Newer
Older
#include "sfx_esm.h"
#include "sfx_model_compute_subfunc.cuh"
#include "sfx_surface.cuh"
#include "sfx_memory_processing.cuh"
namespace sfx_kernel
{
template<typename T>
__global__ void compute_flux(sfxDataVecTypeC sfx,
meteoDataVecTypeC meteo,
const sfx_esm_param_C model,
const sfx_surface_param surface,
const sfx_esm_numericsType_C numerics,
const sfx_phys_constants phys,
const int grid_size);
}
template<typename T>
__global__ void sfx_kernel::compute_flux(sfxDataVecTypeC sfx,
meteoDataVecTypeC meteo,
const sfx_esm_param_C model,
const sfx_surface_param surface,
const sfx_esm_numericsType_C numerics,
const sfx_phys_constants phys,
const int grid_size)
{
const int index = blockIdx.x * blockDim.x + threadIdx.x;
T h, U, dT, Tsemi, dQ, z0_m;
T Re, z0_t, B, h0_m, h0_t, u_dyn0, zeta, Rib, zeta_conv_lim, Rib_conv_lim, f_m_conv_lim, f_h_conv_lim, psi_m, psi_h, phi_m, phi_h, Km, Pr_t_inv, Cm, Ct;
int surface_type;
T fval;
if(index < grid_size)
{
U = meteo.U[index];
Tsemi = meteo.Tsemi[index];
dT = meteo.dT[index];
dQ = meteo.dQ[index];
h = meteo.h[index];
z0_m = meteo.z0_m[index];
surface_type = z0_m < 0.0 ? surface.surface_ocean : surface.surface_land;
get_charnock_roughness(z0_m, u_dyn0, U, h, surface, numerics.maxiters_charnock);
Re = u_dyn0 * z0_m / phys.nu_air;
get_thermal_roughness(z0_t, B, z0_m, Re, surface, surface_type);
Rib = (phys.g / Tsemi) * h * (dT + 0.61e0 * Tsemi * dQ) / (U*U);
get_convection_lim(zeta_conv_lim, Rib_conv_lim, f_m_conv_lim, f_h_conv_lim,
h0_m, h0_t, B,
Rib = sfx_math::min(Rib, model.Rib_max);
get_psi_stable(psi_m, psi_h, zeta, Rib, h0_m, h0_t, B, model);
get_psi_convection(psi_m, psi_h, zeta, Rib, h0_m, h0_t, B, zeta_conv_lim, f_m_conv_lim, f_h_conv_lim, model, numerics.maxiters_convection);
fval = pow(zeta_conv_lim / zeta, 1.0/3.0);
phi_m = fval / f_m_conv_lim;
get_psi_semi_convection(psi_m, psi_h, zeta, Rib, h0_m, h0_t, B, model, numerics.maxiters_convection);
phi_m = pow(1.0 - model.alpha_m * zeta, -0.25);
phi_h = 1.0 / (model.Pr_t_0_inv * sqrt(1.0 - model.alpha_h_fix * zeta));
Pr_t_inv = phi_m / phi_h;
sfx.zeta[index] = zeta;
sfx.Rib[index] = Rib;
sfx.Re[index] = Re;
sfx.B[index] = B;
sfx.z0_m[index] = z0_m;
sfx.z0_t[index] = z0_t;
sfx.Rib_conv_lim[index] = Rib_conv_lim;
sfx.Cm[index] = Cm;
sfx.Ct[index] = Ct;
sfx.Km[index] = Km;
sfx.Pr_t_inv[index] = Pr_t_inv;
}
}
template<typename T, MemType memIn, MemType memOut >
void FluxEsm<T, memIn, memOut, MemType::GPU>::compute_flux()
{
const int BlockCount = int(ceil(float(grid_size) / 1024.0));
dim3 cuBlock = dim3(1024, 1, 1);
dim3 cuGrid = dim3(BlockCount, 1, 1);
sfx_kernel::compute_flux<T><<<cuGrid, cuBlock>>>(sfx, meteo, model,
surface, numerics, phys, grid_size);
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
if(MemType::GPU != memOut)
{
const size_t new_size = grid_size * sizeof(T);
memproc::memcopy<memOut, MemType::GPU>((void*&)res_sfx->zeta, (void*&)sfx.zeta, new_size);
memproc::memcopy<memOut, MemType::GPU>((void*&)res_sfx->Rib, (void*&)sfx.Rib, new_size);
memproc::memcopy<memOut, MemType::GPU>((void*&)res_sfx->Re, (void*&)sfx.Re, new_size);
memproc::memcopy<memOut, MemType::GPU>((void*&)res_sfx->B, (void*&)sfx.B, new_size);
memproc::memcopy<memOut, MemType::GPU>((void*&)res_sfx->z0_m, (void*&)sfx.z0_m, new_size);
memproc::memcopy<memOut, MemType::GPU>((void*&)res_sfx->z0_t, (void*&)sfx.z0_t, new_size);
memproc::memcopy<memOut, MemType::GPU>((void*&)res_sfx->Rib_conv_lim, (void*&)sfx.Rib_conv_lim, new_size);
memproc::memcopy<memOut, MemType::GPU>((void*&)res_sfx->Cm, (void*&)sfx.Cm, new_size);
memproc::memcopy<memOut, MemType::GPU>((void*&)res_sfx->Ct, (void*&)sfx.Ct, new_size);
memproc::memcopy<memOut, MemType::GPU>((void*&)res_sfx->Km, (void*&)sfx.Km, new_size);
memproc::memcopy<memOut, MemType::GPU>((void*&)res_sfx->Pr_t_inv, (void*&)sfx.Pr_t_inv, new_size);
}
}
template class FluxEsmBase<float, MemType::GPU, MemType::GPU, MemType::GPU>;
template class FluxEsmBase<float, MemType::GPU, MemType::GPU, MemType::CPU>;
template class FluxEsmBase<float, MemType::GPU, MemType::CPU, MemType::GPU>;
template class FluxEsmBase<float, MemType::CPU, MemType::GPU, MemType::GPU>;
template class FluxEsmBase<float, MemType::CPU, MemType::CPU, MemType::GPU>;
template class FluxEsmBase<float, MemType::CPU, MemType::GPU, MemType::CPU>;
template class FluxEsmBase<float, MemType::GPU, MemType::CPU, MemType::CPU>;
template class FluxEsm<float, MemType::GPU, MemType::GPU, MemType::GPU>;
template class FluxEsm<float, MemType::GPU, MemType::GPU, MemType::CPU>;
template class FluxEsm<float, MemType::GPU, MemType::CPU, MemType::GPU>;
template class FluxEsm<float, MemType::CPU, MemType::GPU, MemType::GPU>;
template class FluxEsm<float, MemType::CPU, MemType::CPU, MemType::GPU>;
template class FluxEsm<float, MemType::CPU, MemType::GPU, MemType::CPU>;
template class FluxEsm<float, MemType::GPU, MemType::CPU, MemType::CPU>;