_surface_fluxes
(
sfx
,
meteo
,
numerics
)
!< @brief surface flux calculation for single cell
!< @details contains C/C++ interface
! ----------------------------------------------------------------------------
#ifdef SFX_CHECK_NAN
use
ieee_arithmetic
#endif
type
(
sfxDataType
),
intent
(
out
)
::
sfx
type
(
meteoDataType
),
intent
(
in
)
::
meteo
type
(
numericsType
),
intent
(
in
)
::
numerics
! ----------------------------------------------------------------------------
<<<<<<<
HEAD
=======
>>>>>>>
9d99
a415378a2907d460477f87825d027fae071e
! --- meteo derived datatype name shadowing
! ----------------------------------------------------------------------------
real
::
h
!< constant flux layer height [m]
real
::
U
!< abs(wind speed) at 'h' [m/s]
real
::
dT
!< difference between potential temperature at 'h' and at surface [K]
real
::
Tsemi
!< semi-sum of potential temperature at 'h' and at surface [K]
real
::
dQ
!< difference between humidity at 'h' and at surface [g/g]
real
::
z0_m
!< surface aerodynamic roughness (should be < 0 for water bodies surface)
! ----------------------------------------------------------------------------
! --- local variables
! ----------------------------------------------------------------------------
real
z0_t
!< thermal roughness [m]
real
B
!< = ln(z0_m / z0_t) [n/d]
real
h0_m
,
h0_t
!< = h / z0_m, h / z0_h [n/d]
real
u_dyn0
!< dynamic velocity in neutral conditions [m/s]
real
Re
!< roughness Reynolds number = u_dyn0 * z0_m / nu [n/d]
real
zeta
!< = z/L [n/d]
real
Rib
!< bulk Richardson number
<<<<<<<
HEAD
real
zeta_conv_lim
!< z/L critical value for matching free convection limit [n/d]
real
Rib_conv_lim
!< Ri-bulk critical value for matching free convection limit [n/d]
real
f_m_conv_lim
!< stability function (momentum) value in free convection limit [n/d]
real
f_h_conv_lim
!< stability function (heat) value in free convection limit [n/d]
real
psi_m
,
psi_h
!< universal functions (momentum) & (heat) [n/d]
real
psi0_m
,
psi0_h
!< universal functions (momentum) & (heat) [n/d]
=======
real
Udyn
,
Tdyn
,
Qdyn
!< dynamic scales
>>>>>>>
9d99
a415378a2907d460477f87825d027fae071e
real
phi_m
,
phi_h
!< stability functions (momentum) & (heat) [n/d]
real
Km
!< eddy viscosity coeff. at h [m^2/s]
real
Pr_t_inv
!< invese Prandt number [n/d]
real
Cm
,
Ct
!< transfer coeff. for (momentum) & (heat) [n/d]
<<<<<<<
HEAD
real
Udyn
,
Tdyn
integer
surface_type
!< surface type = (ocean || land)
real
fval
!< just a shortcut for partial calculations
real
::
C1
,
A1
,
A2
,
lne
,
lnet
,
Ribl
=======
integer
surface_type
!< surface type = (ocean || land)
>>>>>>>
9d99
a415378a2907d460477f87825d027fae071e
#ifdef SFX_CHECK_NAN
real
NaN
#endif
! ----------------------------------------------------------------------------
#ifdef SFX_CHECK_NAN
! --- checking if arguments are finite
if
(
.not.
(
is_finite
(
meteo
%
U
)
.and.
is_finite
(
meteo
%
Tsemi
)
.and.
is_finite
(
meteo
%
dT
)
.and.
is_finite
(
meteo
%
dQ
)
&
.and.
is_finite
(
meteo
%
z0_m
)
.and.
