Skip to content
Snippets Groups Projects
sfx_compute_sheba.cu 17.6 KiB
Newer Older
数学の武士's avatar
.
数学の武士 committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
#include <cmath>
#include <iostream>
#include "../includeCU/sfx_compute_sheba.cuh"
#include "../includeCU/sfx_surface.cuh"

template<typename T>
__device__ void get_charnock_roughness(T &z0_m, T &u_dyn0,
    const T h, const T U,
    const T kappa, 
    const T h_charnock, const T c1_charnock, const T c2_charnock, 
    const int maxiters)
{
    T Uc, a, b, c, c_min, f;

    Uc = U;
    a = 0.0;
    b = 25.0;
    c_min = log(h_charnock) / kappa;

    for (int i = 0; i < maxiters; i++)
    {
        f = c1_charnock - 2.0 * log(Uc);
        for (int j = 0; j < maxiters; j++)
        {
            c = (f + 2.0 * log(b)) / kappa;
            if (U <= 8.0e0) 
                a = log(1.0 + c2_charnock * ( pow(b / Uc, 3) ) ) / kappa;
            c = max(c - a, c_min);
            b = c;
        }
        z0_m = h_charnock * exp(-c * kappa);
        z0_m = max(z0_m, T(0.000015e0));
        Uc = U * log(h_charnock / z0_m) / log(h / z0_m);
    }
    
    u_dyn0 = Uc / c;
}

template __device__ void get_charnock_roughness(float &z0_m, float &u_dyn0,
    const float h, const float U,
    const float kappa, 
    const float h_charnock, const float c1_charnock, const float c2_charnock, 
    const int maxiters);
template __device__ void get_charnock_roughness(double &z0_m, double &u_dyn0, 
    const double h, const double U,
    const double kappa, 
    const double h_charnock, const double c1_charnock, const double c2_charnock,
    const int maxiters);

template<typename T>
__device__ void get_thermal_roughness(T &z0_t, T &B,
    const T z0_m, const T Re, 
    const T Re_rough_min, 
    const T B1_rough, const T B2_rough, const T B3_rough, const T B4_rough, 
    const T B_max_ocean, const T B_max_lake, const T B_max_land,
    const int surface_type)
{
    // --- define B = log(z0_m / z0_t)
    if (Re <= Re_rough_min) 
        B = B1_rough * log(B3_rough * Re) + B2_rough;
    else
        // *: B4 takes into account Re value at z' ~ O(10) z0
        B = B4_rough * (pow(Re, B2_rough));

    //   --- apply max restriction based on surface type
    if (surface_type == 0) 
        B = min(B, B_max_ocean);
    else if (surface_type == 2) 
        B = min(B, B_max_lake);
    else if (surface_type == 1)
        B = min(B, B_max_land);

    // --- define roughness [thermal]
    z0_t = z0_m / exp(B);
}

template __device__ void get_thermal_roughness(float &z0_t, float &B,
    const float z0_m, const float Re, 
    const float Re_rough_min, 
    const float B1_rough, const float B2_rough, const float B3_rough, const float B4_rough, 
    const float B_max_ocean, const float B_max_lake, const float B_max_land,
    const int surface_type);
template __device__ void get_thermal_roughness(double &z0_t, double &B,
    const double z0_m, const double Re, 
    const double Re_rough_min, 
    const double B1_rough, const double B2_rough, const double B3_rough, const double B4_rough, 
    const double B_max_ocean, const double B_max_lake, const double B_max_land,
    const int surface_type);

template<typename T>
__device__ void get_psi_mh(T &psi_m, T &psi_h,
    const T zeta_m, const T zeta_h,
    const T alpha_m, const T alpha_h,
    const T a_m, const T a_h, 
    const T b_m, const T b_h,
    const T c_h)
{
    T x_m, x_h;
    T q_m, q_h;

    if (zeta_m >= 0.0) 
    {
        q_m = pow((1.0 - b_m) / b_m, 1.0 / 3.0);
        x_m = pow(1.0 + zeta_m, 1.0 / 3.0);

        psi_m = -3.0 * (a_m / b_m) * (x_m - 1.0) + 0.5 * (a_m / b_m) * q_m * (2.0 * log((x_m + q_m) / (1.0 + q_m)) - log((x_m * x_m - x_m * q_m + q_m * q_m) / (1.0 - q_m + q_m * q_m)) + 2.0 * sqrt(3.0) * (atan((2.0 * x_m - q_m) / (sqrt(3.0) * q_m)) - atan((2.0 - q_m) / (sqrt(3.0) * q_m))));
    }                                
    else
    {    x_m = pow(1.0 - alpha_m * zeta_m, 0.25);
        psi_m = (4.0 * atan(1.0) / 2.0) + 2.0 * log(0.5 * (1.0 + x_m)) + log(0.5 * (1.0 + x_m * x_m)) - 2.0 * atan(x_m);
    }

    if (zeta_h >= 0.0)
    {    
        q_h = sqrt(c_h * c_h - 4.0);
        x_h = zeta_h;

        psi_h = -0.5 * b_h * log(1.0 + c_h * x_h + x_h * x_h) + ((-a_h / q_h) + ((b_h * c_h) / (2.0 * q_h))) * (log((2.0 * x_h + c_h - q_h) / (2.0 * x_h + c_h + q_h)) - log((c_h - q_h) / (c_h + q_h)));
    }
    else
    {
        x_h = pow(1.0 - alpha_h * zeta_h, 0.25);
        psi_h = 2.0 * log(0.5 * (1.0 + x_h * x_h));
    }
}

template __device__ void get_psi_mh(float &psi_m, float &psi_h,
    const float zeta_m, const float zeta_h,
    const float alpha_m, const float alpha_h,
    const float a_m, const float a_h, 
    const float b_m, const float b_h,
    const float c_h);
template __device__ void get_psi_mh(double &psi_m, double &psi_h,
    const double zeta_m, const double zeta_h,
    const double alpha_m, const double alpha_h,
    const double a_m, const double a_h, 
    const double b_m, const double b_h,
    const double c_h);

template<typename T>
__device__ void get_psi(T &psi_m, T &psi_h,
    const T zeta,
    const T alpha_m, const T alpha_h,
    const T a_m, const T a_h, 
    const T b_m, const T b_h,
    const T c_h)
{
    T x_m, x_h;
    T q_m, q_h;

    if (zeta >= 0.0) 
    {
        q_m = pow((1.0 - b_m) / b_m, 1.0 / 3.0);
        q_h = sqrt(c_h * c_h - 4.0);

        x_m = pow(1.0 + zeta, 1.0 / 3.0);
        x_h = zeta;

        psi_m = -3.0 * (a_m / b_m) * (x_m - 1.0) + 0.5 * (a_m / b_m) * q_m * (2.0 * log((x_m + q_m) / (1.0 + q_m)) - log((x_m * x_m - x_m * q_m + q_m * q_m) / (1.0 - q_m + q_m * q_m)) + 2.0 * sqrt(3.0) * (atan((2.0 * x_m - q_m) / (sqrt(3.0) * q_m)) - atan((2.0 - q_m) / (sqrt(3.0) * q_m))));

        psi_h = -0.5 * b_h * log(1.0 + c_h * x_h + x_h * x_h) + ((-a_h / q_h) + ((b_h * c_h) / (2.0 * q_h))) * (log((2.0 * x_h + c_h - q_h) / (2.0 * x_h + c_h + q_h)) - log((c_h - q_h) / (c_h + q_h)));
    }
    else
    {
        x_m = pow(1.0 - alpha_m * zeta, 0.25);
        x_h = pow(1.0 - alpha_h * zeta, 0.25); 

        psi_m = (4.0 * atan(1.0) / 2.0) + 2.0 * log(0.5 * (1.0 + x_m)) + log(0.5 * (1.0 + x_m * x_m)) - 2.0 * atan(x_m);
        psi_h = 2.0 * log(0.5 * (1.0 + x_h * x_h));
    }
}

template __device__ void get_psi(float &psi_m, float &psi_h,
    const float zeta,
    const float alpha_m, const float alpha_h,
    const float a_m, const float a_h, 
    const float b_m, const float b_h,
    const float c_h);
template __device__ void get_psi(double &psi_m, double &psi_h,
    const double zeta,
    const double alpha_m, const double alpha_h,
    const double a_m, const double a_h, 
    const double b_m, const double b_h,
    const double c_h);

template<typename T>
__device__ void get_dynamic_scales(T &Udyn, T &Tdyn, T &Qdyn, T &zeta,
    const T U, const T Tsemi, const T dT, const T dQ, const T z, const T z0_m, const T z0_t, const T beta,
    const T kappa, const T Pr_t_0_inv,
    const T alpha_m, const T alpha_h,
    const T a_m, const T a_h, 
    const T b_m, const T b_h,
    const T c_h,
    const int maxiters)
{
    T psi_m, psi_h, psi0_m, psi0_h, Linv;
    const T gamma = 0.61;

