Newer
Older
#include <cmath>
#include <iostream>
#include "../includeCXX/sfx_compute_sheba.h"
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
template<typename T>
void get_psi_mh(T &psi_m, T &psi_h,
const T zeta_m, const T zeta_h,
const T alpha_m, const T alpha_h,
const T a_m, const T a_h,
const T b_m, const T b_h,
const T c_h)
{
T x_m, x_h;
T q_m, q_h;
if (zeta_m >= 0.0)
{
q_m = pow((1.0 - b_m) / b_m, 1.0 / 3.0);
x_m = pow(1.0 + zeta_m, 1.0 / 3.0);
psi_m = -3.0 * (a_m / b_m) * (x_m - 1.0) + 0.5 * (a_m / b_m) * q_m * (2.0 * log((x_m + q_m) / (1.0 + q_m)) - log((x_m * x_m - x_m * q_m + q_m * q_m) / (1.0 - q_m + q_m * q_m)) + 2.0 * sqrt(3.0) * (atan((2.0 * x_m - q_m) / (sqrt(3.0) * q_m)) - atan((2.0 - q_m) / (sqrt(3.0) * q_m))));
}
else
{ x_m = pow(1.0 - alpha_m * zeta_m, 0.25);
psi_m = (4.0 * atan(1.0) / 2.0) + 2.0 * log(0.5 * (1.0 + x_m)) + log(0.5 * (1.0 + x_m * x_m)) - 2.0 * atan(x_m);
}
if (zeta_h >= 0.0)
{
q_h = sqrt(c_h * c_h - 4.0);
x_h = zeta_h;
psi_h = -0.5 * b_h * log(1.0 + c_h * x_h + x_h * x_h) + ((-a_h / q_h) + ((b_h * c_h) / (2.0 * q_h))) * (log((2.0 * x_h + c_h - q_h) / (2.0 * x_h + c_h + q_h)) - log((c_h - q_h) / (c_h + q_h)));
}
else
{
x_h = pow(1.0 - alpha_h * zeta_h, 0.25);
psi_h = 2.0 * log(0.5 * (1.0 + x_h * x_h));
}
}
template void get_psi_mh(float &psi_m, float &psi_h,
const float zeta_m, const float zeta_h,
const float alpha_m, const float alpha_h,
const float a_m, const float a_h,
const float b_m, const float b_h,
const float c_h);
template void get_psi_mh(double &psi_m, double &psi_h,
const double zeta_m, const double zeta_h,
const double alpha_m, const double alpha_h,
const double a_m, const double a_h,
const double b_m, const double b_h,
const double c_h);
template<typename T>
void get_psi(T &psi_m, T &psi_h,
const T zeta,
const T alpha_m, const T alpha_h,
const T a_m, const T a_h,
const T b_m, const T b_h,
const T c_h)
{
T x_m, x_h;
T q_m, q_h;
if (zeta >= 0.0)
{
q_m = pow((1.0 - b_m) / b_m, 1.0 / 3.0);
q_h = sqrt(c_h * c_h - 4.0);
x_m = pow(1.0 + zeta, 1.0 / 3.0);
x_h = zeta;
psi_m = -3.0 * (a_m / b_m) * (x_m - 1.0) + 0.5 * (a_m / b_m) * q_m * (2.0 * log((x_m + q_m) / (1.0 + q_m)) - log((x_m * x_m - x_m * q_m + q_m * q_m) / (1.0 - q_m + q_m * q_m)) + 2.0 * sqrt(3.0) * (atan((2.0 * x_m - q_m) / (sqrt(3.0) * q_m)) - atan((2.0 - q_m) / (sqrt(3.0) * q_m))));
psi_h = -0.5 * b_h * log(1.0 + c_h * x_h + x_h * x_h) + ((-a_h / q_h) + ((b_h * c_h) / (2.0 * q_h))) * (log((2.0 * x_h + c_h - q_h) / (2.0 * x_h + c_h + q_h)) - log((c_h - q_h) / (c_h + q_h)));
}
else
{
x_m = pow(1.0 - alpha_m * zeta, 0.25);
x_h = pow(1.0 - alpha_h * zeta, 0.25);
psi_m = (4.0 * atan(1.0) / 2.0) + 2.0 * log(0.5 * (1.0 + x_m)) + log(0.5 * (1.0 + x_m * x_m)) - 2.0 * atan(x_m);
psi_h = 2.0 * log(0.5 * (1.0 + x_h * x_h));
}
}
template void get_psi(float &psi_m, float &psi_h,
const float zeta,
const float alpha_m, const float alpha_h,
const float a_m, const float a_h,
const float b_m, const float b_h,
const float c_h);
template void get_psi(double &psi_m, double &psi_h,
const double zeta,
const double alpha_m, const double alpha_h,
const double a_m, const double a_h,
const double b_m, const double b_h,
const double c_h);
template<typename T>
void get_dynamic_scales(T &Udyn, T &Tdyn, T &Qdyn, T &zeta,
const T U, const T Tsemi, const T dT, const T dQ, const T z, const T z0_m, const T z0_t, const T beta,
const T kappa, const T Pr_t_0_inv,
const T alpha_m, const T alpha_h,
const T a_m, const T a_h,
const T b_m, const T b_h,
const T c_h,
const int maxiters)
{
T psi_m, psi_h, psi0_m, psi0_h, Linv;
const T gamma = 0.61;
Udyn = kappa * U / log(z / z0_m);
Tdyn = kappa * dT * Pr_t_0_inv / log(z / z0_t);
Qdyn = kappa * dQ * Pr_t_0_inv / log(z / z0_t);
zeta = 0.0;
// --- no wind
if (Udyn < 1e-5)
return;
Linv = kappa * beta * (Tdyn + gamma * Qdyn * Tsemi) / (Udyn * Udyn);
zeta = z * Linv;
// --- near neutral case
if (Linv < 1e-5)
return;
for (int i = 0; i < maxiters; i++)
{
get_psi(psi_m, psi_h, zeta, alpha_m, alpha_h,
a_m, a_h,
b_m, b_h,
c_h);
get_psi_mh(psi0_m, psi0_h, z0_m * Linv, z0_t * Linv,
alpha_m, alpha_h,
a_m, a_h,
b_m, b_h,
c_h);
Udyn = kappa * U / (log(z / z0_m) - (psi_m - psi0_m));
Tdyn = kappa * dT * Pr_t_0_inv / (log(z / z0_t) - (psi_h - psi0_h));
Qdyn = kappa * dQ * Pr_t_0_inv / (log(z / z0_t) - (psi_h - psi0_h));
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
Linv = kappa * beta * (Tdyn + gamma * Qdyn * Tsemi) / (Udyn * Udyn);
zeta = z * Linv;
}
}
template void get_dynamic_scales(float &Udyn, float &Tdyn, float &Qdyn, float & zeta,
const float U, const float Tsemi, const float dT, const float dQ, const float z, const float z0_m, const float z0_t, const float beta,
const float kappa, const float Pr_t_0_inv,
const float alpha_m, const float alpha_h,
const float a_m, const float a_h,
const float b_m, const float b_h,
const float c_h,
const int maxiters);
template void get_dynamic_scales(double &Udyn, double &Tdyn, double &Qdyn, double & zeta,
const double U, const double Tsemi, const double dT, const double dQ, const double z, const double z0_m, const double z0_t, const double beta,
const double kappa, const double Pr_t_0_inv,
const double alpha_m, const double alpha_h,
const double a_m, const double a_h,
const double b_m, const double b_h,
const double c_h,
const int maxiters);
template<typename T>
void get_phi(T &phi_m, T &phi_h,
const T zeta,
const T alpha_m, const T alpha_h,
const T a_m, const T a_h,
const T b_m, const T b_h,
const T c_h)
{
if (zeta >= 0.0)
{
phi_m = 1.0 + (a_m * zeta * pow(1.0 + zeta, 1.0 / 3.0) ) / (1.0 + b_m * zeta);
phi_h = 1.0 + (a_h * zeta + b_h * zeta * zeta) / (1.0 + c_h * zeta + zeta * zeta);
}
else
{
phi_m = pow(1.0 - alpha_m * zeta, -0.25);
phi_h = pow(1.0 - alpha_h * zeta, -0.5);
}
}
template void get_phi(float &phi_m, float &phi_h,
const float zeta,
const float alpha_m, const float alpha_h,
const float a_m, const float a_h,
const float b_m, const float b_h,
const float c_h);
template void get_phi(double &phi_m, double &phi_h,
const double zeta,
const double alpha_m, const double alpha_h,
const double a_m, const double a_h,
const double b_m, const double b_h,
const double c_h);
template<typename T>
void compute_flux_sheba_cpu(T *zeta_, T *Rib_, T *Re_, T *B_, T *z0_m_, T *z0_t_, T *Rib_conv_lim_, T *Cm_, T *Ct_, T *Km_, T *Pr_t_inv_,
const T *U_, const T *dT_, const T *Tsemi_, const T *dQ_, const T *h_, const T *in_z0_m_,
const T kappa, const T Pr_t_0_inv,
const T alpha_m, const T alpha_h,
const T a_m, const T a_h,
const T b_m, const T b_h,
const T c_h,
const T Re_rough_min,
const T B1_rough, const T B2_rough,
const T B_max_land, const T B_max_ocean, const T B_max_lake,
const T gamma_c, const T Re_visc_min,
const T Pr_m, const T nu_air, const T g,
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
// T h, U, dT, Tsemi, dQ, z0_m;
// T z0_t, B, h0_m, h0_t, u_dyn0, Re,
// zeta, Rib, Udyn, Tdyn, Qdyn, phi_m, phi_h,
// Km, Pr_t_inv, Cm, Ct;
// const T B3_rough = kappa * Pr_m, B4_rough =(0.14 * (pow(30.0, B2_rough))) * (pow(Pr_m, 0.8));
// const T h_charnock = 10.0, c1_charnock = log(h_charnock * (g / gamma_c)), c2_charnock = Re_visc_min * nu_air * c1_charnock;
// int surface_type;
// for (int step = 0; step < grid_size; step++)
// {
// U = U_[step];
// Tsemi = Tsemi_[step];
// dT = dT_[step];
// dQ = dQ_[step];
// h = h_[step];
// z0_m = in_z0_m_[step];
// if (z0_m < 0.0) surface_type = 0;
// else surface_type = 1;
// if (surface_type == 0)
// {
// get_charnock_roughness(z0_m, u_dyn0, h, U, kappa, h_charnock, c1_charnock, c2_charnock, maxiters_charnock);
// h0_m = h / z0_m;
// }
// if (surface_type == 1)
// {
// h0_m = h / z0_m;
// u_dyn0 = U * kappa / log(h0_m);
// }
// Re = u_dyn0 * z0_m / nu_air;
// get_thermal_roughness(z0_t, B, z0_m, Re, Re_rough_min, B1_rough, B2_rough, B3_rough, B4_rough, B_max_ocean, B_max_lake, B_max_land, surface_type);
// // --- define relative height [thermal]
// h0_t = h / z0_t;
// // --- define Ri-bulk
// Rib = (g / Tsemi) * h * (dT + 0.61e0 * Tsemi * dQ) / (U*U);
// // --- get the fluxes
// // ----------------------------------------------------------------------------
// get_dynamic_scales(Udyn, Tdyn, Qdyn, zeta, U, Tsemi, dT, dQ, h, z0_m, z0_t, (g / Tsemi), kappa, Pr_t_0_inv, alpha_m, alpha_h, a_m, a_h, b_m, b_h, c_h, 10);
// // ----------------------------------------------------------------------------
// get_phi(phi_m, phi_h, zeta, alpha_m, alpha_h, a_m, a_h, b_m, b_h, c_h);
// // ----------------------------------------------------------------------------
// // --- define transfer coeff. (momentum) & (heat)
// Cm = 0.0;
// if (U > 0.0)
// Cm = Udyn / U;
// Ct = 0.0;
// if (fabs(dT) > 0.0)
// Ct = Tdyn / dT;
// // --- define eddy viscosity & inverse Prandtl number
// Km = kappa * Cm * U * h / phi_m;
// Pr_t_inv = phi_m / phi_h;
// zeta_[step] = zeta;
// Rib_[step] = Rib;
// Re_[step] = Re;
// B_[step] = B;
// z0_m_[step] = z0_m;
// z0_t_[step] = z0_t;
// Rib_conv_lim_[step] = 0.0;
// Cm_[step] = Cm;
// Ct_[step] = Ct;
// Km_[step] = Km;
// Pr_t_inv_[step] = Pr_t_inv;
// }
}
template void compute_flux_sheba_cpu(float *zeta_, float *Rib_, float *Re_, float *B_, float *z0_m_, float *z0_t_, float *Rib_conv_lim_, float *Cm_, float *Ct_, float *Km_, float *Pr_t_inv_,
const float *U, const float *dt, const float *T_semi, const float *dq, const float *H, const float *in_z0_m,
const float kappa, const float Pr_t_0_inv,
const float alpha_m, const float alpha_h,
const float a_m, const float a_h,
const float b_m, const float b_h,
const float c_h,
const float Re_rough_min,
const float B1_rough, const float B2_rough,
const float B_max_land, const float B_max_ocean, const float B_max_lake,
const float gamma_c, const float Re_visc_min,
const float Pr_m, const float nu_air, const float g,
const int grid_size);
template void compute_flux_sheba_cpu(double *zeta_, double *Rib_, double *Re_, double *B_, double *z0_m_, double *z0_t_, double *Rib_conv_lim_, double *Cm_, double *Ct_, double *Km_, double *Pr_t_inv_,
const double *U, const double *dt, const double *T_semi, const double *dq, const double *H, const double *in_z0_m,
const double kappa, const double Pr_t_0_inv,
const double alpha_m, const double alpha_h,
const double a_m, const double a_h,
const double b_m, const double b_h,
const double c_h,
const double Re_rough_min,
const double B1_rough, const double B2_rough,
const double B_max_land, const double B_max_ocean, const double B_max_lake,
const double gamma_c, const double Re_visc_min,
const double Pr_m, const double nu_air, const double g,