is_finite
(
meteo
%
h
)))
then
NaN
=
ieee_value
(
0.0
,
ieee_quiet_nan
)
! setting NaN
sfx
=
sfxDataType
(
zeta
=
NaN
,
Rib
=
NaN
,
&
Re
=
NaN
,
B
=
NaN
,
z0_m
=
NaN
,
z0_t
=
NaN
,
&
Rib_conv_lim
=
NaN
,
&
Cm
=
NaN
,
Ct
=
NaN
,
Km
=
NaN
,
Pr_t_inv
=
NaN
)
return
end
if
#endif
! --- shadowing names for clarity
U
=
meteo
%
U
Tsemi
=
meteo
%
Tsemi
dT
=
meteo
%
dT
dQ
=
meteo
%
dQ
h
=
meteo
%
h
z0_m
=
meteo
%
z0_m
! --- define surface type
if
(
z0_m
<
0.0
)
then
surface_type
=
surface_ocean
else
surface_type
=
surface_land
end
if
if
(
surface_type
==
surface_ocean
)
then
! --- define surface roughness [momentum] & dynamic velocity in neutral conditions
call
get_charnock_roughness
(
z0_m
,
u_dyn0
,
U
,
h
,
numerics
%
maxiters_charnock
)
! --- define relative height
h0_m
=
h
/
z0_m
endif
if
(
surface_type
==
surface_land
)
then
! --- define relative height
h0_m
=
h
/
z0_m
! --- define dynamic velocity in neutral conditions
u_dyn0
=
U
*
kappa
/
log
(
h0_m
)
end
if
! --- define thermal roughness & B = log(z0_m / z0_h)
Re
=
u_dyn0
*
z0_m
/
nu_air
call
get_thermal_roughness
(
z0_t
,
B
,
z0_m
,
Re
,
surface_type
)
! --- define relative height [thermal]
h0_t
=
h
/
z0_t
! --- define Ri-bulk
Rib
=
(
g
/
Tsemi
)
*
h
*
(
dT
+
0.61e0
*
Tsemi
*
dQ
)
/
U
**
2
<<<<<<<
HEAD
! --- define free convection transition zeta = z/L value
call
get_convection_lim
(
zeta_conv_lim
,
Rib_conv_lim
,
f_m_conv_lim
,
f_h_conv_lim
,
&
h0_m
,
h0_t
,
B
)
! --- get the fluxes
! ----------------------------------------------------------------------------
if
(
Rib
>
0.0
)
then
! --- stable stratification block
! --- restrict bulk Ri value
! *: note that this value is written to output
Rib
=
min
(
Rib
,
Rib_max
)
Ribl
=
(
Rib
*
Pr_t_0_inv
)
*
(
1
-
z0_t
/
h
)
/
((
1
-
z0_m
/
h
)
**
2
)
call
get_psi_stable
(
psi_m
,
psi_h
,
zeta_a
,
zeta_a
)
call
get_psi_stable
(
psi0_m
,
psi0_h
,
zeta_a
*
z0_m
/
h
,
zeta_a
*
z0_t
/
h
)
lne
=
log
(
h
/
z0_m
)
lnet
=
log
(
h
/
z0_t
)
C1
=
(
lne
**
2
)/
lnet
A1
=
((
lne
-
psi_m
+
psi0_m
)
**
(
2
*
(
gamma
-1
)))
&
&
/
((
zeta_a
**
(
gamma
-1
))
*
((
lnet
-
(
psi_h
-
psi0_h
)
*
Pr_t_0_inv
)
**
(
gamma
-1
)))
A2
=
((
lne
-
psi_m
+
psi0_m
)
**
2
)
/
(
lnet
-
(
psi_h
-
psi0_h
)
*
Pr_t_0_inv
)
-
C1
zeta
=
C1
*
Ribl
+
A1
*
A2
*
(
Ribl
**
gamma
)
call
get_psi_stable
(
psi_m
,
psi_h
,
zeta
,
zeta
)
call
get_psi_stable
(
psi0_m
,
psi0_h
,
zeta
*
z0_m
/
h
,
zeta
*
z0_t
/
h
)
phi_m
=
1.0
+
(
a_m
*
zeta
*
(
1.0
+
zeta
)
**
(
1.0
/
3.0
))
/
(
1.0
+
b_m
*
zeta
)
phi_h
=
1.0
+
(
a_h
*
zeta
+
b_h
*
zeta
*
zeta
)
/
(
1.0
+
c_h
*
zeta
+
zeta
*
zeta
)
Udyn
=
kappa
*
U
/
(
log
(
h
/
z0_m
)
-
(
psi_m
-
psi0_m
))
Tdyn
=
kappa
*
dT
*
Pr_t_0_inv
/
(
log
(
h
/
z0_t
)
-
(
psi_h
-
psi0_h
))
else
if
(
Rib
<
Rib_conv_lim
)
then
! --- strong instability block
call
get_psi_convection
(
psi_m
,
psi_h
,
zeta
,
Rib
,
&
zeta_conv_lim
,
f_m_conv_lim
,
f_h_conv_lim
,
h0_m
,
h0_t
,
B
,
numerics
%
maxiters_convection
)
fval
=
(
zeta_conv_lim
/
zeta
)
**
(
1.0
/
3.0
)
phi_m
=
fval
/
f_m_conv_lim
phi_h
=
fval
/
(
Pr_t_0_inv
*
f_h_conv_lim
)
else
