Newer
Older
#include "sfx-sheba.h"
#include "sfx-model-compute-subfunc.cuh"
#include "sfx-surface.cuh"
#include "sfx-memory-processing.cuh"
namespace sfx_kernel
{
template<typename T>
__global__ void compute_flux(sfxDataVecTypeC sfx,
meteoDataVecTypeC meteo,
const sfx_sheba_param_C model,
const sfx_surface_param surface,
const sfx_sheba_numericsType_C numerics,
const sfx_phys_constants phys,
template<typename T>
__global__ void noit_compute_flux(sfxDataVecTypeC sfx,
meteoDataVecTypeC meteo,
const sfx_sheba_noit_param_C model,
const sfx_surface_param surface,
const sfx_sheba_noit_numericsType_C numerics,
const sfx_phys_constants phys,
const int grid_size);
}
template<typename T>
__global__ void sfx_kernel::compute_flux(sfxDataVecTypeC sfx,
meteoDataVecTypeC meteo,
const sfx_sheba_param_C model,
const sfx_surface_param surface,
const sfx_sheba_numericsType_C numerics,
const sfx_phys_constants phys,
const int grid_size)
{
const int index = blockIdx.x * blockDim.x + threadIdx.x;
T h, U, dT, Tsemi, dQ, z0_m;
T z0_t, B, h0_m, h0_t, u_dyn0, Re,
zeta, Rib, Udyn, Tdyn, Qdyn, phi_m, phi_h,
Km, Pr_t_inv, Cm, Ct;
int surface_type;
if(index < grid_size)
{
U = meteo.U[index];
Tsemi = meteo.Tsemi[index];
dT = meteo.dT[index];
dQ = meteo.dQ[index];
h = meteo.h[index];
z0_m = meteo.z0_m[index];
surface_type = z0_m < 0.0 ? surface.surface_ocean : surface.surface_land;
get_charnock_roughness(z0_m, u_dyn0, U, h, surface, numerics.maxiters_charnock);
u_dyn0 = U * model.kappa / logf(h0_m);
Re = u_dyn0 * z0_m / phys.nu_air;
get_thermal_roughness(z0_t, B, z0_m, Re, surface, surface_type);
// --- define relative height [thermal]
h0_t = h / z0_t;
// --- define Ri-bulk
Rib = (phys.g / Tsemi) * h * (dT + 0.61e0 * Tsemi * dQ) / (U*U);
// --- get the fluxes
// ----------------------------------------------------------------------------
get_dynamic_scales(Udyn, Tdyn, Qdyn, zeta,
// ----------------------------------------------------------------------------
// ----------------------------------------------------------------------------
// --- define transfer coeff. (momentum) & (heat)
Cm = 0.0;
if (U > 0.0)
Cm = Udyn / U;
Ct = 0.0;
Ct = Tdyn / dT;
// --- define eddy viscosity & inverse Prandtl number
Pr_t_inv = phi_m / phi_h;
sfx.zeta[index] = zeta;
sfx.Rib[index] = Rib;
sfx.Re[index] = Re;
sfx.B[index] = B;
sfx.z0_m[index] = z0_m;
sfx.z0_t[index] = z0_t;
sfx.Rib_conv_lim[index] = T(0.0);
sfx.Cm[index] = Cm;
sfx.Ct[index] = Ct;
sfx.Km[index] = Km;
sfx.Pr_t_inv[index] = Pr_t_inv;
}
}
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
template<typename T>
__global__ void sfx_kernel::noit_compute_flux(sfxDataVecTypeC sfx,
meteoDataVecTypeC meteo,
const sfx_sheba_noit_param_C model,
const sfx_surface_param surface,
const sfx_sheba_noit_numericsType_C numerics,
const sfx_phys_constants phys,
const int grid_size)
{
const int index = blockIdx.x * blockDim.x + threadIdx.x;
T h, U, dT, Tsemi, dQ, z0_m;
T z0_t, B, h0_m, h0_t, u_dyn0, Re,
zeta, Rib, zeta_conv_lim, Rib_conv_lim,
f_m_conv_lim, f_h_conv_lim,
psi_m, psi_h,
psi0_m, psi0_h,
Udyn, Tdyn, Qdyn,
phi_m, phi_h,
Km, Pr_t_inv, Cm, Ct,
fval;
int surface_type;
if(index < grid_size)
{
U = meteo.U[index];
Tsemi = meteo.Tsemi[index];
dT = meteo.dT[index];
dQ = meteo.dQ[index];
h = meteo.h[index];
z0_m = meteo.z0_m[index];
surface_type = z0_m < 0.0 ? surface.surface_ocean : surface.surface_land;
if (surface_type == surface.surface_ocean)
{
get_charnock_roughness(z0_m, u_dyn0, U, h, surface, numerics.maxiters_charnock);
h0_m = h / z0_m;
}
if (surface_type == surface.surface_land)
{
h0_m = h / z0_m;
u_dyn0 = U * model.kappa / logf(h0_m);
}
Re = u_dyn0 * z0_m / phys.nu_air;
get_thermal_roughness(z0_t, B, z0_m, Re, surface, surface_type);
// --- define relative height [thermal]
h0_t = h / z0_t;
// --- define Ri-bulk
Rib = (phys.g / Tsemi) * h * (dT + 0.61e0 * Tsemi * dQ) / (U*U);
get_convection_lim(zeta_conv_lim, Rib_conv_lim, f_m_conv_lim, f_h_conv_lim, h0_m, h0_t, B, model);
// --- get the fluxes
// ----------------------------------------------------------------------------
if (Rib > 0.0)
{
// --- stable stratification block
// --- restrict bulk Ri value
// *: note that this value is written to output
// Rib = min(Rib, Rib_max)
get_zeta(zeta, Rib, h, z0_m, z0_t, model);
get_psi_stable(psi_m, psi_h, zeta, zeta, model);
get_psi_stable(psi0_m, psi0_h, zeta * z0_m / h, zeta * z0_t / h, model);
phi_m = 1.0 + (model.a_m * zeta * powf(1.0 + zeta, 1.0 / 3.0) ) / (1.0 + model.b_m * zeta);
phi_h = 1.0 + (model.a_h * zeta + model.b_h * zeta * zeta) / (1.0 + model.c_h * zeta + zeta * zeta);
Udyn = model.kappa * U / (logf(h / z0_m) - (psi_m - psi0_m));
Tdyn = model.kappa * dT * model.Pr_t_0_inv / (logf(h / z0_t) - (psi_h - psi0_h));
}
else if (Rib < Rib_conv_lim)
{
// --- strong instability block
get_psi_convection(psi_m, psi_h, zeta, Rib,
zeta_conv_lim, f_m_conv_lim, f_h_conv_lim, h0_m, h0_t, B, model, numerics.maxiters_convection);
fval = powf(zeta_conv_lim / zeta, 1.0/3.0);
phi_m = fval / f_m_conv_lim;
phi_h = fval / (model.Pr_t_0_inv * f_h_conv_lim);
}
else if (Rib > -0.001)
{
// --- nearly neutral [-0.001, 0] block
get_psi_neutral(psi_m, psi_h, h0_m, h0_t, B, model);
zeta = 0.0;
phi_m = 1.0;
phi_h = 1.0 / model.Pr_t_0_inv;
}
else
{
// --- weak & semistrong instability block
get_psi_semi_convection(psi_m, psi_h, zeta, Rib, h0_m, h0_t, B, model, numerics.maxiters_convection);
phi_m = powf(1.0 - model.alpha_m * zeta, -0.25);
phi_h = 1.0 / (model.Pr_t_0_inv * sqrtf(1.0 - model.alpha_h_fix * zeta));
}
// ----------------------------------------------------------------------------
// --- define transfer coeff. (momentum) & (heat)
if(Rib > 0)
{
Cm = 0.0;
if (U > 0.0)
Cm = Udyn / U;
Ct = 0.0;
if (fabs(dT) > 0.0)
Ct = Tdyn / dT;
}
else
{
Cm = model.kappa / psi_m;
Ct = model.kappa / psi_h;
}
// --- define eddy viscosity & inverse Prandtl number
Km = model.kappa * Cm * U * h / phi_m;
Pr_t_inv = phi_m / phi_h;
sfx.zeta[index] = zeta;
sfx.Rib[index] = Rib;
sfx.Re[index] = Re;
sfx.B[index] = B;
sfx.z0_m[index] = z0_m;
sfx.z0_t[index] = z0_t;
sfx.Rib_conv_lim[index] = Rib_conv_lim;
sfx.Cm[index] = Cm;
sfx.Ct[index] = Ct;
sfx.Km[index] = Km;
sfx.Pr_t_inv[index] = Pr_t_inv;
}
}
void FluxSheba<T, memIn, memOut, MemType::GPU>::compute_flux(const sfx_sheba_param_C model,
const sfx_surface_param surface,
const sfx_sheba_numericsType_C numerics,
const sfx_phys_constants phys)
{
const int BlockCount = int(ceil(float(grid_size) / 1024.0));
dim3 cuBlock = dim3(1024, 1, 1);
dim3 cuGrid = dim3(BlockCount, 1, 1);
sfx_kernel::compute_flux<T><<<cuGrid, cuBlock>>>(sfx, meteo, model,
surface, numerics, phys, grid_size);
if(MemType::GPU != memOut)
{
const size_t new_size = grid_size * sizeof(T);
memproc::memcopy<memOut, MemType::GPU>((void*&)res_sfx->zeta, (void*&)sfx.zeta, new_size);
memproc::memcopy<memOut, MemType::GPU>((void*&)res_sfx->Rib, (void*&)sfx.Rib, new_size);
memproc::memcopy<memOut, MemType::GPU>((void*&)res_sfx->Re, (void*&)sfx.Re, new_size);
memproc::memcopy<memOut, MemType::GPU>((void*&)res_sfx->B, (void*&)sfx.B, new_size);
memproc::memcopy<memOut, MemType::GPU>((void*&)res_sfx->z0_m, (void*&)sfx.z0_m, new_size);
memproc::memcopy<memOut, MemType::GPU>((void*&)res_sfx->z0_t, (void*&)sfx.z0_t, new_size);
memproc::memcopy<memOut, MemType::GPU>((void*&)res_sfx->Rib_conv_lim, (void*&)sfx.Rib_conv_lim, new_size);
memproc::memcopy<memOut, MemType::GPU>((void*&)res_sfx->Cm, (void*&)sfx.Cm, new_size);
memproc::memcopy<memOut, MemType::GPU>((void*&)res_sfx->Ct, (void*&)sfx.Ct, new_size);
memproc::memcopy<memOut, MemType::GPU>((void*&)res_sfx->Km, (void*&)sfx.Km, new_size);
memproc::memcopy<memOut, MemType::GPU>((void*&)res_sfx->Pr_t_inv, (void*&)sfx.Pr_t_inv, new_size);
}
}
template<typename T, MemType memIn, MemType memOut >
void FluxSheba<T, memIn, memOut, MemType::GPU>::noit_compute_flux(const sfx_sheba_noit_param_C model,
const sfx_surface_param surface,
const sfx_sheba_noit_numericsType_C numerics,
const sfx_phys_constants phys)
{
const int BlockCount = int(ceil(float(grid_size) / 512.0));
dim3 cuBlock = dim3(512, 1, 1);
dim3 cuGrid = dim3(BlockCount, 1, 1);
sfx_kernel::noit_compute_flux<T><<<cuGrid, cuBlock>>>(sfx, meteo, model,
surface, numerics, phys, grid_size);
if(MemType::GPU != memOut)
{
const size_t new_size = grid_size * sizeof(T);
memproc::memcopy<memOut, MemType::GPU>((void*&)res_sfx->zeta, (void*&)sfx.zeta, new_size);
memproc::memcopy<memOut, MemType::GPU>((void*&)res_sfx->Rib, (void*&)sfx.Rib, new_size);
memproc::memcopy<memOut, MemType::GPU>((void*&)res_sfx->Re, (void*&)sfx.Re, new_size);
memproc::memcopy<memOut, MemType::GPU>((void*&)res_sfx->B, (void*&)sfx.B, new_size);
memproc::memcopy<memOut, MemType::GPU>((void*&)res_sfx->z0_m, (void*&)sfx.z0_m, new_size);
memproc::memcopy<memOut, MemType::GPU>((void*&)res_sfx->z0_t, (void*&)sfx.z0_t, new_size);
memproc::memcopy<memOut, MemType::GPU>((void*&)res_sfx->Rib_conv_lim, (void*&)sfx.Rib_conv_lim, new_size);
memproc::memcopy<memOut, MemType::GPU>((void*&)res_sfx->Cm, (void*&)sfx.Cm, new_size);
memproc::memcopy<memOut, MemType::GPU>((void*&)res_sfx->Ct, (void*&)sfx.Ct, new_size);
memproc::memcopy<memOut, MemType::GPU>((void*&)res_sfx->Km, (void*&)sfx.Km, new_size);
memproc::memcopy<memOut, MemType::GPU>((void*&)res_sfx->Pr_t_inv, (void*&)sfx.Pr_t_inv, new_size);
}
}
template class FluxSheba<float, MemType::GPU, MemType::GPU, MemType::GPU>;
template class FluxSheba<float, MemType::GPU, MemType::GPU, MemType::CPU>;
template class FluxSheba<float, MemType::GPU, MemType::CPU, MemType::GPU>;
template class FluxSheba<float, MemType::CPU, MemType::GPU, MemType::GPU>;
template class FluxSheba<float, MemType::CPU, MemType::CPU, MemType::GPU>;
template class FluxSheba<float, MemType::CPU, MemType::GPU, MemType::CPU>;
template class FluxSheba<float, MemType::GPU, MemType::CPU, MemType::CPU>;