    Udyn = kappa * U / log(z / z0_m);
    Tdyn = kappa * dT * Pr_t_0_inv / log(z / z0_t);
    Qdyn = kappa * dQ * Pr_t_0_inv / log(z / z0_t);
    zeta = 0.0;

    // --- no wind
    if (Udyn < 1e-5) 
        return;

    Linv = kappa * beta * (Tdyn + gamma * Qdyn * Tsemi) / (Udyn * Udyn);
    zeta = z * Linv;

    // --- near neutral case
    if (Linv < 1e-5) 
        return;

    for (int i = 0; i < maxiters; i++)
    {
        get_psi(psi_m, psi_h, zeta, alpha_m, alpha_h,
        a_m, a_h, 
        b_m, b_h,
        c_h);
        
        get_psi_mh(psi0_m, psi0_h, z0_m * Linv, z0_t * Linv, 
        alpha_m, alpha_h,
        a_m, a_h, 
        b_m, b_h,
        c_h);

        Udyn = kappa * U / (log(z / z0_m) - (psi_m - psi0_m));
        Tdyn = kappa * dT * Pr_t_0_inv / (log(z / z0_t) - (psi_h - psi0_h));
        Qdyn = kappa * dQ * Pr_t_0_inv / (log(z / z0_t) - (psi_h - psi0_h));

        if (Udyn < 1e-5) 
            break;

        Linv = kappa * beta * (Tdyn + gamma * Qdyn * Tsemi) / (Udyn * Udyn);
        zeta = z * Linv;
    }
}

template __device__ void get_dynamic_scales(float &Udyn, float &Tdyn, float &Qdyn, float & zeta,
    const float U, const float Tsemi, const float dT, const float dQ, const float z, const float z0_m, const float z0_t, const float beta,
    const float kappa, const float Pr_t_0_inv,
    const float alpha_m, const float alpha_h,
    const float a_m, const float a_h, 
    const float b_m, const float b_h,
    const float c_h,
    const int maxiters);
template __device__ void get_dynamic_scales(double &Udyn, double &Tdyn, double &Qdyn, double & zeta,
    const double U, const double Tsemi, const double dT, const double dQ, const double z, const double z0_m, const double z0_t, const double beta,
    const double kappa, const double Pr_t_0_inv,
    const double alpha_m, const double alpha_h,
    const double a_m, const double a_h, 
    const double b_m, const double b_h,
    const double c_h,
    const int maxiters);

template<typename T>
__device__ void get_phi(T &phi_m, T &phi_h,
    const T zeta, 
    const T alpha_m, const T alpha_h,
    const T a_m, const T a_h, 
    const T b_m, const T b_h,
    const T c_h)
{
    if (zeta >= 0.0) 
    {
        phi_m = 1.0 + (a_m * zeta * pow(1.0 + zeta, 1.0 / 3.0) ) / (1.0 + b_m * zeta);
        phi_h = 1.0 + (a_h * zeta + b_h * zeta * zeta) / (1.0 + c_h * zeta + zeta * zeta);
    }
    else
    {
        phi_m = pow(1.0 - alpha_m * zeta, -0.25);
        phi_h = pow(1.0 - alpha_h * zeta, -0.5);
    }
}

template __device__ void get_phi(float &phi_m, float &phi_h,
    const float zeta, 
    const float alpha_m, const float alpha_h,
    const float a_m, const float a_h, 
    const float b_m, const float b_h,
    const float c_h);
template __device__ void get_phi(double &phi_m, double &phi_h,
    const double zeta, 
    const double alpha_m, const double alpha_h,
    const double a_m, const double a_h, 
    const double b_m, const double b_h,
    const double c_h);

template<typename T>
__global__ void kernel_compute_flux_sheba(T *zeta_, T *Rib_, T *Re_, T *B_, T *z0_m_, T *z0_t_, T *Rib_conv_lim_, T *Cm_, T *Ct_, T *Km_, T *Pr_t_inv_,
    const T *U_, const T *dT_, const T *Tsemi_, const T *dQ_, const T *h_, const T *in_z0_m_,
    const T kappa, const T Pr_t_0_inv,
    const T alpha_m, const T alpha_h, 
    const T a_m, const T a_h, 
    const T b_m, const T b_h,
    const T c_h,
    const T Re_rough_min, 
    const T B1_rough, const T B2_rough,
    const T B_max_land, const T B_max_ocean, const T B_max_lake,
    const T gamma_c, const T Re_visc_min,
    const T Pr_m, const T nu_air, const T g, 
    const int maxiters_charnock,
    const int grid_size)
{
    const int index = blockIdx.x * blockDim.x + threadIdx.x;

    T h, U, dT, Tsemi, dQ, z0_m;
    T z0_t, B, h0_m, h0_t, u_dyn0, Re, 
    zeta, Rib, Udyn, Tdyn, Qdyn, phi_m, phi_h,
    Km, Pr_t_inv, Cm, Ct;

    const T B3_rough = kappa * Pr_m, B4_rough =(0.14 * (pow(30.0, B2_rough))) * (pow(Pr_m, 0.8));
    const T h_charnock = 10.0, c1_charnock = log(h_charnock * (g / gamma_c)), c2_charnock = Re_visc_min * nu_air * c1_charnock;

    int surface_type;

    if(index < grid_size)
    {
        U = U_[index];
        Tsemi = Tsemi_[index];
        dT = dT_[index];
        dQ = dQ_[index];
        h = h_[index];
        z0_m = in_z0_m_[index];

        if (z0_m < 0.0) surface_type = 0;
        else            surface_type = 1;

        if (surface_type == 0) 
        {
            get_charnock_roughness(z0_m, u_dyn0, h, U, kappa, h_charnock, c1_charnock, c2_charnock, maxiters_charnock);
            h0_m = h / z0_m;
        }
        if (surface_type == 1) 
        {
            h0_m = h / z0_m;
            u_dyn0 = U * kappa / log(h0_m);
        }

        Re = u_dyn0 * z0_m / nu_air;
        get_thermal_roughness(z0_t, B, z0_m, Re, Re_rough_min, B1_rough, B2_rough, B3_rough, B4_rough, B_max_ocean, B_max_lake, B_max_land, surface_type);

        // --- define relative height [thermal]
        h0_t = h / z0_t;

        // --- define Ri-bulk
        Rib = (g / Tsemi) * h * (dT + 0.61e0 * Tsemi * dQ) / (U*U);

        // --- get the fluxes
        // ----------------------------------------------------------------------------
        get_dynamic_scales(Udyn, Tdyn, Qdyn, zeta, U, Tsemi, dT, dQ, h, z0_m, z0_t, (g / Tsemi), kappa, Pr_t_0_inv, alpha_m, alpha_h, a_m, a_h, b_m, b_h, c_h, 10);
        // ----------------------------------------------------------------------------

        get_phi(phi_m, phi_h, zeta, alpha_m, alpha_h, a_m, a_h, b_m, b_h, c_h);
        // ----------------------------------------------------------------------------

        // --- define transfer coeff. (momentum) & (heat)
        Cm = 0.0;
        if (U > 0.0)
            Cm = Udyn / U;
        Ct = 0.0;
        if (fabs(dT) > 0.0) 
            Ct = Tdyn / dT;

        // --- define eddy viscosity & inverse Prandtl number
        Km = kappa * Cm * U * h / phi_m;
        Pr_t_inv = phi_m / phi_h;

        zeta_[index]         = 0.0;
        Rib_[index]          = 0.0;
        Re_[index]           = 0.0;
        B_[index]            = 0.0;
        z0_m_[index]         = 0.0;
        z0_t_[index]         = 0.0;
        Rib_conv_lim_[index] = 0.0;
        Cm_[index]           = 0.0;
        Ct_[index]           = 0.0;
        Km_[index]           = 0.0;
        Pr_t_inv_[index]     = 0.0;
    }
}

template __global__ void kernel_compute_flux_sheba(float *zeta_, float *Rib_, float *Re_, float *B_, float *z0_m_, float *z0_t_, float *Rib_conv_lim_, float *Cm_, float *Ct_, float *Km_, float *Pr_t_inv_,
    const float *U_, const float *dT_, const float *Tsemi_, const float *dQ_, const float *h_, const float *in_z0_m_,
    const float kappa, const float Pr_t_0_inv,
    const float alpha_m, const float alpha_h, 
    const float a_m, const float a_h, 
    const float b_m, const float b_h,
    const float c_h,
    const float Re_rough_min, 
    const float B1_rough, const float B2_rough,
    const float B_max_land, const float B_max_ocean, const float B_max_lake,
    const float gamma_c, const float Re_visc_min,
    const float Pr_m, const float nu_air, const float g, 
    const int maxiters_charnock,
    const int grid_size);
template __global__ void kernel_compute_flux_sheba(double *zeta_, double *Rib_, double *Re_, double *B_, double *z0_m_, double *z0_t_, double *Rib_conv_lim_, double *Cm_, double *Ct_, double *Km_, double *Pr_t_inv_,
    const double *U_, const double *dT_, const double *Tsemi_, const double *dQ_, const double *h_, const double *in_z0_m_,
    const double kappa, const double Pr_t_0_inv,
    const double alpha_m, const double alpha_h, 
    const double a_m, const double a_h, 
    const double b_m, const double b_h,
    const double c_h,
    const double Re_rough_min, 
    const double B1_rough, const double B2_rough,
    const double B_max_land, const double B_max_ocean, const double B_max_lake,
    const double gamma_c, const double Re_visc_min,
    const double Pr_m, const double nu_air, const double g, 
    const int maxiters_charnock,
    const int grid_size);

template<typename T>
void compute_flux_sheba_gpu(T *zeta_, T *Rib_, T *Re_, T *B_, T *z0_m_, T *z0_t_, T *Rib_conv_lim_, T *Cm_, T *Ct_, T *Km_, T *Pr_t_inv_,
    const T *U_, const T *dT_, const T *Tsemi_, const T *dQ_, const T *h_, const T *in_z0_m_,
    const T kappa, const T Pr_t_0_inv,
    const T alpha_m, const T alpha_h, 
    const T a_m, const T a_h, 
    const T b_m, const T b_h,
    const T c_h,
    const T Re_rough_min, 
    const T B1_rough, const T B2_rough,
    const T B_max_land, const T B_max_ocean, const T B_max_lake,
    const T gamma_c, const T Re_visc_min,
    const T Pr_m, const T nu_air, const T g, 
    const int maxiters_charnock,
    const int grid_size)
{
    const int BlockCount = int(ceil(float(grid_size) / 1024.0));
    dim3 cuBlock = dim3(1024, 1, 1);
	dim3 cuGrid = dim3(BlockCount, 1, 1);

    kernel_compute_flux_sheba<<<cuGrid, cuBlock>>>(zeta_, Rib_, Re_, B_, z0_m_, z0_t_, Rib_conv_lim_, Cm_, Ct_, Km_, Pr_t_inv_,
    U_, dT_, Tsemi_, dQ_, h_, in_z0_m_,
    kappa, Pr_t_0_inv, 
    alpha_m, alpha_h, 
    a_m, a_h, 
    b_m, b_h,
    c_h,
    Re_rough_min, 
    B1_rough, B2_rough,
    B_max_land, B_max_ocean, B_max_lake,
    gamma_c, Re_visc_min,
    Pr_m, nu_air, g, 
    maxiters_charnock, 
    grid_size);
}

template void compute_flux_sheba_gpu(float *zeta_, float *Rib_, float *Re_, float *B_, float *z0_m_, float *z0_t_, float *Rib_conv_lim_, float *Cm_, float *Ct_, float *Km_, float *Pr_t_inv_,
    const float *U_, const float *dT_, const float *Tsemi_, const float *dQ_, const float *h_, const float *in_z0_m_,
    const float kappa, const float Pr_t_0_inv,
    const float alpha_m, const float alpha_h, 
    const float a_m, const float a_h, 
    const float b_m, const float b_h,
    const float c_h,
    const float Re_rough_min, 
    const float B1_rough, const float B2_rough,
    const float B_max_land, const float B_max_ocean, const float B_max_lake,
    const float gamma_c, const float Re_visc_min,
    const float Pr_m, const float nu_air, const float g, 
    const int maxiters_charnock,
    const int grid_size);
template void compute_flux_sheba_gpu(double *zeta_, double *Rib_, double *Re_, double *B_, double *z0_m_, double *z0_t_, double *Rib_conv_lim_, double *Cm_, double *Ct_, double *Km_, double *Pr_t_inv_,
    const double *U_, const double *dT_, const double *Tsemi_, const double *dQ_, const double *h_, const double *in_z0_m_,
    const double kappa, const double Pr_t_0_inv,
    const double alpha_m, const double alpha_h, 
    const double a_m, const double a_h, 
    const double b_m, const double b_h,
    const double c_h,
    const double Re_rough_min, 
    const double B1_rough, const double B2_rough,
    const double B_max_land, const double B_max_ocean, const double B_max_lake,
    const double gamma_c, const double Re_visc_min,
    const double Pr_m, const double nu_air, const double g, 
    const int maxiters_charnock,
    const int grid_size);