Newer
Older
type(meteoDataType):: data_in1
type(meteoDataVecType) :: meteo
type(sfxDataType) :: data_outdef1
type(sfxDataVecType) :: data_outMAS
type(numericsType) :: data_par1
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
integer :: numst, i
real :: cflh, z0in
character(len = 50) :: filename_in
character(len = 50) :: filename_out
character(len = 50) :: filename_in2
!input
! mas_w - abs(wind velocity) at constant flux layer (cfl) hight (m/s)
! mas_dt - difference between potential temperature at cfl hight and at surface ( deg. k)
! mas_st - semi-sum of potential temperature at cfl hight and and at surface ( deg. k)
! mas_dq - difference between humidity at cfl hight and a surface ( gr/gr )
! cflh - - cfl hight ( m )
! z0in=0.01 - roughness of surface ( m );
! it - number of iterations
! lu_indx - 1 for land, 2 for sea, 3 for lake
! test - file input
!output
!masout_zl - non-dimensional cfl hight
!masout_ri - richardson number
!masout_re - reynods number
!masout_lnzuzt - ln(zu/zt)
!masout_zu - dynamical roughness zu (m)
!masout_ztout - thermal roughness zt (m)
!masout_rith - critical richardson number
!masout_cm - transfer coefficient for momentum
!masout_ch - transfer coefficient fr heat
!masout_ct - coefficient of turbulence (km) at cfl hight (m**2/s)
!masout_ckt - alft=kt/km ( kt-coefficient of turbulence for heat)
!> @brief Test - file selection for test
write(*,*) 'running code'
if (TEST==1) then
filename_in='data/MOSAiC.txt'
filename_out='out_MOSAiC.txt'
filename_in2='data/MOSAiC_zh.txt'
elseif (TEST==2) then
filename_in='data/Irgason1.txt'
filename_out='out_IRGASON1.txt'
filename_in2='data/IRGASON_zh.txt'
endif
open (1, file= filename_in, status ='old')
open (2, file=filename_out)
numst=0
do WHILE (ioer.eq.0)
read (1,*, iostat=ioer) data_in1%U, data_in1%dT, data_in1%Tsemi, data_in1%dQ
numst=numst+1
enddo
close (1)
numst=numst-1
allocate(meteo%h(numst))
allocate(meteo%U(numst))
allocate(meteo%dT(numst))
allocate(meteo%Tsemi(numst))
allocate(meteo%dQ(numst))
allocate(meteo%z0_m(numst))
allocate(data_outMAS%zeta(numst))
allocate(data_outMAS%Rib(numst))
allocate(data_outMAS%Re(numst))
allocate(data_outMAS%B(numst))
allocate(data_outMAS%z0_m(numst))
allocate(data_outMAS%z0_t(numst))
allocate(data_outMAS%Rib_conv_lim(numst))
allocate(data_outMAS%Cm(numst))
allocate(data_outMAS%Ct(numst))
allocate(data_outMAS%Km(numst))
allocate(data_outMAS%Pr_t_inv(numst))
open (11, file=filename_in2, status ='old')
open (1, file= filename_in, status ='old')
read (11, *) cflh, z0in
do i=1,numst
read (1,*) data_in1%U, data_in1%dT, data_in1%Tsemi, data_in1%dQ
meteo%h(i)=cflh
meteo%U(i) = meteo%U(i)+data_in1%U
meteo%dT(i) = meteo%dT(i)+data_in1%dT
meteo%Tsemi(i) = meteo%Tsemi(i)+data_in1%Tsemi
meteo%dQ(i) = meteo%dQ(i)+data_in1%dQ
meteo%z0_m(i)=z0in
CALL get_surface_fluxes_vec(data_outMAS, meteo, &
data_par1, numst)
write (2,20) data_outMAS%zeta(i), data_outMAS%Rib(i), data_outMAS%Re(i), data_outMAS%B(i),&
data_outMAS%z0_m(i), data_outMAS%z0_t(i), data_outMAS%Rib_conv_lim(i), data_outMAS%Cm(i),&
data_outMAS%Ct(i), data_outMAS%Km(i), data_outMAS%Pr_t_inv(i)
deallocate(meteo%h)
deallocate(meteo%U)
deallocate(meteo%dT)
deallocate(meteo%Tsemi)
deallocate(meteo%dQ)
deallocate(meteo%z0_m)
deallocate(data_outMAS%zeta)
deallocate(data_outMAS%Rib)
deallocate(data_outMAS%Re)
deallocate(data_outMAS%B)
deallocate(data_outMAS%z0_m)
deallocate(data_outMAS%z0_t)
deallocate(data_outMAS%Rib_conv_lim)
deallocate(data_outMAS%Cm)
deallocate(data_outMAS%Ct)
deallocate(data_outMAS%Km)
deallocate(data_outMAS%Pr_t_inv)
10 format (f8.4,2x,f8.4)
20 format (11(f10.4,3x))
stop
end program