Skip to content
Snippets Groups Projects
Commit 486be309 authored by 数学の武士's avatar 数学の武士
Browse files

ESM using structs

parent ad58b9da
No related branches found
No related tags found
No related merge requests found
Showing
with 1073 additions and 1359 deletions
cmake_minimum_required(VERSION 3.19)
option(INCLUDE_CUDA "GPU build in mode" OFF)
option(INCLUDE_CXX "CXX build in mode" OFF)
option(USE_CXX "CXX build in mode" OFF)
option(BUILD_DOC "Build documentation" OFF)
option(SFX_CHECK_NAN "Build documentation" OFF)
option(USE_CONFIG_PARSER "Build config parser" OFF)
......@@ -31,27 +31,32 @@ set(CMAKE_Fortran_MODULE_DIRECTORY ${CMAKE_BINARY_DIR}/modules)
if(USE_CONFIG_PARSER)
add_subdirectory(parser/)
list(APPEND RUN_MACRO -DUSE_CONFIG_PARSER)
set(INCLUDE_CXX ON)
add_definitions(-DUSE_CONFIG_PARSER)
# list(APPEND RUN_MACRO -DUSE_CONFIG_PARSER)
set(USE_CXX ON)
endif(USE_CONFIG_PARSER)
if(INCLUDE_CXX)
list(APPEND RUN_MACRO -DINCLUDE_CXX)
endif(INCLUDE_CXX)
if(INCLUDE_CUDA)
if(NOT DEFINED CMAKE_CUDA_ARCHITECTURES)
message(FATAL_ERROR "
CMake will not pass any architecture flags to the compiler
because the CUDA architecture is not set. You should specify
an architecture: set -DCMAKE_CUDA_ARCHITECTURES=<N>.")
endif(NOT DEFINED CMAKE_CUDA_ARCHITECTURES)
enable_language(CUDA)
find_package(CUDA REQUIRED)
include_directories(${CUDA_INCLUDE_DIRS})
list(APPEND RUN_MACRO -DINCLUDE_CUDA)
set(INCLUDE_CXX ON)
include_directories(${CMAKE_CUDA_TOOLKIT_INCLUDE_DIRECTORIES})
add_definitions(-DINCLUDE_CUDA)
set(USE_CXX ON)
endif(INCLUDE_CUDA)
if(INCLUDE_CXX)
if(USE_CXX)
enable_language(C)
enable_language(CXX)
set(CMAKE_CXX_STANDARD 11)
endif(INCLUDE_CXX)
add_definitions(-DINCLUDE_CXX)
# list(APPEND RUN_MACRO -DINCLUDE_CXX)
endif(USE_CXX)
set(SOURCES_F
srcF/sfx_io.f90
......@@ -77,43 +82,43 @@ set(HEADERS_F
includeF/sfx_def.fi
)
if(INCLUDE_CXX)
if(USE_CXX)
set(SOURCES_C
srcC/sfx_call_cxx.c
)
set(HEADERS_C
includeC/sfx_data.h
)
set(SOURCES_CXX
srcCXX/sfx_surface.cpp
srcCXX/sfx_esm.cpp
srcCXX/sfx_compute_esm.cpp
srcCXX/sfx_sheba.cpp
srcCXX/sfx_compute_sheba.cpp
srcCXX/sfx_call_class_func.cpp
)
set(HEADERS_CXX
includeCXX/sfx_surface.h
includeCU/sfx_surface.cuh
includeCU/sfx_math.cuh
includeCU/sfx_esm_compute_subfunc.cuh
includeCXX/sfx_esm.h
includeCXX/sfx_compute_esm.h
includeCXX/sfx_sheba.h
includeCXX/sfx_compute_sheba.h
includeCXX/sfx_call_class_func.h
)
endif(INCLUDE_CXX)
endif(USE_CXX)
if(INCLUDE_CUDA)
set(SOURCES_CU
srcCU/sfx_surface.cu
srcCU/sfx_compute_esm.cu
srcCU/sfx_esm.cu
srcCU/sfx_compute_sheba.cu
)
set(HEADERS_CU
includeCU/sfx_surface.cuh
includeCU/sfx_compute_esm.cuh
includeCU/sfx_compute_sheba.cuh
)
endif(INCLUDE_CUDA)
if(INCLUDE_CXX OR INCLUDE_CUDA)
if(USE_CXX OR INCLUDE_CUDA)
set(MEMPROC_SOURCES_CXX
srcCXX/sfx_memory_processing.cpp
)
......@@ -130,31 +135,31 @@ if(INCLUDE_CXX OR INCLUDE_CUDA)
includeCU/sfx_memory_processing.cuh
)
endif(INCLUDE_CUDA)
endif(INCLUDE_CXX OR INCLUDE_CUDA)
endif(USE_CXX OR INCLUDE_CUDA)
set(SOURCES ${MEMPROC_HEADERS_CU} ${MEMPROC_SOURCES_CU} ${MEMPROC_HEADERS_CXX} ${MEMPROC_SOURCES_CXX} ${HEADERS_CU} ${SOURCES_CU} ${HEADERS_CXX} ${SOURCES_CXX} ${SOURCES_C} ${HEADERS_F} ${SOURCES_F})
set(SOURCES ${MEMPROC_HEADERS_CU} ${MEMPROC_SOURCES_CU} ${MEMPROC_HEADERS_CXX} ${MEMPROC_SOURCES_CXX} ${HEADERS_CU} ${SOURCES_CU} ${HEADERS_C} ${HEADERS_CXX} ${SOURCES_CXX} ${SOURCES_C} ${HEADERS_F} ${SOURCES_F})
set(CMAKE_Fortran_FLAGS " -g -fbacktrace -ffpe-trap=zero,overflow,underflow -cpp ")
if(INCLUDE_CXX OR INCLUDE_CUDA)
if(USE_CXX OR INCLUDE_CUDA)
set(CMAKE_CXX_FLAGS " -g -Wunused-variable ")
set(CMAKE_C_FLAGS " -g ")
set(CMAKE_CUDA_FLAGS " -g ")
endif(INCLUDE_CXX OR INCLUDE_CUDA)
endif(USE_CXX OR INCLUDE_CUDA)
add_executable(sfx ${SOURCES})
add_definitions(${RUN_MACRO})
set_property(TARGET sfx PROPERTY LINKER_LANGUAGE Fortran)
target_include_directories(sfx PUBLIC ${CMAKE_BINARY_DIR}/modules/)
add_executable(drag ${SOURCES})
set_property(TARGET drag PROPERTY LINKER_LANGUAGE Fortran)
target_include_directories(drag PUBLIC ${CMAKE_BINARY_DIR}/modules/)
if(USE_CONFIG_PARSER)
target_link_libraries(sfx parser_F parser_CXX)
target_link_libraries(drag parser_F parser_CXX)
endif(USE_CONFIG_PARSER)
#copy data on post build
add_custom_command(
TARGET sfx POST_BUILD
TARGET drag POST_BUILD
COMMAND ${CMAKE_COMMAND} -E copy_directory
${CMAKE_SOURCE_DIR}/data
${CMAKE_CURRENT_BINARY_DIR}/data)
\ No newline at end of file
#pragma once
#ifdef __cplusplus
extern "C" {
#endif
struct meteoDataType
{
float h;
float U;
float dT;
float Tsemi;
float dQ;
float z0_m;
};
struct meteoDataVecTypeC
{
float *h;
float *U;
float *dT;
float *Tsemi;
float *dQ;
float *z0_m;
};
struct sfxDataType
{
float zeta;
float Rib;
float Re;
float B;
float z0_m;
float z0_t;
float Rib_conv_lim;
float Cm;
float Ct;
float Km;
float Pr_t_inv;
};
struct sfxDataVecTypeC
{
float *zeta;
float *Rib;
float *Re;
float *B;
float *z0_m;
float *z0_t;
float *Rib_conv_lim;
float *Cm;
float *Ct;
float *Km;
float *Pr_t_inv;
};
// use sfx_esm_param
struct sfx_esm_param
{
float kappa;
float Pr_t_0_inv;
float Pr_t_inf_inv;
float alpha_m;
float alpha_h;
float alpha_h_fix;
float beta_m;
float beta_h;
float Rib_max;
};
struct sfx_esm_numericsTypeC
{
int maxiters_convection;
int maxiters_charnock;
};
struct sfx_surface_param
{
int surface_ocean;
int surface_land;
int surface_lake;
float gamma_c;
float Re_visc_min;
float h_charnock;
float c1_charnock;
float c2_charnock;
float Re_rough_min;
float B1_rough;
float B2_rough;
float B3_rough;
float B4_rough;
float B_max_lake;
float B_max_ocean;
float B_max_land;
};
// TODO: add later after esm implementation
// struct sfx_sheba_param
// {
// float alpha_m;
// float alpha_h;
// float a_m;
// float b_m;
// float a_h;
// float b_h;
// float c_h;
// };
struct sfx_phys_constants
{
float Pr_m;
float g;
float nu_air;
};
#ifdef __cplusplus
}
#endif
\ No newline at end of file
#pragma once
template<typename T>
void compute_flux_esm_gpu(T *zeta_, T *Rib_, T *Re_, T *B_, T *z0_m_, T *z0_t_, T *Rib_conv_lim_, T *Cm_, T *Ct_, T *Km_, T *Pr_t_inv_,
const T *U_, const T *dT_, const T *Tsemi_, const T *dQ_, const T *h_, const T *in_z0_m_,
const T kappa, const T Pr_t_0_inv, const T Pr_t_inf_inv,
const T alpha_m, const T alpha_h, const T alpha_h_fix,
const T beta_m, const T beta_h, const T Rib_max, const T Re_rough_min,
const T B1_rough, const T B2_rough,
const T B_max_land, const T B_max_ocean, const T B_max_lake,
const T gamma_c, const T Re_visc_min,
const T Pr_m, const T nu_air, const T g,
const int maxiters_charnock, const int maxiters_convection,
const int grid_size);
\ No newline at end of file
#pragma once
#include "../includeC/sfx_data.h"
#include "../includeCU/sfx_math.cuh"
template<typename T>
FUCNTION_DECLARATION_SPECIFIER void get_convection_lim(T &zeta_lim, T &Rib_lim, T &f_m_lim, T &f_h_lim,
const T h0_m, const T h0_t, const T B,
const sfx_esm_param& param)
{
T psi_m, psi_h, f_m, f_h, c;
c = pow(param.Pr_t_inf_inv / param.Pr_t_0_inv, 4);
zeta_lim = (2.0 * param.alpha_h - c * param.alpha_m -
sqrt( (c * param.alpha_m)*(c * param.alpha_m) + 4.0 * c * param.alpha_h * (param.alpha_h - param.alpha_m))) / (2.0 * param.alpha_h*param.alpha_h);
f_m_lim = pow(1.0 - param.alpha_m * zeta_lim, 0.25);
f_h_lim = sqrt(1.0 - param.alpha_h * zeta_lim);
f_m = zeta_lim / h0_m;
f_h = zeta_lim / h0_t;
if (fabs(B) < 1.0e-10) f_h = f_m;
f_m = pow(1.0 - param.alpha_m * f_m, 0.25);
f_h = sqrt(1.0 - param.alpha_h_fix * f_h);
psi_m = 2.0 * (atan(f_m_lim) - atan(f_m)) + log((f_m_lim - 1.0) * (f_m + 1.0)/((f_m_lim + 1.0) * (f_m - 1.0)));
psi_h = log((f_h_lim - 1.0) * (f_h + 1.0)/((f_h_lim + 1.0) * (f_h - 1.0))) / param.Pr_t_0_inv;
Rib_lim = zeta_lim * psi_h / (psi_m * psi_m);
}
template<typename T>
FUCNTION_DECLARATION_SPECIFIER void get_psi_stable(T &psi_m, T &psi_h, T &zeta,
const T Rib, const T h0_m, const T h0_t, const T B,
const sfx_esm_param& param)
{
T Rib_coeff, psi0_m, psi0_h, phi, c;
psi0_m = log(h0_m);
psi0_h = B / psi0_m;
Rib_coeff = param.beta_m * Rib;
c = (psi0_h + 1.0) / param.Pr_t_0_inv - 2.0 * Rib_coeff;
zeta = psi0_m * (sqrt(c*c + 4.0 * Rib_coeff * (1.0 - Rib_coeff)) - c) / (2.0 * param.beta_m * (1.0 - Rib_coeff));
phi = param.beta_m * zeta;
psi_m = psi0_m + phi;
psi_h = (psi0_m + B) / param.Pr_t_0_inv + phi;
}
template<typename T>
FUCNTION_DECLARATION_SPECIFIER void get_psi_convection(T &psi_m, T &psi_h, T &zeta,
const T Rib, const T h0_m, const T h0_t, const T B,
const T zeta_conv_lim, const T f_m_conv_lim, const T f_h_conv_lim,
const sfx_esm_param& param,
const sfx_esm_numericsTypeC& numerics)
{
T zeta0_m, zeta0_h, f0_m, f0_h, p_m, p_h, a_m, a_h, c_lim, f;
p_m = 2.0 * atan(f_m_conv_lim) + log((f_m_conv_lim - 1.0) / (f_m_conv_lim + 1.0));
p_h = log((f_h_conv_lim - 1.0) / (f_h_conv_lim + 1.0));
zeta = zeta_conv_lim;
for (int i = 1; i <= numerics.maxiters_convection + 1; i++)
{
zeta0_m = zeta / h0_m;
zeta0_h = zeta / h0_t;
if (fabs(B) < 1.0e-10)
zeta0_h = zeta0_m;
f0_m = pow(1.0 - param.alpha_m * zeta0_m, 0.25);
f0_h = sqrt(1.0 - param.alpha_h_fix * zeta0_h);
a_m = -2.0*atan(f0_m) + log((f0_m + 1.0)/(f0_m - 1.0));
a_h = log((f0_h + 1.0)/(f0_h - 1.0));
c_lim = pow(zeta_conv_lim / zeta, 1.0 / 3.0);
f = 3.0 * (1.0 - c_lim);
psi_m = f / f_m_conv_lim + p_m + a_m;
psi_h = (f / f_h_conv_lim + p_h + a_h) / param.Pr_t_0_inv;
if (i == numerics.maxiters_convection + 1)
break;
zeta = Rib * psi_m * psi_m / psi_h;
}
}
template<typename T>
FUCNTION_DECLARATION_SPECIFIER void get_psi_neutral(T &psi_m, T &psi_h, T &zeta,
const T h0_m, const T h0_t, const T B,
const sfx_esm_param& param)
{
zeta = 0.0;
psi_m = log(h0_m);
psi_h = log(h0_t) / param.Pr_t_0_inv;
if (fabs(B) < 1.0e-10)
psi_h = psi_m / param.Pr_t_0_inv;
}
template<typename T>
FUCNTION_DECLARATION_SPECIFIER void get_psi_semi_convection(T &psi_m, T &psi_h, T &zeta,
const T Rib, const T h0_m, const T h0_t, const T B,
const sfx_esm_param& param,
const sfx_esm_numericsTypeC& numerics)
{
T zeta0_m, zeta0_h, f0_m, f0_h, f_m, f_h;
psi_m = log(h0_m);
psi_h = log(h0_t);
if (fabs(B) < 1.0e-10)
psi_h = psi_m;
zeta = Rib * param.Pr_t_0_inv * psi_m * psi_m / psi_h;
for (int i = 1; i <= numerics.maxiters_convection + 1; i++)
{
zeta0_m = zeta / h0_m;
zeta0_h = zeta / h0_t;
if (fabs(B) < 1.0e-10)
zeta0_h = zeta0_m;
f_m = pow(1.0 - param.alpha_m * zeta, 0.25e0);
f_h = sqrt(1.0 - param.alpha_h_fix * zeta);
f0_m = pow(1.0 - param.alpha_m * zeta0_m, 0.25e0);
f0_h = sqrt(1.0 - param.alpha_h_fix * zeta0_h);
f0_m = sfx_math::max(f0_m, T(1.000001e0));
f0_h = sfx_math::max(f0_h, T(1.000001e0));
psi_m = log((f_m - 1.0e0)*(f0_m + 1.0e0)/((f_m + 1.0e0)*(f0_m - 1.0e0))) + 2.0e0*(atan(f_m) - atan(f0_m));
psi_h = log((f_h - 1.0e0)*(f0_h + 1.0e0)/((f_h + 1.0e0)*(f0_h - 1.0e0))) / param.Pr_t_0_inv;
if (i == numerics.maxiters_convection + 1)
break;
zeta = Rib * psi_m * psi_m / psi_h;
}
}
\ No newline at end of file
#pragma once
#ifdef INCLUDE_CUDA
#include <cuda.h>
#include <cuda_runtime_api.h>
#define FUCNTION_DECLARATION_SPECIFIER __host__ __device__
#else
#define FUCNTION_DECLARATION_SPECIFIER
#endif
namespace sfx_math
{
template<typename T>
FUCNTION_DECLARATION_SPECIFIER T min(const T a, const T b);
template<typename T>
FUCNTION_DECLARATION_SPECIFIER T max(const T a, const T b);
}
template<typename T>
FUCNTION_DECLARATION_SPECIFIER T sfx_math::min(const T a, const T b)
{
if(a > b)
return b;
return a;
}
template<typename T>
FUCNTION_DECLARATION_SPECIFIER T sfx_math::max(const T a, const T b)
{
if(a > b)
return a;
return b;
}
\ No newline at end of file
#pragma once
#include "../includeC/sfx_data.h"
#include "../includeCU/sfx_math.cuh"
// template<typename T>
// __device__ void get_charnock_roughness(T &z0_m, T &u_dyn0,
// const T h, const T U,
// const T kappa,
// const T h_charnock, const T c1_charnock, const T c2_charnock,
// const int maxiters);
template<typename T>
FUCNTION_DECLARATION_SPECIFIER void get_thermal_roughness(T &z0_t, T &B,
const T z0_m, const T Re,
const struct sfx_surface_param& param,
const int surface_type)
{
// --- define B = log(z0_m / z0_t)
B = (Re <= param.Re_rough_min) ? param.B1_rough * log(param.B3_rough * Re) + param.B2_rough :
param.B4_rough * (pow(Re, param.B2_rough));
// --- apply max restriction based on surface type
if (surface_type == param.surface_ocean) B = sfx_math::min(B, param.B_max_ocean);
if (surface_type == param.surface_lake) B = sfx_math::min(B, param.B_max_land);
if (surface_type == param.surface_land) B = sfx_math::min(B, param.B_max_lake);
// --- define roughness [thermal]
z0_t = z0_m / exp(B);
}
template<typename T>
FUCNTION_DECLARATION_SPECIFIER void get_charnock_roughness(T &z0_m, T &u_dyn0,
const T h, const T U,
const sfx_esm_param& model_param,
const sfx_surface_param& surface_param,
const sfx_esm_numericsTypeC& numerics)
{
T Uc, a, b, c, c_min, f;
Uc = U;
a = 0.0;
b = 25.0;
c_min = log(surface_param.h_charnock) / model_param.kappa;
for (int i = 0; i < numerics.maxiters_charnock; i++)
{
f = surface_param.c1_charnock - 2.0 * log(Uc);
for (int j = 0; j < numerics.maxiters_charnock; j++)
{
c = (f + 2.0 * log(b)) / model_param.kappa;
if (U <= 8.0e0)
a = log(1.0 + surface_param.c2_charnock * ( pow(b / Uc, 3) ) ) / model_param.kappa;
c = sfx_math::max(c - a, c_min);
b = c;
}
z0_m = surface_param.h_charnock * exp(-c * model_param.kappa);
z0_m = sfx_math::max(z0_m, T(0.000015e0));
Uc = U * log(surface_param.h_charnock / z0_m) / log(h / z0_m);
}
u_dyn0 = Uc / c;
}
\ No newline at end of file
#pragma once
#include "../includeC/sfx_data.h"
#ifdef __cplusplus
extern "C" {
#endif
void surf_flux_esm_CXX (float *zeta_, float *Rib_, float *Re_, float *B_, float *z0_m_, float *z0_t_, float *Rib_conv_lim_, float *Cm_, float *Ct_, float *Km_, float *Pr_t_inv_,
float *U_, float *dT_, float *Tsemi_, float *dQ_, float *h_, float *in_z0_m_,
const float kappa, const float Pr_t_0_inv, const float Pr_t_inf_inv,
const float alpha_m, const float alpha_h, const float alpha_h_fix,
const float beta_m, const float beta_h, const float Rib_max, const float Re_rough_min,
const float B1_rough, const float B2_rough,
const float B_max_land, const float B_max_ocean, const float B_max_lake,
const float gamma_c, const float Re_visc_min,
const float Pr_m, const float nu_air, const float g,
const int maxiters_charnock, const int maxiters_convection,
void surf_flux_esm_CXX(struct sfxDataVecTypeC* sfx,
struct meteoDataVecTypeC* meteo,
const struct sfx_esm_param* model_param,
const struct sfx_surface_param* surface_param,
const struct sfx_esm_numericsTypeC* numerics,
const struct sfx_phys_constants* constants,
const int grid_size);
void surf_flux_sheba_CXX (float *zeta_, float *Rib_, float *Re_, float *B_, float *z0_m_, float *z0_t_, float *Rib_conv_lim_, float *Cm_, float *Ct_, float *Km_, float *Pr_t_inv_,
......
#pragma once
template<typename T>
void compute_flux_esm_cpu(T *zeta_, T *Rib_, T *Re_, T *B_, T *z0_m_, T *z0_t_, T *Rib_conv_lim_, T *Cm_, T *Ct_, T *Km_, T *Pr_t_inv_,
const T *U_, const T *dT_, const T *Tsemi_, const T *dQ_, const T *h_, const T *in_z0_m_,
const T kappa, const T Pr_t_0_inv, const T Pr_t_inf_inv,
const T alpha_m, const T alpha_h, const T alpha_h_fix,
const T beta_m, const T beta_h, const T Rib_max, const T Re_rough_min,
const T B1_rough, const T B2_rough,
const T B_max_land, const T B_max_ocean, const T B_max_lake,
const T gamma_c, const T Re_visc_min,
const T Pr_m, const T nu_air, const T g,
const int maxiters_charnock, const int maxiters_convection,
const int grid_size);
\ No newline at end of file
#pragma once
#include "sfx_template_parameters.h"
#include <cstddef>
#include "../includeC/sfx_data.h"
// #include <cstddef>
template<typename T, MemType memIn, MemType memOut, MemType RunMem >
class FluxEsm
class FluxEsmBase
{
private:
T *U, *dT, *Tsemi, *dQ, *h, *in_z0_m;
T *zeta, *Rib, *Re, *B, *z0_m, *z0_t, *Rib_conv_lim, *Cm, *Ct, *Km, *Pr_t_inv;
protected:
struct sfxDataVecTypeC sfx;
struct meteoDataVecTypeC meteo;
struct sfx_esm_param model_param;
struct sfx_surface_param surface_param;
struct sfx_esm_numericsTypeC numerics;
struct sfx_phys_constants phys_constants;
T kappa, Pr_t_0_inv, Pr_t_inf_inv,
alpha_m, alpha_h, alpha_h_fix,
beta_m, beta_h,
Rib_max, Re_rough_min,
B1_rough, B2_rough,
B_max_land, B_max_ocean, B_max_lake,
gamma_c,
Re_visc_min,
Pr_m, nu_air, g;
struct sfxDataVecTypeC* res_sfx;
int grid_size;
bool ifAllocated;
size_t allocated_size;
public:
FluxEsm();
void set_params(const int grid_size, const T kappa, const T Pr_t_0_inv, const T Pr_t_inf_inv,
const T alpha_m, const T alpha_h, const T alpha_h_fix,
const T beta_m, const T beta_h, const T Rib_max, const T Re_rough_min,
const T B1_rough, const T B2_rough,
const T B_max_land, const T B_max_ocean, const T B_max_lake,
const T gamma_c, const T Re_visc_min,
const T Pr_m, const T nu_air, const T g);
~FluxEsm();
FluxEsmBase() = default;
FluxEsmBase(struct sfxDataVecTypeC* sfx,
struct meteoDataVecTypeC* meteo,
const struct sfx_esm_param model_param,
const struct sfx_surface_param surface_param,
const struct sfx_esm_numericsTypeC numerics,
const struct sfx_phys_constants phys_constants,
const int grid_size);
~FluxEsmBase();
};
template<typename T, MemType memIn, MemType memOut, MemType RunMem >
class FluxEsm : public FluxEsmBase<T, memIn, memOut, RunMem>
{};
void compute_flux_esm(T *zeta_, T *Rib_, T *Re_, T *B_, T *z0_m_, T *z0_t_, T *Rib_conv_lim_, T *Cm_, T *Ct_, T *Km_, T *Pr_t_inv_,
T *U_, T *dT_, T *Tsemi_, T *dQ_, T *h_, T *in_z0_m_,
const int maxiters_charnock, const int maxiters_convection);
template<typename T, MemType memIn, MemType memOut >
class FluxEsm<T, memIn, memOut, MemType::CPU> : public FluxEsmBase<T, memIn, memOut, MemType::CPU>
{
using FluxEsmBase<T, memIn, memOut, MemType::CPU>::res_sfx;
using FluxEsmBase<T, memIn, memOut, MemType::CPU>::sfx;
using FluxEsmBase<T, memIn, memOut, MemType::CPU>::meteo;
using FluxEsmBase<T, memIn, memOut, MemType::CPU>::model_param;
using FluxEsmBase<T, memIn, memOut, MemType::CPU>::surface_param;
using FluxEsmBase<T, memIn, memOut, MemType::CPU>::numerics;
using FluxEsmBase<T, memIn, memOut, MemType::CPU>::phys_constants;
using FluxEsmBase<T, memIn, memOut, MemType::CPU>::grid_size;
using FluxEsmBase<T, memIn, memOut, MemType::CPU>::ifAllocated;
using FluxEsmBase<T, memIn, memOut, MemType::CPU>::allocated_size;
public:
FluxEsm() = default;
FluxEsm(struct sfxDataVecTypeC* sfx,
struct meteoDataVecTypeC* meteo,
const struct sfx_esm_param model_param,
const struct sfx_surface_param surface_param,
const struct sfx_esm_numericsTypeC numerics,
const struct sfx_phys_constants phys_constants,
const int grid_size) : FluxEsmBase<T, memIn, memOut, MemType::CPU>(sfx, meteo,
model_param, surface_param, numerics, phys_constants, grid_size) {};
~FluxEsm() = default;
void compute_flux();
};
private:
void set_data( T *zeta_, T *Rib_, T *Re_, T *B_, T *z0_m_, T *z0_t_, T *Rib_conv_lim_, T *Cm_, T *Ct_, T *Km_, T *Pr_t_inv_,
T *U_, T *dT_, T *Tsemi_, T *dQ_, T *h_, T *in_z0_m_);
#ifdef INCLUDE_CUDA
template<typename T, MemType memIn, MemType memOut >
class FluxEsm<T, memIn, memOut, MemType::GPU> : public FluxEsmBase<T, memIn, memOut, MemType::GPU>
{
using FluxEsmBase<T, memIn, memOut, MemType::GPU>::res_sfx;
using FluxEsmBase<T, memIn, memOut, MemType::GPU>::sfx;
using FluxEsmBase<T, memIn, memOut, MemType::GPU>::meteo;
using FluxEsmBase<T, memIn, memOut, MemType::GPU>::model_param;
using FluxEsmBase<T, memIn, memOut, MemType::GPU>::surface_param;
using FluxEsmBase<T, memIn, memOut, MemType::GPU>::numerics;
using FluxEsmBase<T, memIn, memOut, MemType::GPU>::phys_constants;
using FluxEsmBase<T, memIn, memOut, MemType::GPU>::grid_size;
using FluxEsmBase<T, memIn, memOut, MemType::GPU>::ifAllocated;
using FluxEsmBase<T, memIn, memOut, MemType::GPU>::allocated_size;
public:
FluxEsm() = default;
FluxEsm(struct sfxDataVecTypeC* sfx,
struct meteoDataVecTypeC* meteo,
const struct sfx_esm_param model_param,
const struct sfx_surface_param surface_param,
const struct sfx_esm_numericsTypeC numerics,
const struct sfx_phys_constants phys_constants,
const int grid_size) : FluxEsmBase<T, memIn, memOut, MemType::GPU>(sfx, meteo,
model_param, surface_param, numerics, phys_constants, grid_size) {};
~FluxEsm() = default;
void compute_flux();
};
#endif
\ No newline at end of file
#pragma once
template<typename T>
void get_charnock_roughness(T &z0_m, T &u_dyn0,
const T h, const T U,
const T kappa,
const T h_charnock, const T c1_charnock, const T c2_charnock,
const int maxiters);
template<typename T>
void get_thermal_roughness(T &z0_t, T &B,
const T z0_m, const T Re,
const T Re_rough_min,
const T B1_rough, const T B2_rough, const T B3_rough, const T B4_rough,
const T B_max_ocean, const T B_max_lake, const T B_max_land,
const int surface_type);
\ No newline at end of file
#include <stdlib.h>
#include <stdio.h>
#include "../includeCXX/sfx_call_class_func.h"
// #include "../includeC/sfx_call_cxx.h"
// -------------------------------------------------------------------------- //
void get_surface_fluxes_esm (float *zeta_, float *Rib_, float *Re_, float *B_, float *z0_m_, float *z0_t_, float *Rib_conv_lim_, float *Cm_, float *Ct_, float *Km_, float *Pr_t_inv_,
float *U_, float *dT_, float *Tsemi_, float *dQ_, float *h_, float *in_z0_m_,
const float *kappa, const float *Pr_t_0_inv, const float *Pr_t_inf_inv,
const float *alpha_m, const float *alpha_h, const float *alpha_h_fix,
const float *beta_m, const float *beta_h, const float *Rib_max, const float *Re_rough_min,
const float *B1_rough, const float *B2_rough,
const float *B_max_land, const float *B_max_ocean, const float *B_max_lake,
const float *gamma_c, const float *Re_visc_min,
const float *Pr_m, const float *nu_air, const float *g,
const int *maxiters_charnock, const int *maxiters_convection,
void get_surface_fluxes_esm (struct sfxDataVecTypeC* sfx,
struct meteoDataVecTypeC* meteo,
const struct sfx_esm_param* model_param,
const struct sfx_surface_param* surface_param,
const struct sfx_esm_numericsTypeC* numerics,
const struct sfx_phys_constants* constants,
const int *grid_size)
{
surf_flux_esm_CXX ( zeta_, Rib_, Re_, B_, z0_m_, z0_t_, Rib_conv_lim_, Cm_, Ct_, Km_, Pr_t_inv_,
U_, dT_, Tsemi_, dQ_, h_, in_z0_m_,
*kappa, *Pr_t_0_inv, *Pr_t_inf_inv,
*alpha_m, *alpha_h, *alpha_h_fix,
*beta_m, *beta_h, *Rib_max, *Re_rough_min,
*B1_rough, *B2_rough,
*B_max_land, *B_max_ocean, *B_max_lake,
*gamma_c, *Re_visc_min,
*Pr_m, *nu_air, *g,
*maxiters_charnock, *maxiters_convection,
*grid_size);
surf_flux_esm_CXX(sfx, meteo, model_param, surface_param, numerics, constants, *grid_size);
}
void get_surface_fluxes_sheba (float *zeta_, float *Rib_, float *Re_, float *B_, float *z0_m_, float *z0_t_, float *Rib_conv_lim_, float *Cm_, float *Ct_, float *Km_, float *Pr_t_inv_,
......
#include <iostream>
#include "../includeCU/sfx_compute_esm.cuh"
#include "../includeCU/sfx_surface.cuh"
#define gpuErrchk(ans) { gpuAssert((ans), __FILE__, __LINE__); }
inline void gpuAssert(cudaError_t code, const char *file, int line, bool abort=true)
{
if (code != cudaSuccess)
{
fprintf(stderr,"GPUassert: %s %s %d\n", cudaGetErrorString(code), file, line);
if (abort) exit(code);
}
}
template<typename T>
__device__ void get_charnock_roughness(T &z0_m, T &u_dyn0,
const T h, const T U,
const T kappa,
const T h_charnock, const T c1_charnock, const T c2_charnock,
const int maxiters)
{
T Uc, a, b, c, c_min, f;
Uc = U;
a = 0.0;
b = 25.0;
c_min = log(h_charnock) / kappa;
for (int i = 0; i < maxiters; i++)
{
f = c1_charnock - 2.0 * log(Uc);
for (int j = 0; j < maxiters; j++)
{
c = (f + 2.0 * log(b)) / kappa;
if (U <= 8.0e0)
a = log(1.0 + c2_charnock * ( pow(b / Uc, 3) ) ) / kappa;
c = max(c - a, c_min);
b = c;
}
z0_m = h_charnock * exp(-c * kappa);
z0_m = max(z0_m, T(0.000015e0));
Uc = U * log(h_charnock / z0_m) / log(h / z0_m);
}
u_dyn0 = Uc / c;
}
template __device__ void get_charnock_roughness(float &z0_m, float &u_dyn0,
const float h, const float U,
const float kappa,
const float h_charnock, const float c1_charnock, const float c2_charnock,
const int maxiters);
template __device__ void get_charnock_roughness(double &z0_m, double &u_dyn0,
const double h, const double U,
const double kappa,
const double h_charnock, const double c1_charnock, const double c2_charnock,
const int maxiters);
template<typename T>
__device__ void get_convection_lim(T &zeta_lim, T &Rib_lim, T &f_m_lim, T &f_h_lim,
const T h0_m, const T h0_t, const T B,
const T Pr_t_inf_inv, const T Pr_t_0_inv,
const T alpha_h, const T alpha_m, const T alpha_h_fix)
{
T psi_m, psi_h, f_m, f_h, c;
c = pow(Pr_t_inf_inv / Pr_t_0_inv, 4);
zeta_lim = (2.0 * alpha_h - c * alpha_m - sqrt( (c * alpha_m)*(c * alpha_m) + 4.0 * c * alpha_h * (alpha_h - alpha_m))) / (2.0 * alpha_h*alpha_h);
f_m_lim = pow(1.0 - alpha_m * zeta_lim, 0.25);
f_h_lim = sqrt(1.0 - alpha_h * zeta_lim);
f_m = zeta_lim / h0_m;
f_h = zeta_lim / h0_t;
if (fabs(B) < 1.0e-10) f_h = f_m;
f_m = pow(1.0 - alpha_m * f_m, 0.25);
f_h = sqrt(1.0 - alpha_h_fix * f_h);
psi_m = 2.0 * (atan(f_m_lim) - atan(f_m)) + log((f_m_lim - 1.0) * (f_m + 1.0)/((f_m_lim + 1.0) * (f_m - 1.0)));
psi_h = log((f_h_lim - 1.0) * (f_h + 1.0)/((f_h_lim + 1.0) * (f_h - 1.0))) / Pr_t_0_inv;
Rib_lim = zeta_lim * psi_h / (psi_m * psi_m);
}
template __device__ void get_convection_lim(float &zeta_lim, float &Rib_lim, float &f_m_lim, float &f_h_lim,
const float h0_m, const float h0_t, const float B,
const float Pr_t_inf_inv, const float Pr_t_0_inv,
const float alpha_h, const float alpha_m, const float alpha_h_fix);
template __device__ void get_convection_lim(double &zeta_lim, double &Rib_lim, double &f_m_lim, double &f_h_lim,
const double h0_m, const double h0_t, const double B,
const double Pr_t_inf_inv, const double Pr_t_0_inv,
const double alpha_h, const double alpha_m, const double alpha_h_fix);
template<typename T>
void __device__ get_psi_stable(T &psi_m, T &psi_h, T &zeta,
const T Rib, const T h0_m, const T h0_t, const T B,
const T Pr_t_0_inv, const T beta_m)
{
T Rib_coeff, psi0_m, psi0_h, phi, c;
psi0_m = log(h0_m);
psi0_h = B / psi0_m;
Rib_coeff = beta_m * Rib;
c = (psi0_h + 1.0) / Pr_t_0_inv - 2.0 * Rib_coeff;
zeta = psi0_m * (sqrt(c*c + 4.0 * Rib_coeff * (1.0 - Rib_coeff)) - c) / (2.0 * beta_m * (1.0 - Rib_coeff));
phi = beta_m * zeta;
psi_m = psi0_m + phi;
psi_h = (psi0_m + B) / Pr_t_0_inv + phi;
}
template __device__ void get_psi_stable(float &psi_m, float &psi_h, float &zeta,
const float Rib, const float h0_m, const float h0_t, const float B,
const float Pr_t_0_inv, const float beta_m);
template __device__ void get_psi_stable(double &psi_m, double &psi_h, double &zeta,
const double Rib, const double h0_m, const double h0_t, const double B,
const double Pr_t_0_inv, const double beta_m);
template<typename T>
void __device__ get_psi_convection(T &psi_m, T &psi_h, T &zeta,
const T Rib, const T h0_m, const T h0_t, const T B,
const T zeta_conv_lim, const T f_m_conv_lim, const T f_h_conv_lim,
const T Pr_t_0_inv,
const T alpha_h, const T alpha_m, const T alpha_h_fix,
const int maxiters)
{
T zeta0_m, zeta0_h, f0_m, f0_h, p_m, p_h, a_m, a_h, c_lim, f;
p_m = 2.0 * atan(f_m_conv_lim) + log((f_m_conv_lim - 1.0) / (f_m_conv_lim + 1.0));
p_h = log((f_h_conv_lim - 1.0) / (f_h_conv_lim + 1.0));
zeta = zeta_conv_lim;
for (int i = 1; i <= maxiters + 1; i++)
{
zeta0_m = zeta / h0_m;
zeta0_h = zeta / h0_t;
if (fabs(B) < 1.0e-10)
zeta0_h = zeta0_m;
f0_m = pow(1.0 - alpha_m * zeta0_m, 0.25);
f0_h = sqrt(1.0 - alpha_h_fix * zeta0_h);
a_m = -2.0*atan(f0_m) + log((f0_m + 1.0)/(f0_m - 1.0));
a_h = log((f0_h + 1.0)/(f0_h - 1.0));
c_lim = pow(zeta_conv_lim / zeta, 1.0 / 3.0);
f = 3.0 * (1.0 - c_lim);
psi_m = f / f_m_conv_lim + p_m + a_m;
psi_h = (f / f_h_conv_lim + p_h + a_h) / Pr_t_0_inv;
if (i == maxiters + 1)
break;
zeta = Rib * psi_m * psi_m / psi_h;
}
}
template __device__ void get_psi_convection(float &psi_m, float &psi_h, float &zeta,
const float Rib, const float h0_m, const float h0_t, const float B,
const float zeta_conv_lim, const float f_m_conv_lim, const float f_h_conv_lim,
const float Pr_t_0_inv,
const float alpha_h, const float alpha_m, const float alpha_h_fix,
const int maxiters);
template __device__ void get_psi_convection(double &psi_m, double &psi_h, double &zeta,
const double Rib, const double h0_m, const double h0_t, const double B,
const double zeta_conv_lim, const double f_m_conv_lim, const double f_h_conv_lim,
const double Pr_t_0_inv,
const double alpha_h, const double alpha_m, const double alpha_h_fix,
const int maxiters);
template<typename T>
void __device__ get_psi_neutral(T &psi_m, T &psi_h, T &zeta,
const T h0_m, const T h0_t, const T B,
const T Pr_t_0_inv)
{
zeta = 0.0;
psi_m = log(h0_m);
psi_h = log(h0_t) / Pr_t_0_inv;
if (fabs(B) < 1.0e-10)
psi_h = psi_m / Pr_t_0_inv;
}
template __device__ void get_psi_neutral(float &psi_m, float &psi_h, float &zeta,
const float h0_m, const float h0_t, const float B,
const float Pr_t_0_inv);
template __device__ void get_psi_neutral(double &psi_m, double &psi_h, double &zeta,
const double h0_m, const double h0_t, const double B,
const double Pr_t_0_inv);
template<typename T>
void __device__ get_psi_semi_convection(T &psi_m, T &psi_h, T &zeta,
const T Rib, const T h0_m, const T h0_t, const T B,
const T Pr_t_0_inv,
const T alpha_m, const T alpha_h_fix,
const int maxiters)
{
T zeta0_m, zeta0_h, f0_m, f0_h, f_m, f_h;
psi_m = log(h0_m);
psi_h = log(h0_t);
if (fabs(B) < 1.0e-10)
psi_h = psi_m;
zeta = Rib * Pr_t_0_inv * psi_m * psi_m / psi_h;
for (int i = 1; i <= maxiters + 1; i++)
{
zeta0_m = zeta / h0_m;
zeta0_h = zeta / h0_t;
if (fabs(B) < 1.0e-10)
zeta0_h = zeta0_m;
f_m = pow(1.0 - alpha_m * zeta, 0.25e0);
f_h = sqrt(1.0 - alpha_h_fix * zeta);
f0_m = pow(1.0 - alpha_m * zeta0_m, 0.25e0);
f0_h = sqrt(1.0 - alpha_h_fix * zeta0_h);
f0_m = max(f0_m, T(1.000001e0));
f0_h = max(f0_h, T(1.000001e0));
psi_m = log((f_m - 1.0e0)*(f0_m + 1.0e0)/((f_m + 1.0e0)*(f0_m - 1.0e0))) + 2.0e0*(atan(f_m) - atan(f0_m));
psi_h = log((f_h - 1.0e0)*(f0_h + 1.0e0)/((f_h + 1.0e0)*(f0_h - 1.0e0))) / Pr_t_0_inv;
if (i == maxiters + 1)
break;
zeta = Rib * psi_m * psi_m / psi_h;
}
}
template __device__ void get_psi_semi_convection(float &psi_m, float &psi_h, float &zeta,
const float Rib, const float h0_m, const float h0_t, const float B,
const float Pr_t_0_inv,
const float alpha_m, const float alpha_h_fix,
const int maxiters);
template __device__ void get_psi_semi_convection(double &psi_m, double &psi_h, double &zeta,
const double Rib, const double h0_m, const double h0_t, const double B,
const double Pr_t_0_inv,
const double alpha_m, const double alpha_h_fix,
const int maxiters);
template<typename T>
__global__ void kernel_compute_flux_esm_gpu(T *zeta_, T *Rib_, T *Re_, T *B_, T *z0_m_, T *z0_t_, T *Rib_conv_lim_, T *Cm_, T *Ct_, T *Km_, T *Pr_t_inv_,
const T *U_, const T *dT_, const T *Tsemi_, const T *dQ_, const T *h_, const T *in_z0_m_,
const T kappa, const T Pr_t_0_inv, const T Pr_t_inf_inv,
const T alpha_m, const T alpha_h, const T alpha_h_fix,
const T beta_m, const T beta_h, const T Rib_max, const T Re_rough_min,
const T B1_rough, const T B2_rough,
const T B_max_land, const T B_max_ocean, const T B_max_lake,
const T gamma_c, const T Re_visc_min,
const T Pr_m, const T nu_air, const T g,
const int maxiters_charnock, const int maxiters_convection,
const int grid_size)
{
const int index = blockIdx.x * blockDim.x + threadIdx.x;
T h, U, dT, Tsemi, dQ, z0_m;
T Re, z0_t, B, h0_m, h0_t, u_dyn0, zeta, Rib, zeta_conv_lim, Rib_conv_lim, f_m_conv_lim, f_h_conv_lim, psi_m, psi_h, phi_m, phi_h, Km, Pr_t_inv, Cm, Ct;
int surface_type;
T fval;
const T B3_rough = kappa * Pr_m, B4_rough =( 0.14 * ( pow(30.0, B2_rough) ) ) * (pow(Pr_m, 0.8));
const T h_charnock = 10.0, c1_charnock = log(h_charnock * (g / gamma_c)), c2_charnock = Re_visc_min * nu_air * c1_charnock;
if(index < grid_size)
{
U = U_[index];
Tsemi = Tsemi_[index];
dT = dT_[index];
dQ = dQ_[index];
h = h_[index];
z0_m = in_z0_m_[index];
if (z0_m < 0.0) surface_type = 0;
else surface_type = 1;
if (surface_type == 0)
{
get_charnock_roughness(z0_m, u_dyn0, h, U, kappa, h_charnock, c1_charnock, c2_charnock, maxiters_charnock);
h0_m = h / z0_m;
}
if (surface_type == 1)
{
h0_m = h / z0_m;
u_dyn0 = U * kappa / log(h0_m);
}
Re = u_dyn0 * z0_m / nu_air;
if(Re <= Re_rough_min) B = B1_rough * log(B3_rough * Re) + B2_rough;
else B = B4_rough * (pow(Re, B2_rough));
if (surface_type == 0) B = min(B, B_max_ocean);
if (surface_type == 1) B = min(B, B_max_land);
if (surface_type == 2) B = min(B, B_max_lake);
z0_t = z0_m / exp(B);
h0_t = h / z0_t;
Rib = (g / Tsemi) * h * (dT + 0.61e0 * Tsemi * dQ) / (U*U);
get_convection_lim(zeta_conv_lim, Rib_conv_lim, f_m_conv_lim, f_h_conv_lim, h0_m, h0_t, B, Pr_t_inf_inv, Pr_t_0_inv, alpha_h, alpha_m, alpha_h_fix);
if (Rib > 0.0)
{
Rib = min(Rib, Rib_max);
get_psi_stable(psi_m, psi_h, zeta, Rib, h0_m, h0_t, B, Pr_t_0_inv, beta_m);
fval = beta_m * zeta;
phi_m = 1.0 + fval;
phi_h = 1.0/Pr_t_0_inv + fval;
}
else if (Rib < Rib_conv_lim)
{
get_psi_convection(psi_m, psi_h, zeta, Rib, h0_m, h0_t, B, zeta_conv_lim, f_m_conv_lim, f_h_conv_lim, Pr_t_0_inv, alpha_h, alpha_m, alpha_h_fix, maxiters_convection);
fval = pow(zeta_conv_lim / zeta, 1.0/3.0);
phi_m = fval / f_m_conv_lim;
phi_h = fval / (Pr_t_0_inv * f_h_conv_lim);
}
else if (Rib > -0.001)
{
get_psi_neutral(psi_m, psi_h, zeta, h0_m, h0_t, B, Pr_t_0_inv);
phi_m = 1.0;
phi_h = 1.0 / Pr_t_0_inv;
}
else
{
get_psi_semi_convection(psi_m, psi_h, zeta, Rib, h0_m, h0_t, B, Pr_t_0_inv, alpha_m, alpha_h_fix, maxiters_convection);
phi_m = pow(1.0 - alpha_m * zeta, -0.25);
phi_h = 1.0 / (Pr_t_0_inv * sqrt(1.0 - alpha_h_fix * zeta));
}
Cm = kappa / psi_m;
Ct = kappa / psi_h;
Km = kappa * Cm * U * h / phi_m;
Pr_t_inv = phi_m / phi_h;
zeta_[index] = zeta;
Rib_[index] = Rib;
Re_[index] = Re;
B_[index] = B;
z0_m_[index] = z0_m;
z0_t_[index] = z0_t;
Rib_conv_lim_[index] = Rib_conv_lim;
Cm_[index] = Cm;
Ct_[index] = Ct;
Km_[index] = Km;
Pr_t_inv_[index] = Pr_t_inv;
}
}
template __global__ void kernel_compute_flux_esm_gpu(float *zeta_, float *Rib_, float *Re_, float *B_, float *z0_m_, float *z0_t_, float *Rib_conv_lim_, float *Cm_, float *Ct_, float *Km_, float *Pr_t_inv_,
const float *U, const float *dt, const float *T_semi, const float *dq, const float *H, const float *in_z0_m,
const float kappa, const float Pr_t_0_inv, const float Pr_t_inf_inv,
const float alpha_m, const float alpha_h, const float alpha_h_fix,
const float beta_m, const float beta_h, const float Rib_max, const float Re_rough_min,
const float B1_rough, const float B2_rough,
const float B_max_land, const float B_max_ocean, const float B_max_lake,
const float gamma_c, const float Re_visc_min,
const float Pr_m, const float nu_air, const float g,
const int maxiters_charnock, const int maxiters_convection,
const int grid_size);
template __global__ void kernel_compute_flux_esm_gpu(double *zeta_, double *Rib_, double *Re_, double *B_, double *z0_m_, double *z0_t_, double *Rib_conv_lim_, double *Cm_, double *Ct_, double *Km_, double *Pr_t_inv_,
const double *U, const double *dt, const double *T_semi, const double *dq, const double *H, const double *in_z0_m,
const double kappa, const double Pr_t_0_inv, const double Pr_t_inf_inv,
const double alpha_m, const double alpha_h, const double alpha_h_fix,
const double beta_m, const double beta_h, const double Rib_max, const double Re_rough_min,
const double B1_rough, const double B2_rough,
const double B_max_land, const double B_max_ocean, const double B_max_lake,
const double gamma_c, const double Re_visc_min,
const double Pr_m, const double nu_air, const double g,
const int maxiters_charnock, const int maxiters_convection,
const int grid_size);
template<typename T>
void compute_flux_esm_gpu(T *zeta_, T *Rib_, T *Re_, T *B_, T *z0_m_, T *z0_t_, T *Rib_conv_lim_, T *Cm_, T *Ct_, T *Km_, T *Pr_t_inv_,
const T *U_, const T *dT_, const T *Tsemi_, const T *dQ_, const T *h_, const T *in_z0_m_,
const T kappa, const T Pr_t_0_inv, const T Pr_t_inf_inv,
const T alpha_m, const T alpha_h, const T alpha_h_fix,
const T beta_m, const T beta_h, const T Rib_max, const T Re_rough_min,
const T B1_rough, const T B2_rough,
const T B_max_land, const T B_max_ocean, const T B_max_lake,
const T gamma_c, const T Re_visc_min,
const T Pr_m, const T nu_air, const T g,
const int maxiters_charnock, const int maxiters_convection,
const int grid_size)
{
const int BlockCount = int(ceil(float(grid_size) / 1024.0));
dim3 cuBlock = dim3(1024, 1, 1);
dim3 cuGrid = dim3(BlockCount, 1, 1);
kernel_compute_flux_esm_gpu<<<cuGrid, cuBlock>>>(zeta_, Rib_, Re_, B_, z0_m_, z0_t_, Rib_conv_lim_, Cm_, Ct_, Km_, Pr_t_inv_,
U_, dT_, Tsemi_, dQ_, h_, in_z0_m_,
kappa, Pr_t_0_inv, Pr_t_inf_inv,
alpha_m, alpha_h, alpha_h_fix,
beta_m, beta_h, Rib_max, Re_rough_min,
B1_rough, B2_rough,
B_max_land, B_max_ocean, B_max_lake,
gamma_c, Re_visc_min,
Pr_m, nu_air, g,
maxiters_charnock, maxiters_convection,
grid_size);
gpuErrchk( cudaPeekAtLastError() );
}
template void compute_flux_esm_gpu(float *zeta_, float *Rib_, float *Re_, float *B_, float *z0_m_, float *z0_t_, float *Rib_conv_lim_, float *Cm_, float *Ct_, float *Km_, float *Pr_t_inv_,
const float *U, const float *dt, const float *T_semi, const float *dq, const float *H, const float *in_z0_m,
const float kappa, const float Pr_t_0_inv, const float Pr_t_inf_inv,
const float alpha_m, const float alpha_h, const float alpha_h_fix,
const float beta_m, const float beta_h, const float Rib_max, const float Re_rough_min,
const float B1_rough, const float B2_rough,
const float B_max_land, const float B_max_ocean, const float B_max_lake,
const float gamma_c, const float Re_visc_min,
const float Pr_m, const float nu_air, const float g,
const int maxiters_charnock, const int maxiters_convection,
const int grid_size);
template void compute_flux_esm_gpu(double *zeta_, double *Rib_, double *Re_, double *B_, double *z0_m_, double *z0_t_, double *Rib_conv_lim_, double *Cm_, double *Ct_, double *Km_, double *Pr_t_inv_,
const double *U, const double *dt, const double *T_semi, const double *dq, const double *H, const double *in_z0_m,
const double kappa, const double Pr_t_0_inv, const double Pr_t_inf_inv,
const double alpha_m, const double alpha_h, const double alpha_h_fix,
const double beta_m, const double beta_h, const double Rib_max, const double Re_rough_min,
const double B1_rough, const double B2_rough,
const double B_max_land, const double B_max_ocean, const double B_max_lake,
const double gamma_c, const double Re_visc_min,
const double Pr_m, const double nu_air, const double g,
const int maxiters_charnock, const int maxiters_convection,
const int grid_size);
\ No newline at end of file
#include <cuda.h>
#include <cuda_runtime_api.h>
#include "../includeCXX/sfx_esm.h"
#include "../includeCU/sfx_esm_compute_subfunc.cuh"
#include "../includeCU/sfx_surface.cuh"
#include "../includeCU/sfx_memory_processing.cuh"
namespace sfx_kernel
{
template<typename T>
__global__ void compute_flux(sfxDataVecTypeC sfx,
meteoDataVecTypeC meteo,
const sfx_esm_param model_param,
const sfx_surface_param surface_param,
const sfx_esm_numericsTypeC numerics,
const sfx_phys_constants phys_constants,
const int grid_size);
}
template<typename T>
__global__ void sfx_kernel::compute_flux(sfxDataVecTypeC sfx,
meteoDataVecTypeC meteo,
const sfx_esm_param model_param,
const sfx_surface_param surface_param,
const sfx_esm_numericsTypeC numerics,
const sfx_phys_constants phys_constants,
const int grid_size)
{
const int index = blockIdx.x * blockDim.x + threadIdx.x;
T h, U, dT, Tsemi, dQ, z0_m;
T Re, z0_t, B, h0_m, h0_t, u_dyn0, zeta, Rib, zeta_conv_lim, Rib_conv_lim, f_m_conv_lim, f_h_conv_lim, psi_m, psi_h, phi_m, phi_h, Km, Pr_t_inv, Cm, Ct;
int surface_type;
T fval;
if(index < grid_size)
{
U = meteo.U[index];
Tsemi = meteo.Tsemi[index];
dT = meteo.dT[index];
dQ = meteo.dQ[index];
h = meteo.h[index];
z0_m = meteo.z0_m[index];
surface_type = z0_m < 0.0 ? surface_param.surface_ocean : surface_param.surface_land;
if (surface_type == surface_param.surface_ocean)
{
get_charnock_roughness(z0_m, u_dyn0, h, U, model_param, surface_param, numerics);
h0_m = h / z0_m;
}
if (surface_type == surface_param.surface_land)
{
h0_m = h / z0_m;
u_dyn0 = U * model_param.kappa / log(h0_m);
}
Re = u_dyn0 * z0_m / phys_constants.nu_air;
get_thermal_roughness(z0_t, B, z0_m, Re, surface_param, surface_type);
h0_t = h / z0_t;
Rib = (phys_constants.g / Tsemi) * h * (dT + 0.61e0 * Tsemi * dQ) / (U*U);
get_convection_lim(zeta_conv_lim, Rib_conv_lim, f_m_conv_lim, f_h_conv_lim,
h0_m, h0_t, B,
model_param);
if (Rib > 0.0)
{
Rib = sfx_math::min(Rib, model_param.Rib_max);
get_psi_stable(psi_m, psi_h, zeta, Rib, h0_m, h0_t, B, model_param);
fval = model_param.beta_m * zeta;
phi_m = 1.0 + fval;
phi_h = 1.0/model_param.Pr_t_0_inv + fval;
}
else if (Rib < Rib_conv_lim)
{
get_psi_convection(psi_m, psi_h, zeta, Rib, h0_m, h0_t, B, zeta_conv_lim, f_m_conv_lim, f_h_conv_lim, model_param, numerics);
fval = pow(zeta_conv_lim / zeta, 1.0/3.0);
phi_m = fval / f_m_conv_lim;
phi_h = fval / (model_param.Pr_t_0_inv * f_h_conv_lim);
}
else if (Rib > -0.001)
{
get_psi_neutral(psi_m, psi_h, zeta, h0_m, h0_t, B, model_param);
phi_m = 1.0;
phi_h = 1.0 / model_param.Pr_t_0_inv;
}
else
{
get_psi_semi_convection(psi_m, psi_h, zeta, Rib, h0_m, h0_t, B, model_param, numerics);
phi_m = pow(1.0 - model_param.alpha_m * zeta, -0.25);
phi_h = 1.0 / (model_param.Pr_t_0_inv * sqrt(1.0 - model_param.alpha_h_fix * zeta));
}
Cm = model_param.kappa / psi_m;
Ct = model_param.kappa / psi_h;
Km = model_param.kappa * Cm * U * h / phi_m;
Pr_t_inv = phi_m / phi_h;
sfx.zeta[index] = zeta;
sfx.Rib[index] = Rib;
sfx.Re[index] = Re;
sfx.B[index] = B;
sfx.z0_m[index] = z0_m;
sfx.z0_t[index] = z0_t;
sfx.Rib_conv_lim[index] = Rib_conv_lim;
sfx.Cm[index] = Cm;
sfx.Ct[index] = Ct;
sfx.Km[index] = Km;
sfx.Pr_t_inv[index] = Pr_t_inv;
}
}
template<typename T, MemType memIn, MemType memOut >
void FluxEsm<T, memIn, memOut, MemType::GPU>::compute_flux()
{
const int BlockCount = int(ceil(float(grid_size) / 1024.0));
dim3 cuBlock = dim3(1024, 1, 1);
dim3 cuGrid = dim3(BlockCount, 1, 1);
sfx_kernel::compute_flux<T><<<cuGrid, cuBlock>>>(sfx, meteo, model_param,
surface_param, numerics, phys_constants, grid_size);
if(MemType::GPU != memOut)
{
const size_t new_size = grid_size * sizeof(T);
memproc::memcopy<memOut, MemType::GPU>((void*&)res_sfx->zeta, (void*&)sfx.zeta, new_size);
memproc::memcopy<memOut, MemType::GPU>((void*&)res_sfx->Rib, (void*&)sfx.Rib, new_size);
memproc::memcopy<memOut, MemType::GPU>((void*&)res_sfx->Re, (void*&)sfx.Re, new_size);
memproc::memcopy<memOut, MemType::GPU>((void*&)res_sfx->B, (void*&)sfx.B, new_size);
memproc::memcopy<memOut, MemType::GPU>((void*&)res_sfx->z0_m, (void*&)sfx.z0_m, new_size);
memproc::memcopy<memOut, MemType::GPU>((void*&)res_sfx->z0_t, (void*&)sfx.z0_t, new_size);
memproc::memcopy<memOut, MemType::GPU>((void*&)res_sfx->Rib_conv_lim, (void*&)sfx.Rib_conv_lim, new_size);
memproc::memcopy<memOut, MemType::GPU>((void*&)res_sfx->Cm, (void*&)sfx.Cm, new_size);
memproc::memcopy<memOut, MemType::GPU>((void*&)res_sfx->Ct, (void*&)sfx.Ct, new_size);
memproc::memcopy<memOut, MemType::GPU>((void*&)res_sfx->Km, (void*&)sfx.Km, new_size);
memproc::memcopy<memOut, MemType::GPU>((void*&)res_sfx->Pr_t_inv, (void*&)sfx.Pr_t_inv, new_size);
}
}
template class FluxEsmBase<float, MemType::GPU, MemType::GPU, MemType::GPU>;
template class FluxEsmBase<float, MemType::GPU, MemType::GPU, MemType::CPU>;
template class FluxEsmBase<float, MemType::GPU, MemType::CPU, MemType::GPU>;
template class FluxEsmBase<float, MemType::CPU, MemType::GPU, MemType::GPU>;
template class FluxEsmBase<float, MemType::CPU, MemType::CPU, MemType::GPU>;
template class FluxEsmBase<float, MemType::CPU, MemType::GPU, MemType::CPU>;
template class FluxEsmBase<float, MemType::GPU, MemType::CPU, MemType::CPU>;
template class FluxEsm<float, MemType::GPU, MemType::GPU, MemType::GPU>;
template class FluxEsm<float, MemType::GPU, MemType::GPU, MemType::CPU>;
template class FluxEsm<float, MemType::GPU, MemType::CPU, MemType::GPU>;
template class FluxEsm<float, MemType::CPU, MemType::GPU, MemType::GPU>;
template class FluxEsm<float, MemType::CPU, MemType::CPU, MemType::GPU>;
template class FluxEsm<float, MemType::CPU, MemType::GPU, MemType::CPU>;
template class FluxEsm<float, MemType::GPU, MemType::CPU, MemType::CPU>;
\ No newline at end of file
#include "../includeCU/sfx_surface.cuh"
// template<typename T>
// __device__ void get_charnock_roughness(T &z0_m, T &u_dyn0,
// const T h, const T U,
// const T kappa,
// const T h_charnock, const T c1_charnock, const T c2_charnock,
// const int maxiters)
// {
// T Uc, a, b, c, c_min, f;
// Uc = U;
// a = 0.0;
// b = 25.0;
// c_min = log(h_charnock) / kappa;
// for (int i = 0; i < maxiters; i++)
// {
// f = c1_charnock - 2.0 * log(Uc);
// for (int j = 0; j < maxiters; j++)
// {
// c = (f + 2.0 * log(b)) / kappa;
// if (U <= 8.0e0)
// a = log(1.0 + c2_charnock * ( pow(b / Uc, 3) ) ) / kappa;
// c = max(c - a, c_min);
// b = c;
// }
// z0_m = h_charnock * exp(-c * kappa);
// z0_m = max(z0_m, T(0.000015e0));
// Uc = U * log(h_charnock / z0_m) / log(h / z0_m);
// }
// u_dyn0 = Uc / c;
// }
// template __device__ void get_charnock_roughness(float &z0_m, float &u_dyn0,
// const float h, const float U,
// const float kappa,
// const float h_charnock, const float c1_charnock, const float c2_charnock,
// const int maxiters);
// template __device__ void get_charnock_roughness(double &z0_m, double &u_dyn0,
// const double h, const double U,
// const double kappa,
// const double h_charnock, const double c1_charnock, const double c2_charnock,
// const int maxiters);
\ No newline at end of file
......@@ -6,35 +6,21 @@
#include <vector>
// -------------------------------------------------------------------------- //
void surf_flux_esm_CXX (float *zeta_, float *Rib_, float *Re_, float *B_, float *z0_m_, float *z0_t_, float *Rib_conv_lim_, float *Cm_, float *Ct_, float *Km_, float *Pr_t_inv_,
float *U_, float *dT_, float *Tsemi_, float *dQ_, float *h_, float *in_z0_m_,
const float kappa, const float Pr_t_0_inv, const float Pr_t_inf_inv,
const float alpha_m, const float alpha_h, const float alpha_h_fix,
const float beta_m, const float beta_h, const float Rib_max, const float Re_rough_min,
const float B1_rough, const float B2_rough,
const float B_max_land, const float B_max_ocean, const float B_max_lake,
const float gamma_c, const float Re_visc_min,
const float Pr_m, const float nu_air, const float g,
const int maxiters_charnock, const int maxiters_convection,
void surf_flux_esm_CXX (struct sfxDataVecTypeC* sfx,
struct meteoDataVecTypeC* meteo,
const struct sfx_esm_param* model_param,
const struct sfx_surface_param* surface_param,
const struct sfx_esm_numericsTypeC* numerics,
const struct sfx_phys_constants* constants,
const int grid_size)
{
#ifdef INCLUDE_CUDA
static FluxEsm<float, MemType::CPU, MemType::CPU, MemType::GPU> F;
static FluxEsm<float, MemType::CPU, MemType::CPU, MemType::GPU> F(sfx, meteo, *model_param, *surface_param, *numerics, *constants, grid_size);
F.compute_flux();
#else
static FluxEsm<float, MemType::CPU, MemType::CPU, MemType::CPU> F;
static FluxEsm<float, MemType::CPU, MemType::CPU, MemType::CPU> F(sfx, meteo, *model_param, *surface_param, *numerics, *constants, grid_size);
F.compute_flux();
#endif
F.set_params(grid_size, kappa, Pr_t_0_inv, Pr_t_inf_inv,
alpha_m, alpha_h, alpha_h_fix,
beta_m, beta_h, Rib_max, Re_rough_min,
B1_rough, B2_rough,
B_max_land, B_max_ocean, B_max_lake,
gamma_c, Re_visc_min,
Pr_m, nu_air, g);
F.compute_flux_esm(zeta_, Rib_, Re_, B_, z0_m_, z0_t_, Rib_conv_lim_, Cm_, Ct_, Km_, Pr_t_inv_,
U_, dT_, Tsemi_, dQ_, h_, in_z0_m_,
maxiters_charnock, maxiters_convection);
}
void surf_flux_sheba_CXX (float *zeta_, float *Rib_, float *Re_, float *B_, float *z0_m_, float *z0_t_, float *Rib_conv_lim_, float *Cm_, float *Ct_, float *Km_, float *Pr_t_inv_,
......
#include <cmath>
#include <iostream>
#include "../includeCXX/sfx_compute_esm.h"
#include "../includeCXX/sfx_surface.h"
template<typename T>
void get_convection_lim(T &zeta_lim, T &Rib_lim, T &f_m_lim, T &f_h_lim,
const T h0_m, const T h0_t, const T B,
const T Pr_t_inf_inv, const T Pr_t_0_inv,
const T alpha_h, const T alpha_m, const T alpha_h_fix)
{
T psi_m, psi_h, f_m, f_h, c;
c = pow(Pr_t_inf_inv / Pr_t_0_inv, 4);
zeta_lim = (2.0 * alpha_h - c * alpha_m - sqrt( (c * alpha_m)*(c * alpha_m) + 4.0 * c * alpha_h * (alpha_h - alpha_m))) / (2.0 * alpha_h*alpha_h);
f_m_lim = pow(1.0 - alpha_m * zeta_lim, 0.25);
f_h_lim = sqrt(1.0 - alpha_h * zeta_lim);
f_m = zeta_lim / h0_m;
f_h = zeta_lim / h0_t;
if (fabs(B) < 1.0e-10) f_h = f_m;
f_m = pow(1.0 - alpha_m * f_m, 0.25);
f_h = sqrt(1.0 - alpha_h_fix * f_h);
psi_m = 2.0 * (atan(f_m_lim) - atan(f_m)) + log((f_m_lim - 1.0) * (f_m + 1.0)/((f_m_lim + 1.0) * (f_m - 1.0)));
psi_h = log((f_h_lim - 1.0) * (f_h + 1.0)/((f_h_lim + 1.0) * (f_h - 1.0))) / Pr_t_0_inv;
Rib_lim = zeta_lim * psi_h / (psi_m * psi_m);
}
template void get_convection_lim(float &zeta_lim, float &Rib_lim, float &f_m_lim, float &f_h_lim,
const float h0_m, const float h0_t, const float B,
const float Pr_t_inf_inv, const float Pr_t_0_inv,
const float alpha_h, const float alpha_m, const float alpha_h_fix);
template void get_convection_lim(double &zeta_lim, double &Rib_lim, double &f_m_lim, double &f_h_lim,
const double h0_m, const double h0_t, const double B,
const double Pr_t_inf_inv, const double Pr_t_0_inv,
const double alpha_h, const double alpha_m, const double alpha_h_fix);
template<typename T>
void get_psi_stable(T &psi_m, T &psi_h, T &zeta,
const T Rib, const T h0_m, const T h0_t, const T B,
const T Pr_t_0_inv, const T beta_m)
{
T Rib_coeff, psi0_m, psi0_h, phi, c;
psi0_m = log(h0_m);
psi0_h = B / psi0_m;
Rib_coeff = beta_m * Rib;
c = (psi0_h + 1.0) / Pr_t_0_inv - 2.0 * Rib_coeff;
zeta = psi0_m * (sqrt(c*c + 4.0 * Rib_coeff * (1.0 - Rib_coeff)) - c) / (2.0 * beta_m * (1.0 - Rib_coeff));
phi = beta_m * zeta;
psi_m = psi0_m + phi;
psi_h = (psi0_m + B) / Pr_t_0_inv + phi;
}
template void get_psi_stable(float &psi_m, float &psi_h, float &zeta,
const float Rib, const float h0_m, const float h0_t, const float B,
const float Pr_t_0_inv, const float beta_m);
template void get_psi_stable(double &psi_m, double &psi_h, double &zeta,
const double Rib, const double h0_m, const double h0_t, const double B,
const double Pr_t_0_inv, const double beta_m);
template<typename T>
void get_psi_convection(T &psi_m, T &psi_h, T &zeta,
const T Rib, const T h0_m, const T h0_t, const T B,
const T zeta_conv_lim, const T f_m_conv_lim, const T f_h_conv_lim,
const T Pr_t_0_inv,
const T alpha_h, const T alpha_m, const T alpha_h_fix,
const int maxiters)
{
T zeta0_m, zeta0_h, f0_m, f0_h, p_m, p_h, a_m, a_h, c_lim, f;
p_m = 2.0 * atan(f_m_conv_lim) + log((f_m_conv_lim - 1.0) / (f_m_conv_lim + 1.0));
p_h = log((f_h_conv_lim - 1.0) / (f_h_conv_lim + 1.0));
zeta = zeta_conv_lim;
for (int i = 1; i <= maxiters + 1; i++)
{
zeta0_m = zeta / h0_m;
zeta0_h = zeta / h0_t;
if (fabs(B) < 1.0e-10)
zeta0_h = zeta0_m;
f0_m = pow(1.0 - alpha_m * zeta0_m, 0.25);
f0_h = sqrt(1.0 - alpha_h_fix * zeta0_h);
a_m = -2.0*atan(f0_m) + log((f0_m + 1.0)/(f0_m - 1.0));
a_h = log((f0_h + 1.0)/(f0_h - 1.0));
c_lim = pow(zeta_conv_lim / zeta, 1.0 / 3.0);
f = 3.0 * (1.0 - c_lim);
psi_m = f / f_m_conv_lim + p_m + a_m;
psi_h = (f / f_h_conv_lim + p_h + a_h) / Pr_t_0_inv;
if (i == maxiters + 1)
break;
zeta = Rib * psi_m * psi_m / psi_h;
}
}
template void get_psi_convection(float &psi_m, float &psi_h, float &zeta,
const float Rib, const float h0_m, const float h0_t, const float B,
const float zeta_conv_lim, const float f_m_conv_lim, const float f_h_conv_lim,
const float Pr_t_0_inv,
const float alpha_h, const float alpha_m, const float alpha_h_fix,
const int maxiters);
template void get_psi_convection(double &psi_m, double &psi_h, double &zeta,
const double Rib, const double h0_m, const double h0_t, const double B,
const double zeta_conv_lim, const double f_m_conv_lim, const double f_h_conv_lim,
const double Pr_t_0_inv,
const double alpha_h, const double alpha_m, const double alpha_h_fix,
const int maxiters);
template<typename T>
void get_psi_neutral(T &psi_m, T &psi_h, T &zeta,
const T h0_m, const T h0_t, const T B,
const T Pr_t_0_inv)
{
zeta = 0.0;
psi_m = log(h0_m);
psi_h = log(h0_t) / Pr_t_0_inv;
if (fabs(B) < 1.0e-10)
psi_h = psi_m / Pr_t_0_inv;
}
template void get_psi_neutral(float &psi_m, float &psi_h, float &zeta,
const float h0_m, const float h0_t, const float B,
const float Pr_t_0_inv);
template void get_psi_neutral(double &psi_m, double &psi_h, double &zeta,
const double h0_m, const double h0_t, const double B,
const double Pr_t_0_inv);
template<typename T>
void get_psi_semi_convection(T &psi_m, T &psi_h, T &zeta,
const T Rib, const T h0_m, const T h0_t, const T B,
const T Pr_t_0_inv,
const T alpha_m, const T alpha_h_fix,
const int maxiters)
{
T zeta0_m, zeta0_h, f0_m, f0_h, f_m, f_h;
psi_m = log(h0_m);
psi_h = log(h0_t);
if (fabs(B) < 1.0e-10)
psi_h = psi_m;
zeta = Rib * Pr_t_0_inv * psi_m * psi_m / psi_h;
for (int i = 1; i <= maxiters + 1; i++)
{
zeta0_m = zeta / h0_m;
zeta0_h = zeta / h0_t;
if (fabs(B) < 1.0e-10)
zeta0_h = zeta0_m;
f_m = pow(1.0 - alpha_m * zeta, 0.25e0);
f_h = sqrt(1.0 - alpha_h_fix * zeta);
f0_m = pow(1.0 - alpha_m * zeta0_m, 0.25e0);
f0_h = sqrt(1.0 - alpha_h_fix * zeta0_h);
f0_m = std::max(f0_m, T(1.000001e0));
f0_h = std::max(f0_h, T(1.000001e0));
psi_m = log((f_m - 1.0e0)*(f0_m + 1.0e0)/((f_m + 1.0e0)*(f0_m - 1.0e0))) + 2.0e0*(atan(f_m) - atan(f0_m));
psi_h = log((f_h - 1.0e0)*(f0_h + 1.0e0)/((f_h + 1.0e0)*(f0_h - 1.0e0))) / Pr_t_0_inv;
if (i == maxiters + 1)
break;
zeta = Rib * psi_m * psi_m / psi_h;
}
}
template void get_psi_semi_convection(float &psi_m, float &psi_h, float &zeta,
const float Rib, const float h0_m, const float h0_t, const float B,
const float Pr_t_0_inv,
const float alpha_m, const float alpha_h_fix,
const int maxiters);
template void get_psi_semi_convection(double &psi_m, double &psi_h, double &zeta,
const double Rib, const double h0_m, const double h0_t, const double B,
const double Pr_t_0_inv,
const double alpha_m, const double alpha_h_fix,
const int maxiters);
template<typename T>
void compute_flux_esm_cpu(T *zeta_, T *Rib_, T *Re_, T *B_, T *z0_m_, T *z0_t_, T *Rib_conv_lim_, T *Cm_, T *Ct_, T *Km_, T *Pr_t_inv_,
const T *U_, const T *dT_, const T *Tsemi_, const T *dQ_, const T *h_, const T *in_z0_m_,
const T kappa, const T Pr_t_0_inv, const T Pr_t_inf_inv,
const T alpha_m, const T alpha_h, const T alpha_h_fix,
const T beta_m, const T beta_h, const T Rib_max, const T Re_rough_min,
const T B1_rough, const T B2_rough,
const T B_max_land, const T B_max_ocean, const T B_max_lake,
const T gamma_c, const T Re_visc_min,
const T Pr_m, const T nu_air, const T g,
const int maxiters_charnock, const int maxiters_convection,
const int grid_size)
{
T h, U, dT, Tsemi, dQ, z0_m;
T Re, z0_t, B, h0_m, h0_t, u_dyn0, zeta, Rib, zeta_conv_lim, Rib_conv_lim, f_m_conv_lim, f_h_conv_lim, psi_m, psi_h, phi_m, phi_h, Km, Pr_t_inv, Cm, Ct;
int surface_type;
T fval;
const T B3_rough = kappa * Pr_m, B4_rough =( 0.14 * ( pow(30.0, B2_rough) ) ) * (pow(Pr_m, 0.8));
const T h_charnock = 10.0, c1_charnock = log(h_charnock * (g / gamma_c)), c2_charnock = Re_visc_min * nu_air * c1_charnock;
for (int step = 0; step < grid_size; step++)
{
U = U_[step];
Tsemi = Tsemi_[step];
dT = dT_[step];
dQ = dQ_[step];
h = h_[step];
z0_m = in_z0_m_[step];
if (z0_m < 0.0) surface_type = 0;
else surface_type = 1;
if (surface_type == 0)
{
get_charnock_roughness(z0_m, u_dyn0, h, U, kappa, h_charnock, c1_charnock, c2_charnock, maxiters_charnock);
h0_m = h / z0_m;
}
if (surface_type == 1)
{
h0_m = h / z0_m;
u_dyn0 = U * kappa / log(h0_m);
}
Re = u_dyn0 * z0_m / nu_air;
if(Re <= Re_rough_min) B = B1_rough * log(B3_rough * Re) + B2_rough;
else B = B4_rough * (pow(Re, B2_rough));
if (surface_type == 0) B = std::min(B, B_max_ocean);
if (surface_type == 1) B = std::min(B, B_max_land);
if (surface_type == 2) B = std::min(B, B_max_lake);
z0_t = z0_m / exp(B);
h0_t = h / z0_t;
Rib = (g / Tsemi) * h * (dT + 0.61e0 * Tsemi * dQ) / (U*U);
get_convection_lim(zeta_conv_lim, Rib_conv_lim, f_m_conv_lim, f_h_conv_lim, h0_m, h0_t, B, Pr_t_inf_inv, Pr_t_0_inv, alpha_h, alpha_m, alpha_h_fix);
if (Rib > 0.0)
{
Rib = std::min(Rib, Rib_max);
get_psi_stable(psi_m, psi_h, zeta, Rib, h0_m, h0_t, B, Pr_t_0_inv, beta_m);
fval = beta_m * zeta;
phi_m = 1.0 + fval;
phi_h = 1.0/Pr_t_0_inv + fval;
}
else if (Rib < Rib_conv_lim)
{
get_psi_convection(psi_m, psi_h, zeta, Rib, h0_m, h0_t, B, zeta_conv_lim, f_m_conv_lim, f_h_conv_lim, Pr_t_0_inv, alpha_h, alpha_m, alpha_h_fix, maxiters_convection);
fval = pow(zeta_conv_lim / zeta, 1.0/3.0);
phi_m = fval / f_m_conv_lim;
phi_h = fval / (Pr_t_0_inv * f_h_conv_lim);
}
else if (Rib > -0.001)
{
get_psi_neutral(psi_m, psi_h, zeta, h0_m, h0_t, B, Pr_t_0_inv);
phi_m = 1.0;
phi_h = 1.0 / Pr_t_0_inv;
}
else
{
get_psi_semi_convection(psi_m, psi_h, zeta, Rib, h0_m, h0_t, B, Pr_t_0_inv, alpha_m, alpha_h_fix, maxiters_convection);
phi_m = pow(1.0 - alpha_m * zeta, -0.25);
phi_h = 1.0 / (Pr_t_0_inv * sqrt(1.0 - alpha_h_fix * zeta));
}
Cm = kappa / psi_m;
Ct = kappa / psi_h;
Km = kappa * Cm * U * h / phi_m;
Pr_t_inv = phi_m / phi_h;
zeta_[step] = zeta;
Rib_[step] = Rib;
Re_[step] = Re;
B_[step] = B;
z0_m_[step] = z0_m;
z0_t_[step] = z0_t;
Rib_conv_lim_[step] = Rib_conv_lim;
Cm_[step] = Cm;
Ct_[step] = Ct;
Km_[step] = Km;
Pr_t_inv_[step] = Pr_t_inv;
}
}
template void compute_flux_esm_cpu(float *zeta_, float *Rib_, float *Re_, float *B_, float *z0_m_, float *z0_t_, float *Rib_conv_lim_, float *Cm_, float *Ct_, float *Km_, float *Pr_t_inv_,
const float *U, const float *dt, const float *T_semi, const float *dq, const float *H, const float *in_z0_m,
const float kappa, const float Pr_t_0_inv, const float Pr_t_inf_inv,
const float alpha_m, const float alpha_h, const float alpha_h_fix,
const float beta_m, const float beta_h, const float Rib_max, const float Re_rough_min,
const float B1_rough, const float B2_rough,
const float B_max_land, const float B_max_ocean, const float B_max_lake,
const float gamma_c, const float Re_visc_min,
const float Pr_m, const float nu_air, const float g,
const int maxiters_charnock, const int maxiters_convection,
const int grid_size);
template void compute_flux_esm_cpu(double *zeta_, double *Rib_, double *Re_, double *B_, double *z0_m_, double *z0_t_, double *Rib_conv_lim_, double *Cm_, double *Ct_, double *Km_, double *Pr_t_inv_,
const double *U, const double *dt, const double *T_semi, const double *dq, const double *H, const double *in_z0_m,
const double kappa, const double Pr_t_0_inv, const double Pr_t_inf_inv,
const double alpha_m, const double alpha_h, const double alpha_h_fix,
const double beta_m, const double beta_h, const double Rib_max, const double Re_rough_min,
const double B1_rough, const double B2_rough,
const double B_max_land, const double B_max_ocean, const double B_max_lake,
const double gamma_c, const double Re_visc_min,
const double Pr_m, const double nu_air, const double g,
const int maxiters_charnock, const int maxiters_convection,
const int grid_size);
\ No newline at end of file
#include <cmath>
#include <iostream>
#include "../includeCXX/sfx_compute_sheba.h"
#include "../includeCXX/sfx_surface.h"
// #include "../includeCXX/sfx_surface.h"
template<typename T>
void get_psi_mh(T &psi_m, T &psi_h,
......@@ -219,80 +219,80 @@ void compute_flux_sheba_cpu(T *zeta_, T *Rib_, T *Re_, T *B_, T *z0_m_, T *z0_t_
const int maxiters_charnock,
const int grid_size)
{
T h, U, dT, Tsemi, dQ, z0_m;
T z0_t, B, h0_m, h0_t, u_dyn0, Re,
zeta, Rib, Udyn, Tdyn, Qdyn, phi_m, phi_h,
Km, Pr_t_inv, Cm, Ct;
const T B3_rough = kappa * Pr_m, B4_rough =(0.14 * (pow(30.0, B2_rough))) * (pow(Pr_m, 0.8));
const T h_charnock = 10.0, c1_charnock = log(h_charnock * (g / gamma_c)), c2_charnock = Re_visc_min * nu_air * c1_charnock;
int surface_type;
for (int step = 0; step < grid_size; step++)
{
U = U_[step];
Tsemi = Tsemi_[step];
dT = dT_[step];
dQ = dQ_[step];
h = h_[step];
z0_m = in_z0_m_[step];
if (z0_m < 0.0) surface_type = 0;
else surface_type = 1;
if (surface_type == 0)
{
get_charnock_roughness(z0_m, u_dyn0, h, U, kappa, h_charnock, c1_charnock, c2_charnock, maxiters_charnock);
h0_m = h / z0_m;
}
if (surface_type == 1)
{
h0_m = h / z0_m;
u_dyn0 = U * kappa / log(h0_m);
}
Re = u_dyn0 * z0_m / nu_air;
get_thermal_roughness(z0_t, B, z0_m, Re, Re_rough_min, B1_rough, B2_rough, B3_rough, B4_rough, B_max_ocean, B_max_lake, B_max_land, surface_type);
// --- define relative height [thermal]
h0_t = h / z0_t;
// --- define Ri-bulk
Rib = (g / Tsemi) * h * (dT + 0.61e0 * Tsemi * dQ) / (U*U);
// --- get the fluxes
// ----------------------------------------------------------------------------
get_dynamic_scales(Udyn, Tdyn, Qdyn, zeta, U, Tsemi, dT, dQ, h, z0_m, z0_t, (g / Tsemi), kappa, Pr_t_0_inv, alpha_m, alpha_h, a_m, a_h, b_m, b_h, c_h, 10);
// ----------------------------------------------------------------------------
get_phi(phi_m, phi_h, zeta, alpha_m, alpha_h, a_m, a_h, b_m, b_h, c_h);
// ----------------------------------------------------------------------------
// --- define transfer coeff. (momentum) & (heat)
Cm = 0.0;
if (U > 0.0)
Cm = Udyn / U;
Ct = 0.0;
if (fabs(dT) > 0.0)
Ct = Tdyn / dT;
// --- define eddy viscosity & inverse Prandtl number
Km = kappa * Cm * U * h / phi_m;
Pr_t_inv = phi_m / phi_h;
zeta_[step] = zeta;
Rib_[step] = Rib;
Re_[step] = Re;
B_[step] = B;
z0_m_[step] = z0_m;
z0_t_[step] = z0_t;
Rib_conv_lim_[step] = 0.0;
Cm_[step] = Cm;
Ct_[step] = Ct;
Km_[step] = Km;
Pr_t_inv_[step] = Pr_t_inv;
}
// T h, U, dT, Tsemi, dQ, z0_m;
// T z0_t, B, h0_m, h0_t, u_dyn0, Re,
// zeta, Rib, Udyn, Tdyn, Qdyn, phi_m, phi_h,
// Km, Pr_t_inv, Cm, Ct;
// const T B3_rough = kappa * Pr_m, B4_rough =(0.14 * (pow(30.0, B2_rough))) * (pow(Pr_m, 0.8));
// const T h_charnock = 10.0, c1_charnock = log(h_charnock * (g / gamma_c)), c2_charnock = Re_visc_min * nu_air * c1_charnock;
// int surface_type;
// for (int step = 0; step < grid_size; step++)
// {
// U = U_[step];
// Tsemi = Tsemi_[step];
// dT = dT_[step];
// dQ = dQ_[step];
// h = h_[step];
// z0_m = in_z0_m_[step];
// if (z0_m < 0.0) surface_type = 0;
// else surface_type = 1;
// if (surface_type == 0)
// {
// get_charnock_roughness(z0_m, u_dyn0, h, U, kappa, h_charnock, c1_charnock, c2_charnock, maxiters_charnock);
// h0_m = h / z0_m;
// }
// if (surface_type == 1)
// {
// h0_m = h / z0_m;
// u_dyn0 = U * kappa / log(h0_m);
// }
// Re = u_dyn0 * z0_m / nu_air;
// get_thermal_roughness(z0_t, B, z0_m, Re, Re_rough_min, B1_rough, B2_rough, B3_rough, B4_rough, B_max_ocean, B_max_lake, B_max_land, surface_type);
// // --- define relative height [thermal]
// h0_t = h / z0_t;
// // --- define Ri-bulk
// Rib = (g / Tsemi) * h * (dT + 0.61e0 * Tsemi * dQ) / (U*U);
// // --- get the fluxes
// // ----------------------------------------------------------------------------
// get_dynamic_scales(Udyn, Tdyn, Qdyn, zeta, U, Tsemi, dT, dQ, h, z0_m, z0_t, (g / Tsemi), kappa, Pr_t_0_inv, alpha_m, alpha_h, a_m, a_h, b_m, b_h, c_h, 10);
// // ----------------------------------------------------------------------------
// get_phi(phi_m, phi_h, zeta, alpha_m, alpha_h, a_m, a_h, b_m, b_h, c_h);
// // ----------------------------------------------------------------------------
// // --- define transfer coeff. (momentum) & (heat)
// Cm = 0.0;
// if (U > 0.0)
// Cm = Udyn / U;
// Ct = 0.0;
// if (fabs(dT) > 0.0)
// Ct = Tdyn / dT;
// // --- define eddy viscosity & inverse Prandtl number
// Km = kappa * Cm * U * h / phi_m;
// Pr_t_inv = phi_m / phi_h;
// zeta_[step] = zeta;
// Rib_[step] = Rib;
// Re_[step] = Re;
// B_[step] = B;
// z0_m_[step] = z0_m;
// z0_t_[step] = z0_t;
// Rib_conv_lim_[step] = 0.0;
// Cm_[step] = Cm;
// Ct_[step] = Ct;
// Km_[step] = Km;
// Pr_t_inv_[step] = Pr_t_inv;
// }
}
template void compute_flux_sheba_cpu(float *zeta_, float *Rib_, float *Re_, float *B_, float *z0_m_, float *z0_t_, float *Rib_conv_lim_, float *Cm_, float *Ct_, float *Km_, float *Pr_t_inv_,
......
#include <iostream>
#include <cmath>
#include "../includeCXX/sfx_esm.h"
#include "../includeCXX/sfx_compute_esm.h"
#ifdef INCLUDE_CUDA
#include "../includeCU/sfx_compute_esm.cuh"
#include "../includeCU/sfx_memory_processing.cuh"
#endif
#include "../includeCXX/sfx_memory_processing.h"
#include "../includeCU/sfx_surface.cuh"
#include "../includeCU/sfx_esm_compute_subfunc.cuh"
template<typename T, MemType memIn, MemType memOut, MemType RunMem >
FluxEsm<T, memIn, memOut, RunMem>::FluxEsm()
FluxEsmBase<T, memIn, memOut, RunMem>::FluxEsmBase(struct sfxDataVecTypeC* sfx_in,
struct meteoDataVecTypeC* meteo_in,
const struct sfx_esm_param model_param_in,
const struct sfx_surface_param surface_param_in,
const struct sfx_esm_numericsTypeC numerics_in,
const struct sfx_phys_constants phys_constants_in,
const int grid_size_in)
{
kappa = 0, Pr_t_0_inv = 0, Pr_t_inf_inv = 0,
alpha_m = 0, alpha_h = 0, alpha_h_fix = 0,
beta_m = 0, beta_h = 0,
Rib_max = 0, Re_rough_min = 0,
B1_rough = 0, B2_rough = 0,
B_max_land = 0, B_max_ocean = 0, B_max_lake = 0,
gamma_c = 0,
Re_visc_min = 0,
Pr_m = 0, nu_air = 0, g = 0;
grid_size = 0;
ifAllocated = false;
allocated_size = 0;
}
grid_size = grid_size_in;
template<typename T, MemType memIn, MemType memOut, MemType RunMem >
void FluxEsm<T, memIn, memOut, RunMem>::set_params(const int grid_size_, const T kappa_, const T Pr_t_0_inv_, const T Pr_t_inf_inv_,
const T alpha_m_, const T alpha_h_, const T alpha_h_fix_,
const T beta_m_, const T beta_h_, const T Rib_max_, const T Re_rough_min_,
const T B1_rough_, const T B2_rough_,
const T B_max_land_, const T B_max_ocean_, const T B_max_lake_,
const T gamma_c_, const T Re_visc_min_,
const T Pr_m_, const T nu_air_, const T g_)
{
kappa = kappa_, Pr_t_0_inv = Pr_t_0_inv_, Pr_t_inf_inv = Pr_t_inf_inv_,
alpha_m = alpha_m_, alpha_h = alpha_h_, alpha_h_fix = alpha_h_fix_,
beta_m = beta_m_, beta_h = beta_h_,
Rib_max = Rib_max_, Re_rough_min = Re_rough_min_, B_max_lake = B_max_lake_,
B1_rough = B1_rough_, B2_rough = B2_rough_,
B_max_land = B_max_land_, B_max_ocean = B_max_ocean_,
gamma_c = gamma_c_,
Re_visc_min = Re_visc_min_,
Pr_m = Pr_m_, nu_air = nu_air_, g = g_;
grid_size = grid_size_;
model_param = model_param_in;
surface_param = surface_param_in;
numerics = numerics_in;
phys_constants = phys_constants_in;
if(RunMem != memOut)
res_sfx = sfx_in;
else
res_sfx = nullptr;
if(RunMem != memIn)
{
const size_t new_size = grid_size * sizeof(T);
allocated_size = 0;
memproc::realloc<RunMem>((void *&)(U), allocated_size, new_size);
memproc::realloc<RunMem>((void *&)(meteo.U), allocated_size, new_size);
memproc::memcopy<RunMem, memIn>(meteo.U, meteo_in->U, new_size);
allocated_size = 0;
memproc::realloc<RunMem>((void *&)(dT), allocated_size, new_size);
memproc::realloc<RunMem>((void *&)(meteo.dT), allocated_size, new_size);
memproc::memcopy<RunMem, memIn>(meteo.dT, meteo_in->dT, new_size);
allocated_size = 0;
memproc::realloc<RunMem>((void *&)(Tsemi), allocated_size, new_size);
memproc::realloc<RunMem>((void *&)(meteo.Tsemi), allocated_size, new_size);
memproc::memcopy<RunMem, memIn>(meteo.Tsemi, meteo_in->Tsemi, new_size);
allocated_size = 0;
memproc::realloc<RunMem>((void *&)(dQ), allocated_size, new_size);
memproc::realloc<RunMem>((void *&)(meteo.dQ), allocated_size, new_size);
memproc::memcopy<RunMem, memIn>(meteo.dQ, meteo_in->dQ, new_size);
allocated_size = 0;
memproc::realloc<RunMem>((void *&)(h), allocated_size, new_size);
memproc::realloc<RunMem>((void *&)(meteo.h), allocated_size, new_size);
memproc::memcopy<RunMem, memIn>(meteo.h, meteo_in->h, new_size);
allocated_size = 0;
memproc::realloc<RunMem>((void *&)(in_z0_m), allocated_size, new_size);
memproc::realloc<RunMem>((void *&)(meteo.z0_m), allocated_size, new_size);
memproc::memcopy<RunMem, memIn>(meteo.z0_m, meteo_in->z0_m, new_size);
ifAllocated = true;
}
else
{
meteo = *meteo_in;
}
if(RunMem != memOut)
{
const size_t new_size = grid_size * sizeof(T);
allocated_size = 0;
memproc::realloc<RunMem>((void *&)(zeta), allocated_size, new_size);
memproc::realloc<RunMem>((void *&)(sfx.zeta), allocated_size, new_size);
allocated_size = 0;
memproc::realloc<RunMem>((void *&)(Rib), allocated_size, new_size);
memproc::realloc<RunMem>((void *&)(sfx.Rib), allocated_size, new_size);
allocated_size = 0;
memproc::realloc<RunMem>((void *&)(Re), allocated_size, new_size);
memproc::realloc<RunMem>((void *&)(sfx.Re), allocated_size, new_size);
allocated_size = 0;
memproc::realloc<RunMem>((void *&)(Rib_conv_lim), allocated_size, new_size);
memproc::realloc<RunMem>((void *&)(sfx.Rib_conv_lim), allocated_size, new_size);
allocated_size = 0;
memproc::realloc<RunMem>((void *&)(z0_m), allocated_size, new_size);
memproc::realloc<RunMem>((void *&)(sfx.z0_m), allocated_size, new_size);
allocated_size = 0;
memproc::realloc<RunMem>((void *&)(z0_t), allocated_size, new_size);
memproc::realloc<RunMem>((void *&)(sfx.z0_t), allocated_size, new_size);
allocated_size = 0;
memproc::realloc<RunMem>((void *&)(B), allocated_size, new_size);
memproc::realloc<RunMem>((void *&)(sfx.B), allocated_size, new_size);
allocated_size = 0;
memproc::realloc<RunMem>((void *&)(Cm), allocated_size, new_size);
memproc::realloc<RunMem>((void *&)(sfx.Cm), allocated_size, new_size);
allocated_size = 0;
memproc::realloc<RunMem>((void *&)(Ct), allocated_size, new_size);
memproc::realloc<RunMem>((void *&)(sfx.Ct), allocated_size, new_size);
allocated_size = 0;
memproc::realloc<RunMem>((void *&)(Km), allocated_size, new_size);
memproc::realloc<RunMem>((void *&)(sfx.Km), allocated_size, new_size);
allocated_size = 0;
memproc::realloc<RunMem>((void *&)(Pr_t_inv), allocated_size, new_size);
memproc::realloc<RunMem>((void *&)(sfx.Pr_t_inv), allocated_size, new_size);
ifAllocated = true;
}
else
{
sfx = *sfx_in;
}
}
template<typename T, MemType memIn, MemType memOut, MemType RunMem >
FluxEsm<T, memIn, memOut, RunMem>::~FluxEsm()
FluxEsmBase<T, memIn, memOut, RunMem>::~FluxEsmBase()
{
kappa = 0, Pr_t_0_inv = 0, Pr_t_inf_inv = 0,
alpha_m = 0, alpha_h = 0, alpha_h_fix = 0,
beta_m = 0, beta_h = 0,
Rib_max = 0, Re_rough_min = 0,
B1_rough = 0, B2_rough = 0,
B_max_land = 0, B_max_ocean = 0, B_max_lake = 0,
gamma_c = 0,
Re_visc_min = 0,
Pr_m = 0, nu_air = 0, g = 0;
grid_size = 0;
if(ifAllocated == true)
{
if(RunMem != memIn)
{
memproc::dealloc<RunMem>((void*&)U);
memproc::dealloc<RunMem>((void*&)dT);
memproc::dealloc<RunMem>((void*&)Tsemi);
memproc::dealloc<RunMem>((void*&)dQ);
memproc::dealloc<RunMem>((void*&)h);
memproc::dealloc<RunMem>((void*&)meteo.U);
memproc::dealloc<RunMem>((void*&)meteo.dT);
memproc::dealloc<RunMem>((void*&)meteo.Tsemi);
memproc::dealloc<RunMem>((void*&)meteo.dQ);
memproc::dealloc<RunMem>((void*&)meteo.h);
memproc::dealloc<RunMem>((void*&)meteo.z0_m);
}
if(RunMem != memOut)
{
memproc::dealloc<RunMem>((void*&)zeta);
memproc::dealloc<RunMem>((void*&)Rib);
memproc::dealloc<RunMem>((void*&)Re);
memproc::dealloc<RunMem>((void*&)Rib_conv_lim);
memproc::dealloc<RunMem>((void*&)z0_m);
memproc::dealloc<RunMem>((void*&)z0_t);
memproc::dealloc<RunMem>((void*&)B);
memproc::dealloc<RunMem>((void*&)Cm);
memproc::dealloc<RunMem>((void*&)Ct);
memproc::dealloc<RunMem>((void*&)Km);
memproc::dealloc<RunMem>((void*&)Pr_t_inv);
memproc::dealloc<RunMem>((void*&)sfx.zeta);
memproc::dealloc<RunMem>((void*&)sfx.Rib);
memproc::dealloc<RunMem>((void*&)sfx.Re);
memproc::dealloc<RunMem>((void*&)sfx.Rib_conv_lim);
memproc::dealloc<RunMem>((void*&)sfx.z0_m);
memproc::dealloc<RunMem>((void*&)sfx.z0_t);
memproc::dealloc<RunMem>((void*&)sfx.B);
memproc::dealloc<RunMem>((void*&)sfx.Cm);
memproc::dealloc<RunMem>((void*&)sfx.Ct);
memproc::dealloc<RunMem>((void*&)sfx.Km);
memproc::dealloc<RunMem>((void*&)sfx.Pr_t_inv);
}
ifAllocated = false;
......@@ -143,103 +130,127 @@ FluxEsm<T, memIn, memOut, RunMem>::~FluxEsm()
}
}
template<typename T, MemType memIn, MemType memOut, MemType RunMem >
void FluxEsm<T, memIn, memOut, RunMem>::set_data(T *zeta_, T *Rib_, T *Re_, T *B_, T *z0_m_, T *z0_t_, T *Rib_conv_lim_, T *Cm_, T *Ct_, T *Km_, T *Pr_t_inv_,
T *U_, T *dT_, T *Tsemi_, T *dQ_, T *h_, T *in_z0_m_)
template<typename T, MemType memIn, MemType memOut >
void FluxEsm<T, memIn, memOut, MemType::CPU>::compute_flux()
{
if(RunMem == memIn)
T h, U, dT, Tsemi, dQ, z0_m;
T Re, z0_t, B, h0_m, h0_t, u_dyn0, zeta, Rib, zeta_conv_lim, Rib_conv_lim, f_m_conv_lim, f_h_conv_lim, psi_m, psi_h, phi_m, phi_h, Km, Pr_t_inv, Cm, Ct;
int surface_type;
T fval;
for (int step = 0; step < grid_size; step++)
{
U = U_;
dT = dT_;
Tsemi = Tsemi_;
dQ = dQ_;
h = h_;
in_z0_m = in_z0_m_;
U = meteo.U[step];
Tsemi = meteo.Tsemi[step];
dT = meteo.dT[step];
dQ = meteo.dQ[step];
h = meteo.h[step];
z0_m = meteo.z0_m[step];
surface_type = z0_m < 0.0 ? surface_param.surface_ocean : surface_param.surface_land;
if (surface_type == surface_param.surface_ocean)
{
get_charnock_roughness(z0_m, u_dyn0, h, U, model_param, surface_param, numerics);
h0_m = h / z0_m;
}
else
if (surface_type == surface_param.surface_land)
{
const size_t new_size = grid_size * sizeof(T);
memproc::memcopy<RunMem, memIn>(U, U_, new_size);
memproc::memcopy<RunMem, memIn>(dT, dT_, new_size);
memproc::memcopy<RunMem, memIn>(Tsemi, Tsemi_, new_size);
memproc::memcopy<RunMem, memIn>(dQ, dQ_, new_size);
memproc::memcopy<RunMem, memIn>(h, h_, new_size);
memproc::memcopy<RunMem, memIn>(in_z0_m, in_z0_m_, new_size);
h0_m = h / z0_m;
u_dyn0 = U * model_param.kappa / log(h0_m);
}
if(RunMem == memOut)
Re = u_dyn0 * z0_m / phys_constants.nu_air;
get_thermal_roughness(z0_t, B, z0_m, Re, surface_param, surface_type);
h0_t = h / z0_t;
Rib = (phys_constants.g / Tsemi) * h * (dT + 0.61e0 * Tsemi * dQ) / (U*U);
get_convection_lim(zeta_conv_lim, Rib_conv_lim, f_m_conv_lim, f_h_conv_lim,
h0_m, h0_t, B,
model_param);
if (Rib > 0.0)
{
zeta = zeta_;
Rib = Rib_;
Re = Re_;
Rib_conv_lim = Rib_conv_lim_;
z0_m = z0_m_;
z0_t = z0_t_;
B = B_;
Cm = Cm_;
Ct = Ct_;
Km = Km_;
Pr_t_inv = Pr_t_inv_;
Rib = std::min(Rib, model_param.Rib_max);
get_psi_stable(psi_m, psi_h, zeta, Rib, h0_m, h0_t, B, model_param);
fval = model_param.beta_m * zeta;
phi_m = 1.0 + fval;
phi_h = 1.0/model_param.Pr_t_0_inv + fval;
}
else if (Rib < Rib_conv_lim)
{
get_psi_convection(psi_m, psi_h, zeta, Rib, h0_m, h0_t, B, zeta_conv_lim, f_m_conv_lim, f_h_conv_lim, model_param, numerics);
fval = pow(zeta_conv_lim / zeta, 1.0/3.0);
phi_m = fval / f_m_conv_lim;
phi_h = fval / (model_param.Pr_t_0_inv * f_h_conv_lim);
}
else if (Rib > -0.001)
{
get_psi_neutral(psi_m, psi_h, zeta, h0_m, h0_t, B, model_param);
template<typename T, MemType memIn, MemType memOut, MemType RunMem >
void FluxEsm<T, memIn, memOut, RunMem>::compute_flux_esm(T *zeta_, T *Rib_, T *Re_, T *B_, T *z0_m_, T *z0_t_, T *Rib_conv_lim_, T *Cm_, T *Ct_, T *Km_, T *Pr_t_inv_,
T *U_, T *dT_, T *Tsemi_, T *dQ_, T *h_, T *in_z0_m_,
const int maxiters_charnock, const int maxiters_convection)
phi_m = 1.0;
phi_h = 1.0 / model_param.Pr_t_0_inv;
}
else
{
set_data(zeta_, Rib_, Re_, B_, z0_m_, z0_t_, Rib_conv_lim_, Cm_, Ct_, Km_, Pr_t_inv_,
U_, dT_, Tsemi_, dQ_, h_, in_z0_m_);
if(RunMem == MemType::CPU) compute_flux_esm_cpu(zeta, Rib, Re, B, z0_m, z0_t, Rib_conv_lim, Cm, Ct, Km, Pr_t_inv,
U, dT, Tsemi, dQ, h, in_z0_m,
kappa, Pr_t_0_inv, Pr_t_inf_inv,
alpha_m, alpha_h, alpha_h_fix,
beta_m, beta_h, Rib_max, Re_rough_min,
B1_rough, B2_rough,
B_max_land, B_max_ocean, B_max_lake,
gamma_c, Re_visc_min,
Pr_m, nu_air, g,
maxiters_charnock, maxiters_convection,
grid_size);
get_psi_semi_convection(psi_m, psi_h, zeta, Rib, h0_m, h0_t, B, model_param, numerics);
#ifdef INCLUDE_CUDA
else compute_flux_esm_gpu(zeta, Rib, Re, B, z0_m, z0_t, Rib_conv_lim, Cm, Ct, Km, Pr_t_inv,
U, dT, Tsemi, dQ, h, in_z0_m,
kappa, Pr_t_0_inv, Pr_t_inf_inv,
alpha_m, alpha_h, alpha_h_fix,
beta_m, beta_h, Rib_max, Re_rough_min,
B1_rough, B2_rough,
B_max_land, B_max_ocean, B_max_lake,
gamma_c, Re_visc_min,
Pr_m, nu_air, g,
maxiters_charnock, maxiters_convection,
grid_size);
#endif
phi_m = pow(1.0 - model_param.alpha_m * zeta, -0.25);
phi_h = 1.0 / (model_param.Pr_t_0_inv * sqrt(1.0 - model_param.alpha_h_fix * zeta));
}
if(RunMem != memOut)
Cm = model_param.kappa / psi_m;
Ct = model_param.kappa / psi_h;
Km = model_param.kappa * Cm * U * h / phi_m;
Pr_t_inv = phi_m / phi_h;
sfx.zeta[step] = zeta;
sfx.Rib[step] = Rib;
sfx.Re[step] = Re;
sfx.B[step] = B;
sfx.z0_m[step] = z0_m;
sfx.z0_t[step] = z0_t;
sfx.Rib_conv_lim[step] = Rib_conv_lim;
sfx.Cm[step] = Cm;
sfx.Ct[step] = Ct;
sfx.Km[step] = Km;
sfx.Pr_t_inv[step] = Pr_t_inv;
}
if(MemType::CPU != memOut)
{
const size_t new_size = grid_size * sizeof(T);
memproc::memcopy<memOut, RunMem>(zeta_, zeta, new_size);
memproc::memcopy<memOut, RunMem>(Rib_, Rib, new_size);
memproc::memcopy<memOut, RunMem>(Re_, Re, new_size);
memproc::memcopy<memOut, RunMem>(Rib_conv_lim_, Rib_conv_lim, new_size);
memproc::memcopy<memOut, RunMem>(z0_m_, z0_m, new_size);
memproc::memcopy<memOut, RunMem>(z0_t_, z0_t, new_size);
memproc::memcopy<memOut, RunMem>(B_, B, new_size);
memproc::memcopy<memOut, RunMem>(Cm_, Cm, new_size);
memproc::memcopy<memOut, RunMem>(Ct_, Ct, new_size);
memproc::memcopy<memOut, RunMem>(Km_, Km, new_size);
memproc::memcopy<memOut, RunMem>(Pr_t_inv_, Pr_t_inv, new_size);
memproc::memcopy<memOut, MemType::CPU>((void*&)res_sfx->zeta, (void*&)sfx.zeta, new_size);
memproc::memcopy<memOut, MemType::CPU>((void*&)res_sfx->Rib, (void*&)sfx.Rib, new_size);
memproc::memcopy<memOut, MemType::CPU>((void*&)res_sfx->Re, (void*&)sfx.Re, new_size);
memproc::memcopy<memOut, MemType::CPU>((void*&)res_sfx->B, (void*&)sfx.B, new_size);
memproc::memcopy<memOut, MemType::CPU>((void*&)res_sfx->z0_m, (void*&)sfx.z0_m, new_size);
memproc::memcopy<memOut, MemType::CPU>((void*&)res_sfx->z0_t, (void*&)sfx.z0_t, new_size);
memproc::memcopy<memOut, MemType::CPU>((void*&)res_sfx->Rib_conv_lim, (void*&)sfx.Rib_conv_lim, new_size);
memproc::memcopy<memOut, MemType::CPU>((void*&)res_sfx->Cm, (void*&)sfx.Cm, new_size);
memproc::memcopy<memOut, MemType::CPU>((void*&)res_sfx->Ct, (void*&)sfx.Ct, new_size);
memproc::memcopy<memOut, MemType::CPU>((void*&)res_sfx->Km, (void*&)sfx.Km, new_size);
memproc::memcopy<memOut, MemType::CPU>((void*&)res_sfx->Pr_t_inv, (void*&)sfx.Pr_t_inv, new_size);
}
}
template class FluxEsm<float, MemType::CPU, MemType::CPU, MemType::CPU>;
template class FluxEsm<double, MemType::CPU, MemType::CPU, MemType::CPU>;
template class FluxEsmBase<float, MemType::CPU, MemType::CPU, MemType::CPU>;
#ifdef INCLUDE_CUDA
template class FluxEsmBase<float, MemType::GPU, MemType::GPU, MemType::GPU>;
template class FluxEsmBase<float, MemType::GPU, MemType::GPU, MemType::CPU>;
template class FluxEsmBase<float, MemType::GPU, MemType::CPU, MemType::GPU>;
template class FluxEsmBase<float, MemType::CPU, MemType::GPU, MemType::GPU>;
template class FluxEsmBase<float, MemType::CPU, MemType::CPU, MemType::GPU>;
template class FluxEsmBase<float, MemType::CPU, MemType::GPU, MemType::CPU>;
template class FluxEsmBase<float, MemType::GPU, MemType::CPU, MemType::CPU>;
template class FluxEsm<float, MemType::GPU, MemType::GPU, MemType::GPU>;
template class FluxEsm<float, MemType::GPU, MemType::GPU, MemType::CPU>;
template class FluxEsm<float, MemType::GPU, MemType::CPU, MemType::GPU>;
......@@ -248,11 +259,11 @@ template class FluxEsm<double, MemType::CPU, MemType::CPU, MemType::CPU>;
template class FluxEsm<float, MemType::CPU, MemType::GPU, MemType::CPU>;
template class FluxEsm<float, MemType::GPU, MemType::CPU, MemType::CPU>;
template class FluxEsm<double, MemType::GPU, MemType::GPU, MemType::GPU>;
template class FluxEsm<double, MemType::GPU, MemType::GPU, MemType::CPU>;
template class FluxEsm<double, MemType::GPU, MemType::CPU, MemType::GPU>;
template class FluxEsm<double, MemType::CPU, MemType::GPU, MemType::GPU>;
template class FluxEsm<double, MemType::CPU, MemType::CPU, MemType::GPU>;
template class FluxEsm<double, MemType::CPU, MemType::GPU, MemType::CPU>;
template class FluxEsm<double, MemType::GPU, MemType::CPU, MemType::CPU>;
// template class FluxEsm<double, MemType::GPU, MemType::GPU, MemType::GPU>;
// template class FluxEsm<double, MemType::GPU, MemType::GPU, MemType::CPU>;
// template class FluxEsm<double, MemType::GPU, MemType::CPU, MemType::GPU>;
// template class FluxEsm<double, MemType::CPU, MemType::GPU, MemType::GPU>;
// template class FluxEsm<double, MemType::CPU, MemType::CPU, MemType::GPU>;
// template class FluxEsm<double, MemType::CPU, MemType::GPU, MemType::CPU>;
// template class FluxEsm<double, MemType::GPU, MemType::CPU, MemType::CPU>;
#endif
\ No newline at end of file
#include "../includeCXX/sfx_surface.h"
#include <cmath>
#include <iostream>
template<typename T>
void get_charnock_roughness(T &z0_m, T &u_dyn0,
const T h, const T U,
const T kappa,
const T h_charnock, const T c1_charnock, const T c2_charnock,
const int maxiters)
{
T Uc, a, b, c, c_min, f;
Uc = U;
a = 0.0;
b = 25.0;
c_min = log(h_charnock) / kappa;
for (int i = 0; i < maxiters; i++)
{
f = c1_charnock - 2.0 * log(Uc);
for (int j = 0; j < maxiters; j++)
{
c = (f + 2.0 * log(b)) / kappa;
if (U <= 8.0e0)
a = log(1.0 + c2_charnock * ( pow(b / Uc, 3) ) ) / kappa;
c = std::max(c - a, c_min);
b = c;
}
z0_m = h_charnock * exp(-c * kappa);
z0_m = std::max(z0_m, T(0.000015e0));
Uc = U * log(h_charnock / z0_m) / log(h / z0_m);
}
u_dyn0 = Uc / c;
}
template void get_charnock_roughness(float &z0_m, float &u_dyn0,
const float h, const float U,
const float kappa,
const float h_charnock, const float c1_charnock, const float c2_charnock,
const int maxiters);
template void get_charnock_roughness(double &z0_m, double &u_dyn0,
const double h, const double U,
const double kappa,
const double h_charnock, const double c1_charnock, const double c2_charnock,
const int maxiters);
template<typename T>
void get_thermal_roughness(T &z0_t, T &B,
const T z0_m, const T Re,
const T Re_rough_min,
const T B1_rough, const T B2_rough, const T B3_rough, const T B4_rough,
const T B_max_ocean, const T B_max_lake, const T B_max_land,
const int surface_type)
{
// --- define B = log(z0_m / z0_t)
if (Re <= Re_rough_min)
B = B1_rough * log(B3_rough * Re) + B2_rough;
else
// *: B4 takes into account Re value at z' ~ O(10) z0
B = B4_rough * (pow(Re, B2_rough));
// --- apply max restriction based on surface type
if (surface_type == 0)
B = std::min(B, B_max_ocean);
else if (surface_type == 2)
B = std::min(B, B_max_lake);
else if (surface_type == 1)
B = std::min(B, B_max_land);
// --- define roughness [thermal]
z0_t = z0_m / exp(B);
}
template void get_thermal_roughness(float &z0_t, float &B,
const float z0_m, const float Re,
const float Re_rough_min,
const float B1_rough, const float B2_rough, const float B3_rough, const float B4_rough,
const float B_max_ocean, const float B_max_lake, const float B_max_land,
const int surface_type);
template void get_thermal_roughness(double &z0_t, double &B,
const double z0_m, const double Re,
const double Re_rough_min,
const double B1_rough, const double B2_rough, const double B3_rough, const double B4_rough,
const double B_max_ocean, const double B_max_lake, const double B_max_land,
const int surface_type);
\ No newline at end of file
......@@ -4,7 +4,7 @@ module sfx_data
! modules used
! --------------------------------------------------------------------------------
! --------------------------------------------------------------------------------
use iso_c_binding, only: C_FLOAT, C_INT, C_PTR, C_LOC
! directives list
! --------------------------------------------------------------------------------
implicit none
......@@ -14,7 +14,13 @@ module sfx_data
! public interface
! --------------------------------------------------------------------------------
public :: allocate_meteo_vec, deallocate_meteo_vec
#if defined(INCLUDE_CXX)
public :: set_meteo_vec_c
#endif
public :: allocate_sfx_vec, deallocate_sfx_vec
#if defined(INCLUDE_CXX)
public :: set_sfx_vec_c
#endif
public :: push_sfx_data
! --------------------------------------------------------------------------------
......@@ -23,60 +29,132 @@ module sfx_data
!> @brief meteorological input for surface flux calculation
type, public :: meteoDataType
real :: h !< constant flux layer height [m]
real :: U !< abs(wind speed) at 'h' [m/s]
real :: dT !< difference between potential temperature at 'h' and at surface [K]
real :: Tsemi !< semi-sum of potential temperature at 'h' and at surface [K]
real :: dQ !< difference between humidity at 'h' and at surface [g/g]
real :: z0_m !< surface aerodynamic roughness (should be < 0 for water bodies surface)
real(C_FLOAT) :: h !< constant flux layer height [m]
real(C_FLOAT) :: U !< abs(wind speed) at 'h' [m/s]
real(C_FLOAT) :: dT !< difference between potential temperature at 'h' and at surface [K]
real(C_FLOAT) :: Tsemi !< semi-sum of potential temperature at 'h' and at surface [K]
real(C_FLOAT) :: dQ !< difference between humidity at 'h' and at surface [g/g]
real(C_FLOAT) :: z0_m !< surface aerodynamic roughness (should be < 0 for water bodies surface)
end type
!> @brief meteorological input for surface flux calculation
!> &details using arrays as input
type, public :: meteoDataVecType
real, allocatable :: h(:) !< constant flux layer height [m]
real, allocatable :: U(:) !< abs(wind speed) at 'h' [m/s]
real, allocatable :: dT(:) !< difference between potential temperature at 'h' and at surface [K]
real, allocatable :: Tsemi(:) !< semi-sum of potential temperature at 'h' and at surface [K]
real, allocatable :: dQ(:) !< difference between humidity at 'h' and at surface [g/g]
real, allocatable :: z0_m(:) !< surface aerodynamic roughness (should be < 0 for water bodies surface)
real, pointer :: h(:) !< constant flux layer height [m]
real, pointer :: U(:) !< abs(wind speed) at 'h' [m/s]
real, pointer :: dT(:) !< difference between potential temperature at 'h' and at surface [K]
real, pointer :: Tsemi(:) !< semi-sum of potential temperature at 'h' and at surface [K]
real, pointer :: dQ(:) !< difference between humidity at 'h' and at surface [g/g]
real, pointer :: z0_m(:) !< surface aerodynamic roughness (should be < 0 for water bodies surface)
end type
#if defined(INCLUDE_CXX)
type, public :: meteoDataVecTypeC
type(C_PTR) :: h !< constant flux layer height [m]
type(C_PTR) :: U !< abs(wind speed) at 'h' [m/s]
type(C_PTR) :: dT !< difference between potential temperature at 'h' and at surface [K]
type(C_PTR) :: Tsemi !< semi-sum of potential temperature at 'h' and at surface [K]
type(C_PTR) :: dQ !< difference between humidity at 'h' and at surface [g/g]
type(C_PTR) :: z0_m !< surface aerodynamic roughness (should be < 0 for water bodies surface)
end type
#endif
! --------------------------------------------------------------------------------
! --------------------------------------------------------------------------------
!> @brief surface flux output data
type, public :: sfxDataType
real :: zeta !< = z/L [n/d]
real :: Rib !< bulk Richardson number [n/d]
real :: Re !< Reynolds number [n/d]
real :: B !< = log(z0_m / z0_h) [n/d]
real :: z0_m !< aerodynamic roughness [m]
real :: z0_t !< thermal roughness [m]
real :: Rib_conv_lim !< Ri-bulk convection critical value [n/d]
real :: Cm !< transfer coefficient for momentum [n/d]
real :: Ct !< transfer coefficient for heat [n/d]
real :: Km !< eddy viscosity coeff. at h [m^2/s]
real :: Pr_t_inv !< inverse turbulent Prandtl number at h [n/d]
real(C_FLOAT) :: zeta !< = z/L [n/d]
real(C_FLOAT) :: Rib !< bulk Richardson number [n/d]
real(C_FLOAT) :: Re !< Reynolds number [n/d]
real(C_FLOAT) :: B !< = log(z0_m / z0_h) [n/d]
real(C_FLOAT) :: z0_m !< aerodynamic roughness [m]
real(C_FLOAT) :: z0_t !< thermal roughness [m]
real(C_FLOAT) :: Rib_conv_lim !< Ri-bulk convection critical value [n/d]
real(C_FLOAT) :: Cm !< transfer coefficient for momentum [n/d]
real(C_FLOAT) :: Ct !< transfer coefficient for heat [n/d]
real(C_FLOAT) :: Km !< eddy viscosity coeff. at h [m^2/s]
real(C_FLOAT) :: Pr_t_inv !< inverse turbulent Prandtl number at h [n/d]
end type
!> @brief surface flux output data
!> &details using arrays as output
type, public :: sfxDataVecType
real, allocatable :: zeta(:) !< = z/L [n/d]
real, allocatable :: Rib(:) !< bulk Richardson number [n/d]
real, allocatable :: Re(:) !< Reynolds number [n/d]
real, allocatable :: B(:) !< = log(z0_m / z0_h) [n/d]
real, allocatable :: z0_m(:) !< aerodynamic roughness [m]
real, allocatable :: z0_t(:) !< thermal roughness [m]
real, allocatable :: Rib_conv_lim(:) !< Ri-bulk convection critical value [n/d]
real, allocatable :: Cm(:) !< transfer coefficient for momentum [n/d]
real, allocatable :: Ct(:) !< transfer coefficient for heat [n/d]
real, allocatable :: Km(:) !< eddy viscosity coeff. at h [m^2/s]
real, allocatable :: Pr_t_inv(:) !< inverse turbulent Prandtl number at h [n/d]
real, pointer :: zeta(:) !< = z/L [n/d]
real, pointer :: Rib(:) !< bulk Richardson number [n/d]
real, pointer :: Re(:) !< Reynolds number [n/d]
real, pointer :: B(:) !< = log(z0_m / z0_h) [n/d]
real, pointer :: z0_m(:) !< aerodynamic roughness [m]
real, pointer :: z0_t(:) !< thermal roughness [m]
real, pointer :: Rib_conv_lim(:) !< Ri-bulk convection critical value [n/d]
real, pointer :: Cm(:) !< transfer coefficient for momentum [n/d]
real, pointer :: Ct(:) !< transfer coefficient for heat [n/d]
real, pointer :: Km(:) !< eddy viscosity coeff. at h [m^2/s]
real, pointer :: Pr_t_inv(:) !< inverse turbulent Prandtl number at h [n/d]
end type
#if defined(INCLUDE_CXX)
type, public :: sfxDataVecTypeC
type(C_PTR) :: zeta !< = z/L [n/d]
type(C_PTR) :: Rib !< bulk Richardson number [n/d]
type(C_PTR) :: Re !< Reynolds number [n/d]
type(C_PTR) :: B !< = log(z0_m / z0_h) [n/d]
type(C_PTR) :: z0_m !< aerodynamic roughness [m]
type(C_PTR) :: z0_t !< thermal roughness [m]
type(C_PTR) :: Rib_conv_lim !< Ri-bulk convection critical value [n/d]
type(C_PTR) :: Cm !< transfer coefficient for momentum [n/d]
type(C_PTR) :: Ct !< transfer coefficient for heat [n/d]
type(C_PTR) :: Km !< eddy viscosity coeff. at h [m^2/s]
type(C_PTR) :: Pr_t_inv !< inverse turbulent Prandtl number at h [n/d]
end type
type, BIND(C), public :: sfx_esm_param
real(C_FLOAT) :: kappa
real(C_FLOAT) :: Pr_t_0_inv
real(C_FLOAT) :: Pr_t_inf_inv
real(C_FLOAT) :: alpha_m
real(C_FLOAT) :: alpha_h
real(C_FLOAT) :: alpha_h_fix
real(C_FLOAT) :: beta_m
real(C_FLOAT) :: beta_h
real(C_FLOAT) :: Rib_max
end type
type, BIND(C), public :: sfx_surface_param
integer(C_INT) :: surface_ocean
integer(C_INT) :: surface_land
integer(C_INT) :: surface_lake
real(C_FLOAT) :: gamma_c;
real(C_FLOAT) :: Re_visc_min;
real(C_FLOAT) :: h_charnock;
real(C_FLOAT) :: c1_charnock;
real(C_FLOAT) :: c2_charnock;
real(C_FLOAT) :: Re_rough_min;
real(C_FLOAT) :: B1_rough;
real(C_FLOAT) :: B2_rough;
real(C_FLOAT) :: B3_rough;
real(C_FLOAT) :: B4_rough;
real(C_FLOAT) :: B_max_lake;
real(C_FLOAT) :: B_max_ocean;
real(C_FLOAT) :: B_max_land;
end type
type, BIND(C), public :: sfx_esm_numericsTypeC
integer(C_INT) :: maxiters_convection
integer(C_INT) :: maxiters_charnock
end type
type, BIND(C), public :: sfx_phys_constants
real(C_FLOAT) :: Pr_m;
real(C_FLOAT) :: g;
real(C_FLOAT) :: nu_air;
end type
#endif
! --------------------------------------------------------------------------------
contains
......@@ -98,6 +176,24 @@ contains
allocate(meteo%z0_m(n))
end subroutine allocate_meteo_vec
#if defined(INCLUDE_CXX)
subroutine set_meteo_vec_c(meteo, meteo_C)
!> @brief allocate meteo data vector
! ----------------------------------------------------------------------------
type (meteoDataVecType) , intent(in) :: meteo
type (meteoDataVecTypeC), pointer, intent(inout) :: meteo_C
allocate(meteo_C)
meteo_C%h = c_loc(meteo%h)
meteo_C%U = c_loc(meteo%U)
meteo_C%dT = c_loc(meteo%dT)
meteo_C%Tsemi = c_loc(meteo%Tsemi)
meteo_C%dQ = c_loc(meteo%dQ)
meteo_C%z0_m = c_loc(meteo%z0_m)
end subroutine set_meteo_vec_c
#endif
! --------------------------------------------------------------------------------
! --------------------------------------------------------------------------------
......@@ -139,6 +235,29 @@ contains
allocate(sfx%Pr_t_inv(n))
end subroutine allocate_sfx_vec
#if defined(INCLUDE_CXX)
subroutine set_sfx_vec_c(sfx, sfx_C)
!> @brief allocate surface fluxes data vector
! ----------------------------------------------------------------------------
type (sfxDataVecType), intent(inout) :: sfx
type (sfxDataVecTypeC), pointer, intent(inout) :: sfx_C
allocate(sfx_C)
sfx_C%zeta = c_loc(sfx%zeta)
sfx_C%Rib = c_loc(sfx%Rib)
sfx_C%Re = c_loc(sfx%Re)
sfx_C%B = c_loc(sfx%B)
sfx_C%z0_m = c_loc(sfx%z0_m)
sfx_C%z0_t = c_loc(sfx%z0_t)
sfx_C%Rib_conv_lim = c_loc(sfx%Rib_conv_lim)
sfx_C%Cm = c_loc(sfx%Cm)
sfx_C%Ct = c_loc(sfx%Ct)
sfx_C%Km = c_loc(sfx%Km)
sfx_C%Pr_t_inv = c_loc(sfx%Pr_t_inv)
end subroutine set_sfx_vec_c
#endif
! --------------------------------------------------------------------------------
! --------------------------------------------------------------------------------
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment