Newer
Older

Evgeny Mortikov
committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
module sfx_log
!> @brief simple log-roughness surface flux module
! modules used
! --------------------------------------------------------------------------------
#ifdef SFX_CHECK_NAN
use sfx_common
#endif
use sfx_data
use sfx_roughness
use sfx_log_param
! --------------------------------------------------------------------------------
! directives list
! --------------------------------------------------------------------------------
implicit none
private
! --------------------------------------------------------------------------------
! public interface
! --------------------------------------------------------------------------------
public :: get_surface_fluxes
public :: get_surface_fluxes_vec
! --------------------------------------------------------------------------------
! --------------------------------------------------------------------------------
type, public :: numericsType
integer :: maxiters_charnock = 10 !> maximum (actual) number of iterations in charnock roughness
end type
! --------------------------------------------------------------------------------
contains
! --------------------------------------------------------------------------------
subroutine get_surface_fluxes_vec(sfx, meteo, numerics, n)
!> @brief surface flux calculation for array data
!> @details contains C/C++ & CUDA interface
! ----------------------------------------------------------------------------
type (sfxDataVecType), intent(inout) :: sfx
type (meteoDataVecType), intent(in) :: meteo
type (numericsType), intent(in) :: numerics
integer, intent(in) :: n
! ----------------------------------------------------------------------------
! --- local variables
type (meteoDataType) meteo_cell
type (sfxDataType) sfx_cell
integer i
! ----------------------------------------------------------------------------
do i = 1, n
meteo_cell = meteoDataType(&
h = meteo%h(i), &
U = meteo%U(i), dT = meteo%dT(i), Tsemi = meteo%Tsemi(i), dQ = meteo%dQ(i), &
z0_m = meteo%z0_m(i))
call get_surface_fluxes(sfx_cell, meteo_cell, numerics)
call push_sfx_data(sfx, sfx_cell, i)
end do
end subroutine get_surface_fluxes_vec
! --------------------------------------------------------------------------------
! --------------------------------------------------------------------------------
subroutine get_surface_fluxes(sfx, meteo, numerics)
!> @brief surface flux calculation for single cell
!> @details contains C/C++ interface
! ----------------------------------------------------------------------------
#ifdef SFX_CHECK_NAN
use ieee_arithmetic
#endif
type (sfxDataType), intent(out) :: sfx
type (meteoDataType), intent(in) :: meteo
type (numericsType), intent(in) :: numerics
! ----------------------------------------------------------------------------
! --- meteo derived datatype name shadowing
! ----------------------------------------------------------------------------
real :: h !> constant flux layer height [m]
real :: U !> abs(wind speed) at 'h' [m/s]
real :: dT !> difference between potential temperature at 'h' and at surface [K]
real :: Tsemi !> semi-sum of potential temperature at 'h' and at surface [K]
real :: dQ !> difference between humidity at 'h' and at surface [g/g]
real :: z0_m !> surface aerodynamic roughness (should be < 0 for water bodies surface)
! ----------------------------------------------------------------------------
! --- local variables
! ----------------------------------------------------------------------------
real z0_t !> thermal roughness [m]
real B !> = ln(z0_m / z0_t) [n/d]
real h0_m, h0_t !> = h / z0_m, h / z0_h [n/d]
real u_dyn0 !> dynamic velocity in neutral conditions [m/s]
real Re !> roughness Reynolds number = u_dyn0 * z0_m / nu [n/d]
real zeta !> = z/L [n/d]
real Rib !> bulk Richardson number
real psi_m, psi_h !> universal functions (momentum) & (heat) [n/d]
real phi_m, phi_h !> stability functions (momentum) & (heat) [n/d]
real Km !> eddy viscosity coeff. at h [m^2/s]
real Pr_t_inv !> invese Prandt number [n/d]
real Cm, Ct !> transfer coeff. for (momentum) & (heat) [n/d]
integer surface_type !> surface type = (ocean || land)
#ifdef SFX_CHECK_NAN
real NaN
#endif
! ----------------------------------------------------------------------------
#ifdef SFX_CHECK_NAN
! --- checking if arguments are finite
if (.not.(is_finite(meteo%U).and.is_finite(meteo%Tsemi).and.is_finite(meteo%dT).and.is_finite(meteo%dQ) &
.and.is_finite(meteo%z0_m).and.is_finite(meteo%h))) then
NaN = ieee_value(0.0, ieee_quiet_nan) ! setting NaN
sfx = sfxDataType(zeta = NaN, Rib = NaN, &
Re = NaN, B = NaN, z0_m = NaN, z0_t = NaN, &
Rib_conv_lim = NaN, &
Cm = NaN, Ct = NaN, Km = NaN, Pr_t_inv = NaN)
return
end if
#endif
! --- shadowing names for clarity
U = meteo%U
Tsemi = meteo%Tsemi
dT = meteo%dT
dQ = meteo%dQ
h = meteo%h
z0_m = meteo%z0_m
! --- define surface type
if (z0_m < 0.0) then
surface_type = surface_ocean
else
surface_type = surface_land
end if
if (surface_type == surface_ocean) then
! --- define surface roughness [momentum] & dynamic velocity in neutral conditions
call get_charnock_roughness(z0_m, u_dyn0, U, h, numerics%maxiters_charnock)
! --- define relative height
h0_m = h / z0_m
endif
if (surface_type == surface_land) then
! --- define relative height
h0_m = h / z0_m
! --- define dynamic velocity in neutral conditions
u_dyn0 = U * kappa / log(h0_m)
end if
! --- define B = log(z0_m / z0_h)
Re = u_dyn0 * z0_m / nu_air
if(Re <= Re_rough_min) then
B = B1_rough * alog(B3_rough * Re) + B2_rough
else
! *: B4 takes into account Re value at z' ~ O(10) z0
B = B4_rough * (Re**B2_rough)
end if
! --- apply max restriction based on surface type
if (surface_type == surface_ocean) then
B = min(B, B_max_ocean)
endif
if (surface_type == surface_land) then
B = min(B, B_max_land)
end if
! --- define roughness [thermal]
z0_t = z0_m / exp(B)
! --- define relative height [thermal]
h0_t = h / z0_t
! --- define Ri-bulk
Rib = (g / Tsemi) * h * (dT + 0.61e0 * Tsemi * dQ) / U**2
! --- get the fluxes
! ----------------------------------------------------------------------------
call get_psi_neutral(psi_m, psi_h, zeta, h0_m, h0_t, B)
! ----------------------------------------------------------------------------

Evgeny Mortikov
committed
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
phi_m = 1.0
phi_h = 1.0 / Pr_t_0_inv
! --- define transfer coeff. (momentum) & (heat)
Cm = kappa / psi_m
Ct = kappa / psi_h
! --- define eddy viscosity & inverse Prandtl number
Km = kappa * Cm * U * h / phi_m
Pr_t_inv = phi_m / phi_h
! --- setting output
sfx = sfxDataType(zeta = zeta, Rib = Rib, &
Re = Re, B = B, z0_m = z0_m, z0_t = z0_t, &
Rib_conv_lim = 0.0, &
Cm = Cm, Ct = Ct, Km = Km, Pr_t_inv = Pr_t_inv)
end subroutine get_surface_fluxes
! --------------------------------------------------------------------------------
! universal functions
! --------------------------------------------------------------------------------
subroutine get_psi_neutral(psi_m, psi_h, zeta, h0_m, h0_t, B)
!> @brief universal functions (momentum) & (heat): neutral case
! ----------------------------------------------------------------------------
real, intent(out) :: psi_m, psi_h !> universal functions
real, intent(out) :: zeta !> = z/L
real, intent(in) :: h0_m, h0_t !> = z/z0_m, z/z0_h
real, intent(in) :: B !> = log(z0_m / z0_h)
! ----------------------------------------------------------------------------
zeta = 0.0
psi_m = log(h0_m)
psi_h = log(h0_t) / Pr_t_0_inv
if (abs(B) < 1.0e-10) psi_h = psi_m / Pr_t_0_inv
end subroutine
! --------------------------------------------------------------------------------
end module sfx_log