if
(
Rib
>
-0.001
)
then
! --- nearly neutral [-0.001, 0] block
call
get_psi_neutral
(
psi_m
,
psi_h
,
h0_m
,
h0_t
,
B
)
zeta
=
0.0
phi_m
=
1.0
phi_h
=
1.0
/
Pr_t_0_inv
else
! --- weak & semistrong instability block
call
get_psi_semi_convection
(
psi_m
,
psi_h
,
zeta
,
Rib
,
h0_m
,
h0_t
,
B
,
numerics
%
maxiters_convection
)
phi_m
=
(
1.0
-
alpha_m
*
zeta
)
**
(
-0.25
)
phi_h
=
1.0
/
(
Pr_t_0_inv
*
sqrt
(
1.0
-
alpha_h_fix
*
zeta
))
end
if
! ----------------------------------------------------------------------------
! --- define transfer coeff. (momentum) & (heat)
if
(
Rib
>
0
)
then
Cm
=
0.0
if
(
U
>
0.0
)
then
Cm
=
Udyn
/
U
end
if
Ct
=
0.0
if
(
abs
(
dT
)
>
0.0
)
then
Ct
=
Tdyn
/
dT
end
if
else
Cm
=
kappa
/
psi_m
Ct
=
kappa
/
psi_h
end
if
=======
! --- get the fluxes
! ----------------------------------------------------------------------------
if
(
Rib
>
0
)
then
call
get_dynamic_scales_noniterative
(
Udyn
,
Tdyn
,
Qdyn
,
zeta
,
&
U
,
dT
,
dQ
,
h
,
z0_m
,
z0_t
,
Rib
)
else
call
get_dynamic_scales
(
Udyn
,
Tdyn
,
Qdyn
,
zeta
,
&
U
,
Tsemi
,
dT
,
dQ
,
h
,
z0_m
,
z0_t
,
(
g
/
Tsemi
),
10
)
end
if
! ----------------------------------------------------------------------------
call
get_phi
(
phi_m
,
phi_h
,
zeta
)
! ----------------------------------------------------------------------------
! --- define transfer coeff. (momentum) & (heat)
Cm
=
0.0
if
(
U
>
0.0
)
then
Cm
=
Udyn
/
U
end
if
Ct
=
0.0
if
(
abs
(
dT
)
>
0.0
)
then
Ct
=
Tdyn
/
dT
end
if
>>>>>>>
9d99
a415378a2907d460477f87825d027fae071e
! --- define eddy viscosity & inverse Prandtl number
Km
=
kappa
*
Cm
*
U
*
h
/
phi_m
Pr_t_inv
=
phi_m
/
phi_h
! --- setting output
sfx
=
sfxDataType
(
zeta
=
zeta
,
Rib
=
Rib
,
&
<<<<<<<
HEAD
Re
=
Re
,
B
=
B
,
z0_m
=
z0_m
,
z0_t
=
z0_t
,
&
Rib_conv_lim
=
Rib_conv_lim
,
&
Cm
=
Cm
,
Ct
=
Ct
,
Km
=
Km
,
Pr_t_inv
=
Pr_t_inv
)
=======
Re
=
Re
,
B
=
B
,
z0_m
=
z0_m
,
z0_t
=
z0_t
,
&
Rib_conv_lim
=
0.0
,
&
Cm
=
Cm
,
Ct
=
Ct
,
Km
=
Km
,
Pr_t_inv
=
Pr_t_inv
)
>>>>>>>
9d99
a415378a2907d460477f87825d027fae071e
end
subroutine
get_surface_fluxes
! --------------------------------------------------------------------------------
<<<<<<<
HEAD
! convection universal functions shortcuts
! --------------------------------------------------------------------------------
function
f_m_conv
(
zeta
)
! ----------------------------------------------------------------------------
real
::
f_m_conv
real
,
intent
(
in
)
::
zeta
! ----------------------------------------------------------------------------
f_m_conv
=
(
1.0
-
alpha_m
*
zeta
)
**
0.25
end
function
f_m_conv
function
f_h_conv
(
zeta
)
! ----------------------------------------------------------------------------
real
::
f_h_conv
real
,
intent
(
in
)
::
zeta
! ----------------------------------------------------------------------------
f_h_conv
=
(
1.0
-
alpha_h
*
zeta
)
**
0.5
end
function
f_h_conv
! --------------------------------------------------------------------------------
! universal functions
! --------------------------------------------------------------------------------
subroutine
get_psi_neutral
(
psi_m
,
psi_h
,
h0_m
,
h0_t
,
B
)
!< @brief universal functions (momentum) & (heat): neutral case
! ----------------------------------------------------------------------------
real
,
intent
(
out
)
::
psi_m
,
psi_h
!< universal functions
real
,
intent
(
in
)
::
h0_m
,
h0_t
!< = z/z0_m, z/z0_h
real
,
intent
(
in
)
::
B
!< = log(z0_m / z0_h)
! ----------------------------------------------------------------------------
psi_m
=
log
(
h0_m
)
psi_h
=
log
(
h0_t
)
/
Pr_t_0_inv
!*: this looks redundant z0_t = z0_m in case |B| ~ 0
if
(
abs
(
B
)
<
1.0e-10
)
psi_h
=
psi_m
/
Pr_t_0_inv
end
subroutine
subroutine
get_psi_stable
(
psi_m
,
psi_h
,
zeta_m
,
zeta_h
)
!< @brief universal functions (momentum) & (heat): neutral case
! ----------------------------------------------------------------------------
real
,
intent
(
out
)
::
psi_m
,
psi_h
!< universal functions
real
,
intent
(
in
)
::
zeta_m
,
zeta_h
!< = z/L
! ----------------------------------------------------------------------------
! --- local variables
real
::
x_m
,
x_h
real
::
q_m
,
q_h
! ----------------------------------------------------------------------------
q_m
=
((
1.0
-
b_m
)
/
b_m
)
**
(
1.0
/
3.0
)
x_m
=
(
1.0
+
zeta_m
)
**
(
1.0
/
3.0
)
psi_m
=
-3.0
*
(
a_m
/
b_m
)
*
(
x_m
-
1.0
)
+
0.5
*
(
a_m
/
b_m
)
*
q_m
*
(&
2.0
*
log
((
x_m
+
q_m
)
/
(
1.0
+
q_m
))
-
&
log
((
x_m
*
x_m
-
x_m
*
q_m
+
q_m
*
q_m
)
/
(
1.0
-
q_m
+
q_m
*
q_m
))
+
&
2.0
*
sqrt
(
3.0
)
*
(&
atan
((
2.0
*
x_m
-
q_m
)
/
(
sqrt
(
3.0
)
*
q_m
))
-
&
atan
((
2.0
-
q_m
)
/
(
sqrt
(
3.0
)
*
q_m
))))
q_h
=
sqrt
(
c_h
*
c_h
-
4.0
)
x_h
=
zeta_h
psi_h
=
-0.5
*
b_h
*
log
(
1.0
+
c_h
*
x_h
+
x_h
*
x_h
)
+
&
((
-
a_h
/
q_h
)
+
((
b_h
*
c_h
)
/
(
2.0
*
q_h
)))
*
(&
log
((
2.0
*
x_h
+
c_h
-
q_h
)
/
(
2.0
*
x_h
+
c_h
+
q_h
))
-
&
log
((
c_h
-
q_h
)
/
(
c_h
+
q_h
)))
end
subroutine
subroutine
get_psi_semi_convection
(
psi_m
,
psi_h
,
zeta
,
Rib
,
h0_m
,
h0_t
,
B
,
maxiters
)
!< @brief universal functions (momentum) & (heat): semi-strong convection case
! ----------------------------------------------------------------------------
real
,
intent
(
out
)
::
psi_m
,
psi_h
!< universal functions [n/d]
real
,
intent
(
out
)
::
zeta
!< = z/L [n/d]
real
,
intent
(
in
)
::
Rib
!< bulk Richardson number [n/d]
real
,
intent
(
in
)
::
h0_m
,
h0_t
!< = z/z0_m, z/z0_h [n/d]
real
,
intent
(
in
)
::
B
!< = log(z0_m / z0_h) [n/d]
integer
,
intent
(
in
)
::
maxiters
!< maximum number of iterations
! --- local variables
real
::
zeta0_m
,
zeta0_h
real
::
f0_m
,
f0_h
real
::
f_m
,
f_h
integer
::
i
! ----------------------------------------------------------------------------
psi_m
=
log
(
h0_m
)
psi_h
=
log
(
h0_t
)
if
(
abs
(
B
)
<
1.0e-10
)
psi_h
=
psi_m
zeta
=
Rib
*
Pr_t_0_inv
*
psi_m
**
2
/
psi_h
do
i
=
1
,
maxiters
+
1
zeta0_m
=
zeta
/
h0_m
zeta0_h
=
zeta
/
h0_t
if
(
abs
(
B
)
<
1.0e-10
)
zeta0_h
=
zeta0_m
f_m
=
(
1.0
-
alpha_m
*
zeta
)
**
0.25e0
f_h
=
sqrt
(
1.0
-
alpha_h_fix
*
zeta
)
f0_m
=
(
1.0
-
alpha_m
*
zeta0_m
)
**
0.25e0
f0_h
=
sqrt
(
1.0
-
alpha_h_fix
*
zeta0_h
)
f0_m
=
max
(
f0_m
,
1.000001e0
)
f0_h
=
max
(
f0_h
,
1.000001e0
)
psi_m
=
log
((
f_m
-
1.0e0
)
*
(
f0_m
+
1.0e0
)/((
f_m
+
1.0e0
)
*
(
f0_m
-
1.0e0
)))
+
2.0e0
*
(
atan
(
f_m
)
-
atan
(
f0_m
))
psi_h
=
log
((
f_h
-
1.0e0
)
*
(
f0_h
+
1.0e0
)/((
f_h
+
1.0e0
)
*
(
f0_h
-
1.0e0
)))
/
Pr_t_0_inv
! *: don't update zeta = z/L at last iteration
if
(
i
==
maxiters
+
1
)
exit
zeta
=
Rib
*
psi_m
**
2
/
psi_h
end
do
end
subroutine
subroutine
get_psi_convection
(
psi_m
,
psi_h
,
zeta
,
Rib
,
&
zeta_conv_lim
,
f_m_conv_lim
,
f_h_conv_lim
,
&
h0_m
,
h0_t
,
B
,
maxiters
)
!< @brief universal functions (momentum) & (heat): fully convective case
! ----------------------------------------------------------------------------
real
,
intent
(
out
)
::
psi_m
,
psi_h
!< universal functions [n/d]
real
,
intent
(
out
)
::
zeta
!< = z/L [n/d]
real
,
intent
(
in
)
::
Rib
!< bulk Richardson number [n/d]
real
,
intent
(
in
)
::
h0_m
,
h0_t
!< = z/z0_m, z/z0_h [n/d]
real
,
intent
(
in
)
::
B
!< = log(z0_m / z0_h) [n/d]
integer
,
intent
(
in
)
::
maxiters
!< maximum number of iterations
real
,
intent
(
in
)
::
zeta_conv_lim
!< convective limit zeta
real
,
intent
(
in
)
::
f_m_conv_lim
,
f_h_conv_lim
!< universal function shortcuts in limiting case
! ----------------------------------------------------------------------------
! --- local variables
real
::
zeta0_m
,
zeta0_h
real
::
f0_m
,
f0_h
real
::
p_m
,
p_h
real
::
a_m
,
a_h
real
::
c_lim
,
f
integer
::
i
! ----------------------------------------------------------------------------
p_m
=
2.0
*
atan
(
f_m_conv_lim
)
+
log
((
f_m_conv_lim
-
1.0
)
/
(
f_m_conv_lim
+
1.0
))
p_h
=
log
((
f_h_conv_lim
-
1.0
)
/
(
f_h_conv_lim
+
1.0
))
zeta
=
zeta_conv_lim
do
i
=
1
,
maxiters
+
1
zeta0_m
=
zeta
/
h0_m
zeta0_h
=
zeta
/
h0_t
if
(
abs
(
B
)
<
1.0e-10
)
zeta0_h
=
zeta0_m
f0_m
=
(
1.0
-
alpha_m
*
zeta0_m
)
**
0.25
f0_h
=
sqrt
(
1.0
-
alpha_h_fix
*
zeta0_h
)
a_m
=
-2.0
*
atan
(
f0_m
)
+
log
((
f0_m
+
1.0
)/(
f0_m
-
1.0
))
a_h
=
log
((
f0_h
+
1.0
)/(
f0_h
-
1.0
))
c_lim
=
(
zeta_conv_lim
/
zeta
)
**
(
1.0
/
3.0
)
f
=
3.0
*
(
1.0
-
c_lim
)
psi_m
=
f
/
f_m_conv_lim
+
p_m
+
a_m
psi_h
=
(
f
/
f_h_conv_lim
+
p_h
+
a_h
)
/
Pr_t_0_inv
! *: don't update zeta = z/L at last iteration
if
(
i
==
maxiters
+
1
)
exit
zeta
=
Rib
*
psi_m
**
2
/
psi_h
end
do
end
subroutine
! --------------------------------------------------------------------------------
! convection limit definition
! --------------------------------------------------------------------------------
subroutine
get_convection_lim
(
zeta_lim
,
Rib_lim
,
f_m_lim
,
f_h_lim
,
&
h0_m
,
h0_t
,
B
)
! ----------------------------------------------------------------------------
real
,
intent
(
out
)
::
zeta_lim
!< limiting value of z/L
real
,
intent
(
out
)
::
Rib_lim
!< limiting value of Ri-bulk
real
,
intent
(
out
)
::
f_m_lim
,
f_h_lim
!< limiting values of universal functions shortcuts
real
,
intent
(
in
)
::
h0_m
,
h0_t
!< = z/z0_m, z/z0_h [n/d]
real
,
intent
(
in
)
::
B
!< = log(z0_m / z0_h) [n/d]
! ----------------------------------------------------------------------------
! --- local variables
real
::
psi_m
,
psi_h
real
::
f_m
,
f_h
real
::
c
! ----------------------------------------------------------------------------
! --- define limiting value of zeta = z / L
c
=
(
Pr_t_inf_inv
/
Pr_t_0_inv
)
**
4
zeta_lim
=
(
2.0
*
alpha_h
-
c
*
alpha_m
-
&
sqrt
((
c
*
alpha_m
)
**
2
+
4.0
*
c
*
alpha_h
*
(
alpha_h
-
alpha_m
)))
/
(
2.0
*
alpha_h
**
2
)
f_m_lim
=
f_m_conv
(
zeta_lim
)
f_h_lim
=
f_h_conv
(
zeta_lim
)
! --- universal functions
f_m
=
zeta_lim
/
h0_m
f_h
=
zeta_lim
/
h0_t
if
(
abs
(
B
)
<
1.0e-10
)
f_h
=
f_m
f_m
=
(
1.0
-
alpha_m
*
f_m
)
**
0.25
f_h
=
sqrt
(
1.0
-
alpha_h_fix
*
f_h
)
psi_m
=
2.0
*
(
atan
(
f_m_lim
)
-
atan
(
f_m
))
+
alog
((
f_m_lim
-
1.0
)
*
(
f_m
+
1.0
)/((
f_m_lim
+
1.0
)
*
(
f_m
-
1.0
)))
psi_h
=
alog
((
f_h_lim
-
1.0
)
*
(
f_h
+
1.0
)/((
f_h_lim
+
1.0
)
*
(
f_h
-
1.0
)))
/
Pr_t_0_inv
! --- bulk Richardson number
Rib_lim
=
zeta_lim
*
psi_h
/
(
psi_m
*
psi_m
)
=======
!< @brief get dynamic scales
! --------------------------------------------------------------------------------
subroutine
get_dynamic_scales
(
Udyn
,
Tdyn
,
Qdyn
,
zeta
,
&
U
,
Tsemi
,
dT
,
dQ
,
z
,
z0_m
,
z0_t
,
beta
,
maxiters
)
! ----------------------------------------------------------------------------
real
,
intent
(
out
)
::
Udyn
,
Tdyn
,
Qdyn
!< dynamic scales
real
,
intent
(
out
)
::
zeta
!< = z/L
real
,
intent
(
in
)
::
U
!< abs(wind speed) at z
real
,
intent
(
in
)
::
Tsemi
!< semi-sum of temperature at z and at surface
real
,
intent
(
in
)
::
dT
,
dQ
!< temperature & humidity difference between z and at surface
real
,
intent
(
in
)
::
z
!< constant flux layer height
real
,
intent
(
in
)
::
z0_m
,
z0_t
!< roughness parameters
real
,
intent
(
in
)
::
beta
!< buoyancy parameter
integer
,
intent
(
in
)
::
maxiters
!< maximum number of iterations
! ----------------------------------------------------------------------------
! --- local variables
real
,
parameter
::
gamma
=
0.61
real
::
psi_m
,
psi_h
real
::
psi0_m
,
psi0_h
real
::
Linv
integer
::
i
! ----------------------------------------------------------------------------
Udyn
=
kappa
*
U
/
log
(
z
/
z0_m
)
Tdyn
=
kappa
*
dT
*
Pr_t_0_inv
/
log
(
z
/
z0_t
)
Qdyn
=
kappa
*
dQ
*
Pr_t_0_inv
/
log
(
z
/
z0_t
)
zeta
=
0.0
! --- no wind
if
(
Udyn
<
1e-5
)
return
Linv
=
kappa
*
beta
*
(
Tdyn
+
gamma
*
Qdyn
*
Tsemi
)
/
(
Udyn
*
Udyn
)
zeta
=
z
*
Linv
! --- near neutral case
if
(
Linv
<
1e-5
)
return
do
i
=
1
,
maxiters
call
get_psi
(
psi_m
,
psi_h
,
zeta
)
call
get_psi_mh
(
psi0_m
,
psi0_h
,
z0_m
*
Linv
,
z0_t
*
Linv
)
Udyn
=
kappa
*
U
/
(
log
(
z
/
z0_m
)
-
(
psi_m
-
psi0_m
))
Tdyn
=
kappa
*
dT
*
Pr_t_0_inv
/
(
log
(
z
/
z0_t
)
-
(
psi_h
-
psi0_h
))
Qdyn
=
kappa
*
dQ
*
Pr_t_0_inv
/
(
log
(
z
/
z0_t
)
-
(
psi_h
-
psi0_h
))
if
(
Udyn
<
1e-5
)
exit
Linv
=
kappa
*
beta
*
(
Tdyn
+
gamma
*
Qdyn
*
Tsemi
)
/
(
Udyn
*
Udyn
)
zeta
=
z
*
Linv
end
do
end
subroutine
get_dynamic_scales
subroutine
get_dynamic_scales_noniterative
(
Udyn
,
Tdyn
,
Qdyn
,
zeta
,
&
U
,
dT
,
dQ
,
z
,
z0_m
,
z0_t
,
Rib
)
! ----------------------------------------------------------------------------
real
,
parameter
::
gamma
=
2.91
,
zeta_a
=
3.6
real
,
intent
(
out
)
::
Udyn
,
Tdyn
,
Qdyn
!< dynamic scales
real
,
intent
(
out
)
::
zeta
!< = z/L
real
,
intent
(
in
)
::
U
!< abs(wind speed) at z
real
,
intent
(
in
)
::
dT
,
dQ
!< temperature & humidity difference between z and at surface
real
,
intent
(
in
)
::
z
!< constant flux layer height
real
,
intent
(
in
)
::
z0_m
,
z0_t
!< roughness parameters
real
,
intent
(
in
)
::
Rib
!< bulk Richardson number
! ----------------------------------------------------------------------------
! --- local variables
real
::
psi_m
,
psi_h
real
::
psi0_m
,
psi0_h
real
::
C1
,
A1
,
A2
,
lne
,
lnet
,
Ribl
! ----------------------------------------------------------------------------
Ribl
=
(
Rib
*
Pr_t_0_inv
)
*
(
1
-
z0_t
/
z
)
/
((
1
-
z0_m
/
z
)
**
2
)
call
get_psi
(
psi_m
,
psi_h
,
zeta_a
)
call
get_psi_mh
(
psi0_m
,
psi0_h
,
zeta_a
*
z0_m
/
z
,
zeta_a
*
z0_t
/
z
)
lne
=
log
(
z
/
z0_m
)
lnet
=
log
(
z
/
z0_t
)
C1
=
(
lne
**
2
)/
lnet
A1
=
((
lne
-
psi_m
+
psi0_m
)
**
(
2
*
(
gamma
-1
)))
&
&
/
((
zeta_a
**
(
gamma
-1
))
*
((
lnet
-
(
psi_h
-
psi0_h
)
*
Pr_t_0_inv
)
**
(
gamma
-1
)))
A2
=
((
lne
-
psi_m
+
psi0_m
)
**
2
)
/
(
lnet
-
(
psi_h
-
psi0_h
)
*
Pr_t_0_inv
)
-
C1
zeta
=
C1
*
Ribl
+
A1
*
A2
*
(
Ribl
**
gamma
)
call
get_psi
(
psi_m
,
psi_h
,
zeta
)
call
get_psi_mh
(
psi0_m
,
psi0_h
,
zeta
*
z0_m
/
z
,
zeta
*
z0_t
/
z
)
Udyn
=
kappa
*
U
/
(
log
(
z
/
z0_m
)
-
(
psi_m
-
psi0_m
))
Tdyn
=
kappa
*
dT
*
Pr_t_0_inv
/
(
log
(
z
/
z0_t
)
-
(
psi_h
-
psi0_h
))
Qdyn
=
kappa
*
dQ
*
Pr_t_0_inv
/
(
log
(
z
/
z0_t
)
-
(
psi_h
-
psi0_h
))
end
subroutine
get_dynamic_scales_noniterative
! --------------------------------------------------------------------------------
! stability functions
! --------------------------------------------------------------------------------
subroutine
get_phi
(
phi_m
,
phi_h
,
zeta
)
!< @brief stability functions (momentum) & (heat): neutral case
! ----------------------------------------------------------------------------
real
,
intent
(
out
)
::
phi_m
,
phi_h
!< stability functions
real
,
intent
(
in
)
::
zeta
!< = z/L
! ----------------------------------------------------------------------------
if
(
zeta
>=
0.0
)
then
phi_m
=
1.0
+
(
a_m
*
zeta
*
(
1.0
+
zeta
)
**
(
1.0
/
3.0
))
/
(
1.0
+
b_m
*
zeta
)
phi_h
=
1.0
+
(
a_h
*
zeta
+
b_h
*
zeta
*
zeta
)
/
(
1.0
+
c_h
*
zeta
+
zeta
*
zeta
)
else
phi_m
=
(
1.0
-
alpha_m
*
zeta
)
**
(
-0.25
)
phi_h
=
(
1.0
-
alpha_h
*
zeta
)
**
(
-0.5
)
end
if
end
subroutine
! --------------------------------------------------------------------------------
! universal functions
! --------------------------------------------------------------------------------
subroutine
get_psi
(
psi_m
,
psi_h
,
zeta
)
!< @brief universal functions (momentum) & (heat): neutral case
! ----------------------------------------------------------------------------
real
,
intent
(
out
)
::
psi_m
,
psi_h
!< universal functions
real
,
intent
(
in
)
::
zeta
!< = z/L
! ----------------------------------------------------------------------------
! --- local variables
real
::
x_m
,
x_h
real
::
q_m
,
q_h
! ----------------------------------------------------------------------------
if
(
zeta
>=
0.0
)
then
q_m
=
((
1.0
-
b_m
)
/
b_m
)
**
(
1.0
/
3.0
)
q_h
=
sqrt
(
c_h
*
c_h
-
4.0
)
x_m
=
(
1.0
+
zeta
)
**
(
1.0
/
3.0
)
x_h
=
zeta
psi_m
=
-3.0
*
(
a_m
/
b_m
)
*
(
x_m
-
1.0
)
+
0.5
*
(
a_m
/
b_m
)
*
q_m
*
(&
2.0
*
log
((
x_m
+
q_m
)
/
(
1.0
+
q_m
))
-
&
log
((
x_m
*
x_m
-
x_m
*
q_m
+
q_m
*
q_m
)
/
(
1.0
-
q_m
+
q_m
*
q_m
))
+
&
2.0
*
sqrt
(
3.0
)
*
(&
atan
((
2.0
*
x_m
-
q_m
)
/
(
sqrt
(
3.0
)
*
q_m
))
-
&
atan
((
2.0
-
q_m
)
/
(
sqrt
(
3.0
)
*
q_m
))))
psi_h
=
-0.5
*
b_h
*
log
(
1.0
+
c_h
*
x_h
+
x_h
*
x_h
)
+
&
((
-
a_h
/
q_h
)
+
((
b_h
*
c_h
)
/
(
2.0
*
q_h
)))
*
(&
log
((
2.0
*
x_h
+
c_h
-
q_h
)
/
(
2.0
*
x_h
+
c_h
+
q_h
))
-
&
log
((
c_h
-
q_h
)
/
(
c_h
+
q_h
)))
else
x_m
=
(
1.0
-
alpha_m
*
zeta
)
**
(
0.25
)
x_h
=
(
1.0
-
alpha_h
*
zeta
)
**
(
0.25
)
psi_m
=
(
4.0
*
atan
(
1.0
)
/
2.0
)
+
2.0
*
log
(
0.5
*
(
1.0
+
x_m
))
+
log
(
0.5
*
(
1.0
+
x_m
*
x_m
))
-
2.0
*
atan
(
x_m
)
psi_h
=
2.0
*
log
(
0.5
*
(
1.0
+
x_h
*
x_h
))
end
if
end
subroutine
subroutine
get_psi_mh
(
psi_m
,
psi_h
,
zeta_m
,
zeta_h
)
!< @brief universal functions (momentum) & (heat): neutral case
! ----------------------------------------------------------------------------
real
,
intent
(
out
)
::
psi_m
,
psi_h
!< universal functions
real
,
intent
(
in
)
::
zeta_m
,
zeta_h
!< = z/L
! ----------------------------------------------------------------------------
! --- local variables
real
::
x_m
,
x_h
real
::
q_m
,
q_h
! ----------------------------------------------------------------------------
if
(
zeta_m
>=
0.0
)
then
q_m
=
((
1.0
-
b_m
)
/
b_m
)
**
(
1.0
/
3.0
)
x_m
=
(
1.0
+
zeta_m
)
**
(
1.0
/
3.0
)
psi_m
=
-3.0
*
(
a_m
/
b_m
)
*
(
x_m
-
1.0
)
+
0.5
*
(
a_m
/
b_m
)
*
q_m
*
(&
2.0
*
log
((
x_m
+
q_m
)
/
(
1.0
+
q_m
))
-
&
log
((
x_m
*
x_m
-
x_m
*
q_m
+
q_m
*
q_m
)
/
(
1.0
-
q_m
+
q_m
*
q_m
))
+
&
2.0
*
sqrt
(
3.0
)
*
(&
atan
((
2.0
*
x_m
-
q_m
)
/
(
sqrt
(
3.0
)
*
q_m
))
-
&
atan
((
2.0
-
q_m
)
/
(
sqrt
(
3.0
)
*
q_m
))))
else
x_m
=
(
1.0
-
alpha_m
*
zeta_m
)
**
(
0.25
)
psi_m
=
(
4.0
*
atan
(
1.0
)
/
2.0
)
+
2.0
*
log
(
0.5
*
(
1.0
+
x_m
))
+
log
(
0.5
*
(
1.0
+
x_m
*
x_m
))
-
2.0
*
atan
(
x_m
)
end
if
if
(
zeta_h
>=
0.0
)
then
q_h
=
sqrt
(
c_h
*
c_h
-
4.0
)
x_h
=
zeta_h
psi_h
=
-0.5
*
b_h
*
log
(
1.0
+
c_h
*
x_h
+
x_h
*
x_h
)
+
&
((
-
a_h
/
q_h
)
+
((
b_h
*
c_h
)
/
(
2.0
*
q_h
)))
*
(&
log
((
2.0
*
x_h
+
c_h
-
q_h
)
/
(
2.0
*
x_h
+
c_h
+
q_h
))
-
&
log
((
c_h
-
q_h
)
/
(
c_h
+
q_h
)))
else
x_h
=
(
1.0
-
alpha_h
*
zeta_h
)
**
(
0.25
)
psi_h
=
2.0
*
log
(
0.5
*
(
1.0
+
x_h
*
x_h
))
end
if
>>>>>>>
9d99
a415378a2907d460477f87825d027fae071e
end
subroutine
! --------------------------------------------------------------------------------
end
module
sfx_sheba_noniterative
\ No newline at end of file
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment