Skip to content
Snippets Groups Projects
Commit 5a4a5e8e authored by Виктория Суязова's avatar Виктория Суязова Committed by Anna Shestakova
Browse files

old file delited

parent 32897398
No related branches found
No related tags found
No related merge requests found
module module_z0t_lake
!< @brief surface thermal roughness parameterizations for ocean
implicit none
public :: get_thermal_roughness_kl
public :: get_thermal_roughness_ca
public :: get_thermal_roughness_zm
public :: get_thermal_roughness_br
public :: get_thermal_roughness_re
! --------------------------------------------------------------------------------
real, parameter, private :: kappa = 0.40 !< von Karman constant [n/d]
real, parameter, private :: Pr_m = 0.71 !< molecular Prandtl number (air) [n/d]
!< Re fully roughness minimum value [n/d]
real, parameter :: Re_rough_min = 16.3
!< roughness model coeff. [n/d]
!< --- transitional mode
!< B = log(z0_m / z0_t) = B1 * log(B3 * Re) + B2
real, parameter :: B1_rough = 5.0 / 6.0
real, parameter :: B2_rough = 0.45
real, parameter :: B3_rough = kappa * Pr_m
!< --- fully rough mode (Re > Re_rough_min)
!< B = B4 * Re^(B2)
real, parameter :: B4_rough =(0.14 * (30.0**B2_rough)) * (Pr_m**0.8)
real, parameter :: B_max_lake = 8.0
contains
! thermal roughness definition by Kazakov, Lykosov
! --------------------------------------------------------------------------------
subroutine get_thermal_roughness_kl(z0_t, B, &
z0_m, Re)
! ----------------------------------------------------------------------------
real, intent(out) :: z0_t !< thermal roughness [m]
real, intent(out) :: B !< = log(z0_m / z0_t) [n/d]
real, intent(in) :: z0_m !< aerodynamic roughness [m]
real, intent(in) :: Re !< roughness Reynolds number [n/d]
! ----------------------------------------------------------------------------
!--- define B = log(z0_m / z0_t)
if (Re <= Re_rough_min) then
B = B1_rough * alog(B3_rough * Re) + B2_rough
else
! *: B4 takes into account Re value at z' ~ O(10) z0
B = B4_rough * (Re**B2_rough)
end if
B = min(B, B_max_lake)
z0_t = z0_m / exp(B)
end subroutine
! --------------------------------------------------------------------------------
! thermal roughness definition by Cahill, A.T., Parlange, M.B., Albertson, J.D., 1997.
! --------------------------------------------------------------------------------
subroutine get_thermal_roughness_ca(z0_t, B, &
z0_m, Re)
! ----------------------------------------------------------------------------
real, intent(out) :: z0_t !< thermal roughness [m]
real, intent(out) :: B !< = log(z0_m / z0_t) [n/d]
real, intent(in) :: z0_m !< aerodynamic roughness [m]
real, intent(in) :: Re !< roughness Reynolds number [n/d]
B=2.46*(Re**0.25)-3.8 !4-Cahill et al.
! --- define roughness [thermal]
z0_t = z0_m / exp(B)
end subroutine
! --------------------------------------------------------------------------------
! thermal roughness definition z0_t = C*z0_m
! --------------------------------------------------------------------------------
subroutine get_thermal_roughness_zm(z0_t, B, &
z0_m, Czm)
! ----------------------------------------------------------------------------
real, intent(out) :: z0_t !< thermal roughness [m]
real, intent(out) :: B !< = log(z0_m / z0_t) [n/d]
real, intent(in) :: z0_m !< aerodynamic roughness [m]
real, intent(in) :: Czm !< proportionality coefficient
z0_t =Czm*z0_m
B=log(z0_m / z0_t)
end subroutine
! --------------------------------------------------------------------------------
! thermal roughness definition by Brutsaert W., 2003.
! --------------------------------------------------------------------------------
subroutine get_thermal_roughness_br(z0_t, B, &
z0_m, Re)
! ----------------------------------------------------------------------------
real, intent(out) :: z0_t !< thermal roughness [m]
real, intent(out) :: B !< = log(z0_m / z0_t) [n/d]
real, intent(in) :: z0_m !< aerodynamic roughness [m]
real, intent(in) :: Re !< roughness Reynolds number [n/d]
B=2.46*(Re**0.25)-2.0 !Brutsaert
! --- define roughness [thermal]
z0_t = z0_m / exp(B)
end subroutine
! thermal roughness definition by Repina, 2023.
! --------------------------------------------------------------------------------
subroutine get_thermal_roughness_re(z0_t, B, &
z0_m, Re)
! ----------------------------------------------------------------------------
real, intent(out) :: z0_t !< thermal roughness [m]
real, intent(out) :: B !< = log(z0_m / z0_t) [n/d]
real, intent(in) :: z0_m !< aerodynamic roughness [m]
real, intent(in) :: Re !< roughness Reynolds number [n/d]
B=alog(-0.56*(4.0*(Re)**(0.5)-3.4)) !Repina, 2023
! --- define roughness [thermal]
z0_t = z0_m / exp(B)
end subroutine
end module module_z0t_lake
module module_z0t
!< @brief surface thermal roughness parameterizations for land
implicit none
public :: get_thermal_roughness_kl
public :: get_thermal_roughness_cz
public :: get_thermal_roughness_zi
public :: get_thermal_roughness_ca
public :: get_thermal_roughness_zm
public :: get_thermal_roughness_ot
public :: get_thermal_roughness_du
public :: get_thermal_roughness_mix
! --------------------------------------------------------------------------------
real, parameter, private :: kappa = 0.40 !< von Karman constant [n/d]
real, parameter, private :: Pr_m = 0.71 !< molecular Prandtl number (air) [n/d]
!< Re fully roughness minimum value [n/d]
real, parameter :: Re_rough_min = 16.3
!< roughness model coeff. [n/d]
!< --- transitional mode
!< B = log(z0_m / z0_t) = B1 * log(B3 * Re) + B2
real, parameter :: B1_rough = 5.0 / 6.0
real, parameter :: B2_rough = 0.45
real, parameter :: B3_rough = kappa * Pr_m
!< --- fully rough mode (Re > Re_rough_min)
!< B = B4 * Re^(B2)
real, parameter :: B4_rough =(0.14 * (30.0**B2_rough)) * (Pr_m**0.8)
real, parameter :: B_max_land = 2.0
contains
! thermal roughness definition by Kazakov, Lykosov
! --------------------------------------------------------------------------------
subroutine get_thermal_roughness_kl(z0_t, B, &
z0_m, Re)
! ----------------------------------------------------------------------------
real, intent(out) :: z0_t !< thermal roughness [m]
real, intent(out) :: B !< = log(z0_m / z0_t) [n/d]
real, intent(in) :: z0_m !< aerodynamic roughness [m]
real, intent(in) :: Re !< roughness Reynolds number [n/d]
! ----------------------------------------------------------------------------
!--- define B = log(z0_m / z0_t)
if (Re <= Re_rough_min) then
B = B1_rough * alog(B3_rough * Re) + B2_rough
else
! *: B4 takes into account Re value at z' ~ O(10) z0
B = B4_rough * (Re**B2_rough)
end if
B = min(B, B_max_land)
z0_t = z0_m / exp(B)
end subroutine
! --------------------------------------------------------------------------------
! thermal roughness definition by Chen, F., Zhang, Y., 2009.
! --------------------------------------------------------------------------------
subroutine get_thermal_roughness_cz(z0_t, B, &
z0_m, Re)
! ----------------------------------------------------------------------------
real, intent(out) :: z0_t !< thermal roughness [m]
real, intent(out) :: B !< = log(z0_m / z0_t) [n/d]
real, intent(in) :: z0_m !< aerodynamic roughness [m]
real, intent(in) :: Re !< roughness Reynolds number [n/d]
B=(kappa*10.0**(-0.4*z0_m/0.07))*(Re**0.45) !Chen and Zhang
! --- define roughness [thermal]
z0_t = z0_m / exp(B)
end subroutine
! --------------------------------------------------------------------------------
! thermal roughness definition by Zilitinkevich, S., 1995.
! --------------------------------------------------------------------------------
subroutine get_thermal_roughness_zi(z0_t, B, &
z0_m, Re)
! ----------------------------------------------------------------------------
real, intent(out) :: z0_t !< thermal roughness [m]
real, intent(out) :: B !< = log(z0_m / z0_t) [n/d]
real, intent(in) :: z0_m !< aerodynamic roughness [m]
real, intent(in) :: Re !< roughness Reynolds number [n/d]
B=0.1*kappa*(Re**0.5) !6-Zilitinkevich
! --- define roughness [thermal]
z0_t = z0_m / exp(B)
end subroutine
! --------------------------------------------------------------------------------
! thermal roughness definition by Cahill, A.T., Parlange, M.B., Albertson, J.D., 1997.
! It is better to use for dynamic surfaces such as sand
! --------------------------------------------------------------------------------
subroutine get_thermal_roughness_ca(z0_t, B, &
z0_m, Re)
! ----------------------------------------------------------------------------
real, intent(out) :: z0_t !< thermal roughness [m]
real, intent(out) :: B !< = log(z0_m / z0_t) [n/d]
real, intent(in) :: z0_m !< aerodynamic roughness [m]
real, intent(in) :: Re !< roughness Reynolds number [n/d]
B=2.46*(Re**0.25)-3.8 !4-Cahill et al.
! --- define roughness [thermal]
z0_t = z0_m / exp(B)
end subroutine
! --------------------------------------------------------------------------------
! thermal roughness definition by Owen P. R., Thomson W. R., 1963.
! --------------------------------------------------------------------------------
subroutine get_thermal_roughness_ot(z0_t, B, &
z0_m, Re)
! ----------------------------------------------------------------------------
real, intent(out) :: z0_t !< thermal roughness [m]
real, intent(out) :: B !< = log(z0_m / z0_t) [n/d]
real, intent(in) :: z0_m !< aerodynamic roughness [m]
real, intent(in) :: Re !< roughness Reynolds number [n/d]
B=kappa*(Re**0.45) !Owen P. R., Thomson W. R.
! --- define roughness [thermal]
z0_t = z0_m / exp(B)
end subroutine
! --------------------------------------------------------------------------------
! thermal roughness definition by Duynkerke P. G., 1992.
!It is better to use for surfaces wiht forest
! --------------------------------------------------------------------------------
subroutine get_thermal_roughness_du(z0_t, B, &
z0_m, u_dyn, LAI)
! ----------------------------------------------------------------------------
real, intent(out) :: z0_t !< thermal roughness [m]
real, intent(out) :: B !< = log(z0_m / z0_t) [n/d]
real, intent(in) :: z0_m !< aerodynamic roughness [m]
real, intent(in) :: u_dyn !< dynamic velocity [m/s]
real, intent(in) :: LAI !< leaf-area index
B=(13*u_dyn**0.4)/LAI+0.85 !Duynkerke P. G., 1992.
! --- define roughness [thermal]
z0_t = z0_m / exp(B)
end subroutine
! --------------------------------------------------------------------------------
! thermal roughness definition z0_t = C*z0_m
! --------------------------------------------------------------------------------
subroutine get_thermal_roughness_zm(z0_t, B, &
z0_m, Czm)
! ----------------------------------------------------------------------------
real, intent(out) :: z0_t !< thermal roughness [m]
real, intent(out) :: B !< = log(z0_m / z0_t) [n/d]
real, intent(in) :: z0_m !< aerodynamic roughness [m]
real, intent(in) :: Czm !< proportionality coefficient
z0_t =Czm*z0_m
B=log(z0_m / z0_t)
end subroutine
! --------------------------------------------------------------------------------
! thermal roughness definition by Chen and Zhang and Zilitinkevich
! --------------------------------------------------------------------------------
subroutine get_thermal_roughness_mix(z0_t, B, &
z0_m, u_dyn, Re)
! ----------------------------------------------------------------------------
real, intent(out) :: z0_t !< thermal roughness [m]
real, intent(out) :: B !< = log(z0_m / z0_t) [n/d]
real, intent(in) :: z0_m !< aerodynamic roughness [m]
real, intent(in) :: u_dyn !< dynamic velocity [m/s]
real, intent(in) :: Re !< roughness Reynolds number [n/d]
real, parameter :: u_dyn_th=0.17 !< dynamic velocity treshhold [m/s]
if (u_dyn <= u_dyn_th) then
B=0.1*kappa*(Re**0.5) !Zilitinkevich
else
B=(kappa*10.0**(-0.4*z0_m/0.07))*(Re**0.45) !Chen and Zhang
end if
! --- define roughness [thermal]
z0_t = z0_m / exp(B)
end subroutine
end module module_z0t
module module_z0t_ocean
!< @brief surface thermal roughness parameterizations for ocean
implicit none
public :: get_thermal_roughness_kl
public :: get_thermal_roughness_ca
public :: get_thermal_roughness_zm
public :: get_thermal_roughness_br
! --------------------------------------------------------------------------------
real, parameter, private :: kappa = 0.40 !< von Karman constant [n/d]
real, parameter, private :: Pr_m = 0.71 !< molecular Prandtl number (air) [n/d]
!< Re fully roughness minimum value [n/d]
real, parameter :: Re_rough_min = 16.3
!< roughness model coeff. [n/d]
!< --- transitional mode
!< B = log(z0_m / z0_t) = B1 * log(B3 * Re) + B2
real, parameter :: B1_rough = 5.0 / 6.0
real, parameter :: B2_rough = 0.45
real, parameter :: B3_rough = kappa * Pr_m
!< --- fully rough mode (Re > Re_rough_min)
!< B = B4 * Re^(B2)
real, parameter :: B4_rough =(0.14 * (30.0**B2_rough)) * (Pr_m**0.8)
real, parameter :: B_max_ocean = 8.0
contains
! thermal roughness definition by Kazakov, Lykosov
! --------------------------------------------------------------------------------
subroutine get_thermal_roughness_kl(z0_t, B, &
z0_m, Re)
! ----------------------------------------------------------------------------
real, intent(out) :: z0_t !< thermal roughness [m]
real, intent(out) :: B !< = log(z0_m / z0_t) [n/d]
real, intent(in) :: z0_m !< aerodynamic roughness [m]
real, intent(in) :: Re !< roughness Reynolds number [n/d]
! ----------------------------------------------------------------------------
!--- define B = log(z0_m / z0_t)
if (Re <= Re_rough_min) then
B = B1_rough * alog(B3_rough * Re) + B2_rough
else
! *: B4 takes into account Re value at z' ~ O(10) z0
B = B4_rough * (Re**B2_rough)
end if
B = min(B, B_max_ocean)
z0_t = z0_m / exp(B)
end subroutine
! --------------------------------------------------------------------------------
! thermal roughness definition by Cahill, A.T., Parlange, M.B., Albertson, J.D., 1997.
! --------------------------------------------------------------------------------
subroutine get_thermal_roughness_ca(z0_t, B, &
z0_m, Re)
! ----------------------------------------------------------------------------
real, intent(out) :: z0_t !< thermal roughness [m]
real, intent(out) :: B !< = log(z0_m / z0_t) [n/d]
real, intent(in) :: z0_m !< aerodynamic roughness [m]
real, intent(in) :: Re !< roughness Reynolds number [n/d]
B=2.46*(Re**0.25)-3.8 !4-Cahill et al.
! --- define roughness [thermal]
z0_t = z0_m / exp(B)
end subroutine
! --------------------------------------------------------------------------------
! thermal roughness definition z0_t = C*z0_m
! --------------------------------------------------------------------------------
subroutine get_thermal_roughness_zm(z0_t, B, &
z0_m, Czm)
! ----------------------------------------------------------------------------
real, intent(out) :: z0_t !< thermal roughness [m]
real, intent(out) :: B !< = log(z0_m / z0_t) [n/d]
real, intent(in) :: z0_m !< aerodynamic roughness [m]
real, intent(in) :: Czm !< proportionality coefficient
z0_t =Czm*z0_m
B=log(z0_m / z0_t)
end subroutine
! --------------------------------------------------------------------------------
! thermal roughness definition by Brutsaert W., 2003.
! --------------------------------------------------------------------------------
subroutine get_thermal_roughness_br(z0_t, B, &
z0_m, Re)
! ----------------------------------------------------------------------------
real, intent(out) :: z0_t !< thermal roughness [m]
real, intent(out) :: B !< = log(z0_m / z0_t) [n/d]
real, intent(in) :: z0_m !< aerodynamic roughness [m]
real, intent(in) :: Re !< roughness Reynolds number [n/d]
B=2.46*(Re**0.25)-2.0 !Brutsaert
! --- define roughness [thermal]
z0_t = z0_m / exp(B)
end subroutine
end module module_z0t_ocean
module module_z0t_snow
!< @brief surface thermal roughness parameterizations for snow
implicit none
public :: get_thermal_roughness_kl
public :: get_thermal_roughness_ca
public :: get_thermal_roughness_zm
public :: get_thermal_roughness_br
! --------------------------------------------------------------------------------
real, parameter, private :: kappa = 0.40 !< von Karman constant [n/d]
real, parameter, private :: Pr_m = 0.71 !< molecular Prandtl number (air) [n/d]
!< Re fully roughness minimum value [n/d]
real, parameter :: Re_rough_min = 16.3
!< roughness model coeff. [n/d]
!< --- transitional mode
!< B = log(z0_m / z0_t) = B1 * log(B3 * Re) + B2
real, parameter :: B1_rough = 5.0 / 6.0
real, parameter :: B2_rough = 0.45
real, parameter :: B3_rough = kappa * Pr_m
!< --- fully rough mode (Re > Re_rough_min)
!< B = B4 * Re^(B2)
real, parameter :: B4_rough =(0.14 * (30.0**B2_rough)) * (Pr_m**0.8)
real, parameter :: B_max_snow = 8.0
contains
! thermal roughness definition by Kazakov, Lykosov
! --------------------------------------------------------------------------------
subroutine get_thermal_roughness_kl(z0_t, B, &
z0_m, Re)
! ----------------------------------------------------------------------------
real, intent(out) :: z0_t !< thermal roughness [m]
real, intent(out) :: B !< = log(z0_m / z0_t) [n/d]
real, intent(in) :: z0_m !< aerodynamic roughness [m]
real, intent(in) :: Re !< roughness Reynolds number [n/d]
! ----------------------------------------------------------------------------
!--- define B = log(z0_m / z0_t)
if (Re <= Re_rough_min) then
B = B1_rough * alog(B3_rough * Re) + B2_rough
else
! *: B4 takes into account Re value at z' ~ O(10) z0
B = B4_rough * (Re**B2_rough)
end if
B = min(B, B_max_snow)
z0_t = z0_m / exp(B)
end subroutine
! --------------------------------------------------------------------------------
! thermal roughness definition by Cahill, A.T., Parlange, M.B., Albertson, J.D., 1997.
! --------------------------------------------------------------------------------
subroutine get_thermal_roughness_ca(z0_t, B, &
z0_m, Re)
! ----------------------------------------------------------------------------
real, intent(out) :: z0_t !< thermal roughness [m]
real, intent(out) :: B !< = log(z0_m / z0_t) [n/d]
real, intent(in) :: z0_m !< aerodynamic roughness [m]
real, intent(in) :: Re !< roughness Reynolds number [n/d]
B=2.46*(Re**0.25)-3.8 !4-Cahill et al.
! --- define roughness [thermal]
z0_t = z0_m / exp(B)
end subroutine
! --------------------------------------------------------------------------------
! thermal roughness definition z0_t = C*z0_m
! --------------------------------------------------------------------------------
subroutine get_thermal_roughness_zm(z0_t, B, &
z0_m, Czm)
! ----------------------------------------------------------------------------
real, intent(out) :: z0_t !< thermal roughness [m]
real, intent(out) :: B !< = log(z0_m / z0_t) [n/d]
real, intent(in) :: z0_m !< aerodynamic roughness [m]
real, intent(in) :: Czm !< proportionality coefficient
z0_t =Czm*z0_m
B=log(z0_m / z0_t)
end subroutine
! --------------------------------------------------------------------------------
! thermal roughness definition by Brutsaert W., 2003.
! --------------------------------------------------------------------------------
subroutine get_thermal_roughness_br(z0_t, B, &
z0_m, Re)
! ----------------------------------------------------------------------------
real, intent(out) :: z0_t !< thermal roughness [m]
real, intent(out) :: B !< = log(z0_m / z0_t) [n/d]
real, intent(in) :: z0_m !< aerodynamic roughness [m]
real, intent(in) :: Re !< roughness Reynolds number [n/d]
B=2.46*(Re**0.25)-2.0 !Brutsaert
! --- define roughness [thermal]
z0_t = z0_m / exp(B)
end subroutine
end module module_z0t_snow
module sfx_thermal_roughness
!< @brief surface thermal roughness parameterizations
! modules used
! --------------------------------------------------------------------------------
use sfx_phys_const
use sfx_surface
! --------------------------------------------------------------------------------
! directives list
! --------------------------------------------------------------------------------
implicit none
! --------------------------------------------------------------------------------
! public interface
! --------------------------------------------------------------------------------
public :: get_thermal_roughness_kl
public :: get_thermal_roughness_cz
public :: get_thermal_roughness_zi
public :: get_thermal_roughness_ca
! --------------------------------------------------------------------------------
! --------------------------------------------------------------------------------
real, parameter, private :: kappa = 0.40 !< von Karman constant [n/d]
! --------------------------------------------------------------------------------
contains
! thermal roughness definition by (Kazakov, Lykosov)
! --------------------------------------------------------------------------------
subroutine get_thermal_roughness_kl(z0_t, B, &
z0_m, Re, surface_type)
! ----------------------------------------------------------------------------
real, intent(out) :: z0_t !< thermal roughness [m]
real, intent(out) :: B !< = log(z0_m / z0_t) [n/d]
real, intent(in) :: z0_m !< aerodynamic roughness [m]
real, intent(in) :: Re !< roughness Reynolds number [n/d]
integer, intent(in) :: surface_type !< = [ocean] || [land] || [lake]
! ----------------------------------------------------------------------------
! --- local variables
! ----------------------------------------------------------------------------
!--- define B = log(z0_m / z0_t)
if (Re <= Re_rough_min) then
B = B1_rough * alog(B3_rough * Re) + B2_rough
else
! *: B4 takes into account Re value at z' ~ O(10) z0
B = B4_rough * (Re**B2_rough)
end if
! --- apply max restriction based on surface type
if (surface_type == surface_ocean) then
B = min(B, B_max_ocean)
else if (surface_type == surface_lake) then
B = min(B, B_max_lake)
else if (surface_type == surface_land) then
B = min(B, B_max_land)
end if
! --- define roughness [thermal]
z0_t = z0_m / exp(B)
end subroutine
! --------------------------------------------------------------------------------
! thermal roughness definition by (Chen, F., Zhang, Y., 2009)
! --------------------------------------------------------------------------------
subroutine get_thermal_roughness_cz(z0_t, B, &
z0_m, Re, surface_type)
! ----------------------------------------------------------------------------
real, intent(out) :: z0_t !< thermal roughness [m]
real, intent(out) :: B !< = log(z0_m / z0_t) [n/d]
real, intent(in) :: z0_m !< aerodynamic roughness [m]
real, intent(in) :: Re !< roughness Reynolds number [n/d]
integer, intent(in) :: surface_type !< = [ocean] || [land] || [lake]
! --- local variables
! ----------------------------------------------------------------------------
!--- define B = log(z0_m / z0_t)
B = (kappa * 10.0**(-0.4 * z0_m / 0.07)) * (Re**0.45)
! --- define roughness [thermal]
z0_t = z0_m / exp(B)
end subroutine
! --------------------------------------------------------------------------------
! thermal roughness definition by (Zilitinkevich, S., 1995)
! --------------------------------------------------------------------------------
subroutine get_thermal_roughness_zi(z0_t, B, &
z0_m, Re, surface_type)
! ----------------------------------------------------------------------------
real, intent(out) :: z0_t !< thermal roughness [m]
real, intent(out) :: B !< = log(z0_m / z0_t) [n/d]
real, intent(in) :: z0_m !< aerodynamic roughness [m]
real, intent(in) :: Re !< roughness Reynolds number [n/d]
integer, intent(in) :: surface_type !< = [ocean] || [land] || [lake]
! --- local variables
! ----------------------------------------------------------------------------
!--- define B = log(z0_m / z0_t)
B = 0.1 * kappa * (Re**0.5)
! --- define roughness [thermal]
z0_t = z0_m / exp(B)
end subroutine
! --------------------------------------------------------------------------------
! thermal roughness definition by (Cahill, A.T., Parlange, M.B., Albertson, J.D., 1997)
! --------------------------------------------------------------------------------
subroutine get_thermal_roughness_ca(z0_t, B, &
z0_m, Re, surface_type)
! ----------------------------------------------------------------------------
real, intent(out) :: z0_t !< thermal roughness [m]
real, intent(out) :: B !< = log(z0_m / z0_t) [n/d]
real, intent(in) :: z0_m !< aerodynamic roughness [m]
real, intent(in) :: Re !< roughness Reynolds number [n/d]
integer, intent(in) :: surface_type !< = [ocean] || [land] || [lake]
! --- local variables
! ----------------------------------------------------------------------------
!--- define B = log(z0_m / z0_t)
B = 2.46 * (Re**0.25) - 3.8
! --- define roughness [thermal]
z0_t = z0_m / exp(B)
end subroutine
! --------------------------------------------------------------------------------
end module sfx_thermal_roughness
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment