Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
module pbldia_new_sfx
use sfx_phys_const
implicit none
real,parameter,private::undef=-999.0,R=287.,appa=0.287
contains
! in this subroutine interpolation is performed using integration of universal functions from z1 to z2,
! where z1 is measurement or lowest model level height and z2 is required height
! The input-output structure is preserved as much as possible as in the climate model (pbldia subroutine in pblflx)
!C* DIAGNOSIS OF WIND VELOCITY (AT HEIGHT Z = HWIND),
!C* OF POTENTIAL TEMPERATURE DEFICIT (BETWEEN HEIGHT Z = HTEMP AND SURFACE),
!C* OF SPECIFIC HUMIDITY DEFICIT (BETWEEN HEIGHT Z = HTEMP AND SURFACE)
!C* INPUT DATA USED:
!C* ARRAY AR2 (OUTPUT FROM DRAG3 - SUBROUTINE)
!C* AR2(1) - NON-DIMENSIONAL (NORMALIZED BY MONIN-OBUKHOV LENGTH)
!C* HEIGHT OF CONSTANT FLUX LAYER TOP
!C* AR2(5) - ROUGHNESS LENGTH FOR MOMENTUM
!C* AR2(6) - ROUGHNESS LENGTH FOR TEMPERATURE AND HUMIDITY
!C* AR2(8) - INTEGRAL TRANSFER COEFFICIENT FOR MOMENTUM
!C* AR2(9) - INTEGRAL TRANSFER COEFFICIENT FOR TEMPERATURE AND HUMIDITY
!C* ARRAY ARDIN
!C* ARDIN(1) - MODULE OF WIND VELOCITY AT THE TOP OF CONSTANT FLUX LAYER
!C* ARDIN(2) - POTENTIAL TEMPERATURE DEFICIT IN CONSTANT FLUX LAYER
!C* ARDIN(3) - SPECIFIC HUMIDITY DEFICIT IN CONSTANT FLUX LAYER
!C* ARDIN(4) - DIMENSIONAL HEIGHT OF CONSTANT FLUX LAYER TOP
!C* ARDIN(5) - = HWIND
!C* ARDIN(6) - = HTEMP
!C* OUTPUT DATA (ARRAY ARDOUT):
!C* ARDOUT(1) - MODULE OF WIND VELOCITY AT REQUIRED HEIGHT
!C* ARDOUT(2) - POTENTIAL TEMPERATURE at REQUIRED HEIGHT
!C* ARDOUT(3) - SPECIFIC HUMIDITY at REQUIRED HEIGHT
!C* UFWIND - UNIVERSAL FUNCTION FOR WIND VELOCITY
!C* UFTEMP - UNIVERSAL FUNCTION FOR SCALARS
! AR2(1) - NON-DIMENSIONAL CFL HIGHT =
! AR2(2) - RICHARDSON NUMBER =
! AR2(3) - REYNODS NUMBER =
! AR2(4) - LN(ZU/ZT) =
! AR2(5) - DYNAMICAL ROUGHNESS ZU (M) =
! AR2(6) - THERMAL ROUGHNESS ZT (M) =
! AR2(7) - CRITICAL RICHARDSON NUMBER =
! AR2(8) - TRANSFER COEFFICIENT FOR MOMENTUM =
! AR2(9) - TRANSFER COEFFICIENT FR HEAT =
! AR2(10)- COEFFICIENT OF TURBULENCE (KM) AT CFL HIGHT (M**2/S) =
! AR2(11)- ALFT=KT/KM ( KT-COEFFICIENT OF TURBULENCE FOR HEAT) =
subroutine pbldia_new_sheba(AR2,ARDIN,ARDOUT)
use sfx_sheba, only: &
get_psi_sheba => get_psi
real,intent(in):: AR2(11),ARDIN(6)!ARDIN(10)
real,intent(out)::ARDOUT(3) !ARDOUT(4)
! real,parameter::Llim = 50.0 !minimum value of L for stable SL (25)
real,parameter::zetalim = 2. !maximum value of z/L for stable SL
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
real,parameter::kappa = 0.4
real psi_m,psi_h,psi_m_hs,psi_h_hs
real hwind,htemp,ustar,tstar,qstar,&
& ufwind,uftemp,dteta,dq,wind,L,HIN,zeta
HWIND = ARDIN(5)
HTEMP = ARDIN(6)
HIN = ardin(4)
zeta = AR2(1)
USTAR = AR2(8) * ARDIN(1)
TSTAR = AR2(9) * ARDIN(2)
QSTAR = AR2(9) * ARDIN(3)
if(zeta.gt.zetalim) zeta=zetalim
! if(L.lt.Llim.and.L.gt.0) L=Llim
L = HIN/zeta ! MO length
call get_psi_sheba(psi_m_hs,psi_h_hs,HIN/L)
call get_psi_sheba(psi_m,psi_h,HWIND/L)
UFWIND = ALOG(hwind/HIN) - (psi_m - psi_m_hs)
WIND = (USTAR/kappa) * UFWIND
call get_psi_sheba(psi_m,psi_h,HTEMP/L)
UFTEMP = ALOG(HTEMP/HIN) - (psi_h - psi_h_hs)
DTETA = (TSTAR/kappa) * UFTEMP
DQ = (QSTAR/kappa) * UFTEMP
ARDOUT(1) = ARDIN(1)+WIND
ARDOUT(2) = DTETA+ardin(2)
ARDOUT(3) = DQ+ardin(3)
RETURN
END subroutine pbldia_new_sheba
subroutine pbldia_new_most(AR2,ARDIN,ARDOUT)
use sfx_most, only: &
get_psi_most => get_psi
real,intent(in):: AR2(11),ARDIN(6)!ARDIN(10)
real,intent(out)::ARDOUT(3) !ARDOUT(4)
! real,parameter::Llim = 50.0 !minimum value of L for stable SL (25)
real,parameter::zetalim = 2. !maximum value of z/L for stable SL
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
real,parameter::kappa = 0.4
real psi_m,psi_h,psi_m_hs,psi_h_hs
real hwind,htemp,ustar,tstar,qstar,&
& ufwind,uftemp,dteta,dq,wind,L,HIN,zeta
HWIND = ARDIN(5)
HTEMP = ARDIN(6)
HIN = ardin(4)
zeta = AR2(1)
USTAR = AR2(8) * ARDIN(1)
TSTAR = AR2(9) * ARDIN(2)
QSTAR = AR2(9) * ARDIN(3)
if(zeta.gt.zetalim) zeta=zetalim
! if(L.lt.Llim.and.L.gt.0) L=Llim
L = HIN/zeta ! MO length
call get_psi_most(psi_m_hs,psi_h_hs,HIN/L)
call get_psi_most(psi_m,psi_h,HWIND/L)
UFWIND = ALOG(hwind/HIN) - (psi_m - psi_m_hs)
WIND = (USTAR/kappa) * UFWIND
call get_psi_most(psi_m,psi_h,HTEMP/L)
UFTEMP = ALOG(HTEMP/HIN) - (psi_h - psi_h_hs)
! if(L>0)then
! !these functions in very stable stratification give inadequate temperatures at high levels; it's safer to use log profile for T
! UFTEMP = ALOG(HTEMP/HIN)
! endif
DTETA = (TSTAR/kappa) * UFTEMP
DQ = (QSTAR/kappa) * UFTEMP
ARDOUT(1) = ARDIN(1)+WIND
ARDOUT(2) = DTETA+ardin(2)
ARDOUT(3) = DQ+ardin(3)
RETURN
END subroutine pbldia_new_most
subroutine pbldia_new_esm(AR2,ARDIN,ARDOUT)
!use sfx_esm, only: &
! get_psi_esm => get_psi
real,intent(in):: AR2(11),ARDIN(6)!ARDIN(10)
real,intent(out)::ARDOUT(3) !ARDOUT(4)
! real,parameter::Llim = 50.0 !minimum value of L for stable SL (25)
real,parameter::zetalim = 2. !maximum value of z/L for stable SL
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
real,parameter::kappa = 0.4
real psi_m,psi_h,psi_m_hs,psi_h_hs
real hwind,htemp,ustar,tstar,qstar,&
& ufwind,uftemp,dteta,dq,wind,L,HIN,zeta
HWIND = ARDIN(5)
HTEMP = ARDIN(6)
HIN = ardin(4)
zeta = AR2(1)
USTAR = AR2(8) * ARDIN(1)
TSTAR = AR2(9) * ARDIN(2)
QSTAR = AR2(9) * ARDIN(3)
if(zeta.gt.zetalim) zeta=zetalim
! if(L.lt.Llim.and.L.gt.0) L=Llim
L = HIN/zeta ! MO length
call get_psi_esm1(psi_m,psi_h,HIN,HWIND,L)
UFWIND = psi_m
WIND = (USTAR/kappa) * UFWIND
call get_psi_esm1(psi_m,psi_h,HIN,HTEMP,L)
UFTEMP = psi_h
! if(L>0)then
! !these functions in very stable stratification give inadequate temperatures at high levels; it's safer to use log profile for T
! UFTEMP = ALOG(HTEMP/HIN)
! endif
DTETA = (TSTAR/kappa) * UFTEMP
DQ = (QSTAR/kappa) * UFTEMP
ARDOUT(1) = ARDIN(1)+WIND
ARDOUT(2) = DTETA+ardin(2)
ARDOUT(3) = DQ+ardin(3)
RETURN
END subroutine pbldia_new_esm
subroutine get_psi_esm1(psi_m,psi_h,z1,z2,L)
use sfx_esm_param
!< @brief universal functions (momentum) & (heat): neutral case
! ----------------------------------------------------------------------------
real, intent(out) :: psi_m, psi_h !< universal functions
real, intent(in) :: z1,z2,L !
real an5,D1,gmz1,gtz1,gmz2,gtz2,gmst,gtst,zeta1,zeta2
an5 = (Pr_t_inf_inv/Pr_t_0_inv)**4
D1=(2.0E0*alpha_h-an5*alpha_m-SQRT((an5*alpha_m)**2+4.0E0*an5*alpha_h*&
& (alpha_h-alpha_m)))/(2.0E0*alpha_h**2)
zeta1 = z1 / L
zeta2 = z2 / L
IF(zeta2 .GE. 0.) THEN
psi_m = alog(z2/z1) + beta_m*(zeta2-zeta1)
psi_h = alog(z2/z1) + beta_m*(zeta2-zeta1)
ELSE
GMZ2 = SQRT(SQRT(1.E0 - alpha_m * zeta2))
GMZ1 = SQRT(SQRT(1.E0 - alpha_m * zeta1))
GMST = SQRT(SQRT(1.E0 - alpha_m * D1))
GTZ2 = SQRT(1.E0 - alpha_h * zeta2)
GTZ1 = SQRT(1.E0 - alpha_h * zeta1)
GTST = SQRT(1.E0 - alpha_h * D1)
IF(zeta2 .GE. D1) THEN
psi_m = FIM(GMZ2) - FIM(GMZ1)
psi_h = FIT(GTZ2) - FIT(GTZ1)
ELSE
psi_m = (3.E0/GMST) * (1.E0 - (D1/zeta2)**(1.E0/3.E0)) + FIM(GMST) - FIM(GMZ1)
psi_h = (3.E0/GTST) * (1.E0 - (D1/zeta2)**(1.E0/3.E0)) + FIT(GTST) - FIT(GTZ1)
ENDIF
ENDIF
end subroutine
REAL FUNCTION FIM(XX)
IMPLICIT NONE
REAL X, XX
X = AMAX1(XX,1.000001E0)
FIM = ALOG((X-1.E0)/(X+1.E0)) + 2.E0*ATAN(X)
RETURN
END function
REAL FUNCTION FIT(XX)
IMPLICIT NONE
REAL X, XX
X = AMAX1(XX,1.000001E0)
FIT = ALOG((X-1.E0)/(X+1.E0))
RETURN
END function
end module pbldia_new_sfx