Skip to content
Snippets Groups Projects
FluxComputeFunc.cu 17.1 KiB
Newer Older
数学の武士's avatar
数学の武士 committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
#include <cmath>
#include <iostream>
#include "../includeCU/FluxComputeFunc.cuh"

template<typename T>
__device__ void get_charnock_roughness(const T h, const T U,
    const T kappa, 
    const T h_charnock, const T c1_charnock, const T c2_charnock,
    T &z0_m, T &u_dyn0, 
    const int maxiters)
{
    T Uc, a, b, c, c_min, f;

    Uc = U;
    a = 0.0;
    b = 25.0;
    c_min = log(h_charnock) / kappa;

    for (int i = 0; i < maxiters; i++)
    {
        f = c1_charnock - 2.0 * log(Uc);
        for (int j = 0; j < maxiters; j++)
        {
            c = (f + 2.0 * log(b)) / kappa;
            if (U <= 8.0e0) 
                a = log(1.0 + c2_charnock * ( pow(b / Uc, 3) ) ) / kappa;
            c = max(c - a, c_min);
            b = c;
        }
        z0_m = h_charnock * exp(-c * kappa);
        z0_m = max(z0_m, T(0.000015e0));
        Uc = U * log(h_charnock / z0_m) / log(h / z0_m);
    }
    
    u_dyn0 = Uc / c;
}

template __device__ void get_charnock_roughness(const float h, const float U,
    const float kappa, 
    const float h_charnock, const float c1_charnock, const float c2_charnock,
    float &z0_m, float &u_dyn0, 
    const int maxiters);
template __device__ void get_charnock_roughness(const double h, const double U,
    const double kappa, 
    const double h_charnock, const double c1_charnock, const double c2_charnock,
    double &z0_m, double &u_dyn0, 
    const int maxiters);

template<typename T>
__device__ void get_convection_lim(const T h0_m, const T h0_t, const T B,
    const T Pr_t_inf_inv, const T Pr_t_0_inv,
    const T alpha_h, const T alpha_m, const T alpha_h_fix,
    T &zeta_lim, T &Rib_lim, T &f_m_lim, T &f_h_lim)
{
    T psi_m, psi_h, f_m, f_h, c;

    c = pow(Pr_t_inf_inv / Pr_t_0_inv, 4);
    zeta_lim = (2.0 * alpha_h - c * alpha_m - sqrt( (c * alpha_m)*(c * alpha_m) + 4.0 * c * alpha_h * (alpha_h - alpha_m))) / (2.0 * alpha_h*alpha_h);

    f_m_lim = pow(1.0 - alpha_m * zeta_lim, 0.25);
    f_h_lim = sqrt(1.0 - alpha_h * zeta_lim);

    f_m = zeta_lim / h0_m;
    f_h = zeta_lim / h0_t;
    if (fabs(B) < 1.0e-10) f_h = f_m;

    f_m = pow(1.0 - alpha_m * f_m, 0.25);
    f_h = sqrt(1.0 - alpha_h_fix * f_h);

    psi_m = 2.0 * (atan(f_m_lim) - atan(f_m)) + log((f_m_lim - 1.0) * (f_m + 1.0)/((f_m_lim + 1.0) * (f_m - 1.0)));
    psi_h = log((f_h_lim - 1.0) * (f_h + 1.0)/((f_h_lim + 1.0) * (f_h - 1.0))) / Pr_t_0_inv;

    Rib_lim = zeta_lim * psi_h / (psi_m * psi_m);
}

template __device__ void get_convection_lim(const float h0_m, const float h0_t, const float B,
    const float Pr_t_inf_inv, const float Pr_t_0_inv,
    const float alpha_h, const float alpha_m, const float alpha_h_fix,
    float &zeta_lim, float &Rib_lim, float &f_m_lim, float &f_h_lim);
template __device__ void get_convection_lim(const double h0_m, const double h0_t, const double B,
    const double Pr_t_inf_inv, const double Pr_t_0_inv,
    const double alpha_h, const double alpha_m, const double alpha_h_fix,
    double &zeta_lim, double &Rib_lim, double &f_m_lim, double &f_h_lim);

template<typename T>
void __device__ get_psi_stable(const T Rib, const T h0_m, const T h0_t, const T B,
    const T Pr_t_0_inv, const T beta_m,
    T &psi_m, T &psi_h, T &zeta)
{
    T Rib_coeff, psi0_m, psi0_h, phi, c;
    
    psi0_m = log(h0_m);
    psi0_h = B / psi0_m;

    Rib_coeff = beta_m * Rib;
    c = (psi0_h + 1.0) / Pr_t_0_inv - 2.0 * Rib_coeff;
    zeta = psi0_m * (sqrt(c*c + 4.0 * Rib_coeff * (1.0 - Rib_coeff)) - c) / (2.0 * beta_m * (1.0 - Rib_coeff));

    phi = beta_m * zeta;

    psi_m = psi0_m + phi;
    psi_h = (psi0_m + B) / Pr_t_0_inv + phi;
}

template __device__ void get_psi_stable(const float Rib, const float h0_m, const float h0_t, const float B,
    const float Pr_t_0_inv, const float beta_m,
    float &psi_m, float &psi_h, float &zeta);
template __device__ void get_psi_stable(const double Rib, const double h0_m, const double h0_t, const double B,
    const double Pr_t_0_inv, const double beta_m,
    double &psi_m, double &psi_h, double &zeta);

template<typename T>
void __device__ get_psi_convection(const T Rib, const T h0_m, const T h0_t, const T B, 
    const T zeta_conv_lim, const T f_m_conv_lim, const T f_h_conv_lim,
    const T Pr_t_0_inv,
    const T alpha_h, const T alpha_m, const T alpha_h_fix,
    T &psi_m, T &psi_h, T &zeta, 
    const int maxiters)
{
    T zeta0_m, zeta0_h, f0_m, f0_h, p_m, p_h, a_m, a_h, c_lim, f;

    p_m = 2.0 * atan(f_m_conv_lim) + log((f_m_conv_lim - 1.0) / (f_m_conv_lim + 1.0));
    p_h = log((f_h_conv_lim - 1.0) / (f_h_conv_lim + 1.0));

    zeta = zeta_conv_lim;

    for (int i = 1; i <= maxiters + 1; i++)
    {
        zeta0_m = zeta / h0_m;
        zeta0_h = zeta / h0_t;
        if (fabs(B) < 1.0e-10) 
            zeta0_h = zeta0_m;

        f0_m = pow(1.0 - alpha_m * zeta0_m, 0.25);
        f0_h = sqrt(1.0 - alpha_h_fix * zeta0_h);

        a_m = -2.0*atan(f0_m) + log((f0_m + 1.0)/(f0_m - 1.0));
        a_h = log((f0_h + 1.0)/(f0_h - 1.0));

        c_lim = pow(zeta_conv_lim / zeta, 1.0 / 3.0);
        f = 3.0 * (1.0 - c_lim);

        psi_m = f / f_m_conv_lim + p_m + a_m;
        psi_h = (f / f_h_conv_lim + p_h + a_h) / Pr_t_0_inv;

        if (i == maxiters + 1) 
            break;

        zeta = Rib * psi_m * psi_m / psi_h;
    }
}

template __device__ void get_psi_convection(const float Rib, const float h0_m, const float h0_t, const float B, 
    const float zeta_conv_lim, const float f_m_conv_lim, const float f_h_conv_lim,
    const float Pr_t_0_inv,
    const float alpha_h, const float alpha_m, const float alpha_h_fix,
    float &psi_m, float &psi_h, float &zeta, 
    const int maxiters);
template __device__ void get_psi_convection(const double Rib, const double h0_m, const double h0_t, const double B, 
    const double zeta_conv_lim, const double f_m_conv_lim, const double f_h_conv_lim,
    const double Pr_t_0_inv,
    const double alpha_h, const double alpha_m, const double alpha_h_fix,
    double &psi_m, double &psi_h, double &zeta, 
    const int maxiters);

template<typename T>
void __device__ get_psi_neutral(const T h0_m, const T h0_t, const T B,
    const T Pr_t_0_inv,
    T &psi_m, T &psi_h, T &zeta)
{
    zeta = 0.0;
    psi_m = log(h0_m);
    psi_h = log(h0_t) / Pr_t_0_inv;
    if (fabs(B) < 1.0e-10) 
        psi_h = psi_m / Pr_t_0_inv;
}

template __device__ void get_psi_neutral(const float h0_m, const float h0_t, const float B,
    const float Pr_t_0_inv,
    float &psi_m, float &psi_h, float &zeta);
template __device__ void get_psi_neutral(const double h0_m, const double h0_t, const double B,
    const double Pr_t_0_inv,
    double &psi_m, double &psi_h, double &zeta);

template<typename T>
void __device__ get_psi_semi_convection(const T Rib, const T h0_m, const T h0_t, const T B, 
    const T Pr_t_0_inv,
    const T alpha_m, const T alpha_h_fix,
    T &psi_m, T &psi_h, T &zeta,
    const int maxiters)
{
    T zeta0_m, zeta0_h, f0_m, f0_h, f_m, f_h;

    psi_m = log(h0_m);
    psi_h = log(h0_t);

    if (fabs(B) < 1.0e-10) 
        psi_h = psi_m;

    zeta = Rib * Pr_t_0_inv * psi_m * psi_m / psi_h;

    for (int i = 1; i <= maxiters + 1; i++)
    {
        zeta0_m = zeta / h0_m;
        zeta0_h = zeta / h0_t;
        if (fabs(B) < 1.0e-10) 
            zeta0_h = zeta0_m;

        f_m = pow(1.0 - alpha_m * zeta, 0.25e0);
        f_h = sqrt(1.0 - alpha_h_fix * zeta);

        f0_m = pow(1.0 - alpha_m * zeta0_m, 0.25e0);
        f0_h = sqrt(1.0 - alpha_h_fix * zeta0_h);

        f0_m = max(f0_m, T(1.000001e0));
        f0_h = max(f0_h, T(1.000001e0));

        psi_m = log((f_m - 1.0e0)*(f0_m + 1.0e0)/((f_m + 1.0e0)*(f0_m - 1.0e0))) + 2.0e0*(atan(f_m) - atan(f0_m));
        psi_h = log((f_h - 1.0e0)*(f0_h + 1.0e0)/((f_h + 1.0e0)*(f0_h - 1.0e0))) / Pr_t_0_inv;

        if (i == maxiters + 1) 
            break;

        zeta = Rib * psi_m * psi_m / psi_h;
    }
}

template __device__ void get_psi_semi_convection(const float Rib, const float h0_m, const float h0_t, const float B, 
    const float Pr_t_0_inv,
    const float alpha_m, const float alpha_h_fix,
    float &psi_m, float &psi_h, float &zeta,
    const int maxiters);
template __device__ void get_psi_semi_convection(const double Rib, const double h0_m, const double h0_t, const double B, 
    const double Pr_t_0_inv,
    const double alpha_m, const double alpha_h_fix,
    double &psi_m, double &psi_h, double &zeta,
    const int maxiters);

template<typename T>
__global__ void compute_flux(const T *U_, const T *dT_, const T *Tsemi_, const T *dQ_, const T *h_, const T *in_z0_m_,
    T *zeta_, T *Rib_, T *Re_, T *B_, T *z0_m_, T *z0_t_, T *Rib_conv_lim_, T *Cm_, T *Ct_, T *Km_, T *Pr_t_inv_,
    const T kappa, const T Pr_t_0_inv, const T Pr_t_inf_inv, 
    const T alpha_m, const T alpha_h, const T alpha_h_fix, 
    const T beta_m, const T beta_h, const T Rib_max, const T Re_rough_min, 
    const T B1_rough, const T B2_rough,
    const T B_max_land, const T B_max_ocean, const T B_max_lake,
    const T gamma_c, const T Re_visc_min,
    const T Pr_m, const T nu_air, const T g, 
    const int maxiters_charnock, const int maxiters_convection, 
    const int grid_size)
{
    const int index = blockIdx.x * blockDim.x + threadIdx.x;

    T h, U, dT, Tsemi, dQ, z0_m;
    T Re, z0_t, B, h0_m, h0_t, u_dyn0, zeta, Rib, zeta_conv_lim, Rib_conv_lim, f_m_conv_lim, f_h_conv_lim, psi_m, psi_h, phi_m, phi_h, Km, Pr_t_inv, Cm, Ct;
    int surface_type;
    T fval;

    const T B3_rough = kappa * Pr_m, B4_rough =( 0.14 * ( pow(30.0, B2_rough) ) ) * (pow(Pr_m, 0.8));
    const T h_charnock = 10.0, c1_charnock = log(h_charnock * (g / gamma_c)), c2_charnock = Re_visc_min * nu_air * c1_charnock;

    if(index < grid_size)
    {
        U = U_[index];
        Tsemi = Tsemi_[index];
        dT = dT_[index];
        dQ = dQ_[index];
        h = h_[index];
        z0_m = in_z0_m_[index];

        if (z0_m < 0.0) surface_type = 0;
        else            surface_type = 1;

        if (surface_type == 0)
        {
            get_charnock_roughness(h, U, kappa, h_charnock, c1_charnock, c2_charnock, z0_m, u_dyn0, maxiters_charnock);
            h0_m = h / z0_m;
        }
        if (surface_type == 1) 
        {
            h0_m = h / z0_m;
            u_dyn0 = U * kappa / log(h0_m);
        }

        Re = u_dyn0 * z0_m / nu_air;

        if(Re <= Re_rough_min) B = B1_rough * log(B3_rough * Re) + B2_rough;
        else                   B = B4_rough * (pow(Re, B2_rough));

        if (surface_type == 0)  B = min(B, B_max_ocean);
        if (surface_type == 1)   B = min(B, B_max_land);
        if (surface_type == 2)   B = min(B, B_max_lake);

        z0_t = z0_m / exp(B);
        h0_t = h / z0_t;
        Rib = (g / Tsemi) * h * (dT + 0.61e0 * Tsemi * dQ) / (U*U);

        get_convection_lim(h0_m, h0_t, B, Pr_t_inf_inv, Pr_t_0_inv, alpha_h, alpha_m, alpha_h_fix, zeta_conv_lim, Rib_conv_lim, f_m_conv_lim, f_h_conv_lim);


        if (Rib > 0.0) 
        {
            Rib = min(Rib, Rib_max);
            get_psi_stable(Rib, h0_m, h0_t, B, Pr_t_0_inv, beta_m, psi_m, psi_h, zeta);

            fval = beta_m * zeta;
            phi_m = 1.0 + fval;
            phi_h = 1.0/Pr_t_0_inv + fval;
        }

        else if (Rib < Rib_conv_lim) 
        {
            get_psi_convection(Rib, h0_m, h0_t, B, zeta_conv_lim, f_m_conv_lim, f_h_conv_lim, Pr_t_0_inv, alpha_h, alpha_m, alpha_h_fix, psi_m, psi_h, zeta, maxiters_convection);

            fval = pow(zeta_conv_lim / zeta, 1.0/3.0);
            phi_m = fval / f_m_conv_lim;
            phi_h = fval / (Pr_t_0_inv * f_h_conv_lim);
        }
        else if (Rib > -0.001) 
        {
            get_psi_neutral(h0_m, h0_t, B, Pr_t_0_inv, psi_m, psi_h, zeta);
        
            phi_m = 1.0;
            phi_h = 1.0 / Pr_t_0_inv;
        }
        else
        {
            get_psi_semi_convection(Rib, h0_m, h0_t, B, Pr_t_0_inv, alpha_m, alpha_h_fix, psi_m, psi_h, zeta, maxiters_convection);
            
            phi_m = pow(1.0 - alpha_m * zeta, -0.25);
            phi_h = 1.0 / (Pr_t_0_inv * sqrt(1.0 - alpha_h_fix * zeta));
        }

        Cm = kappa / psi_m;
        Ct = kappa / psi_h;

        Km = kappa * Cm * U * h / phi_m;
        Pr_t_inv = phi_m / phi_h;

        zeta_[index]         = zeta;
        Rib_[index]          = Rib;
        Re_[index]           = Re;
        B_[index]            = B;
        z0_m_[index]         = z0_m;
        z0_t_[index]         = z0_t;
        Rib_conv_lim_[index] = Rib_conv_lim;
        Cm_[index]           = Cm;
        Ct_[index]           = Ct;
        Km_[index]           = Km;
        Pr_t_inv_[index]     = Pr_t_inv;
    }
}

template __global__ void compute_flux(const float *U, const float *dt, const float *T_semi, const float *dq, const float *H, const float *in_z0_m,
    float *zeta_, float *Rib_, float *Re_, float *B_, float *z0_m_, float *z0_t_, float *Rib_conv_lim_, float *Cm_, float *Ct_, float *Km_, float *Pr_t_inv_,
    const float kappa, const float Pr_t_0_inv, const float Pr_t_inf_inv, 
    const float alpha_m, const float alpha_h, const float alpha_h_fix, 
    const float beta_m, const float beta_h, const float Rib_max, const float Re_rough_min, 
    const float B1_rough, const float B2_rough,
    const float B_max_land, const float B_max_ocean, const float B_max_lake,
    const float gamma_c, const float Re_visc_min,
    const float Pr_m, const float nu_air, const float g, 
    const int maxiters_charnock, const int maxiters_convection, 
    const int grid_size);
template __global__ void compute_flux(const double *U, const double *dt, const double *T_semi, const double *dq, const double *H, const double *in_z0_m, 
    double *zeta_, double *Rib_, double *Re_, double *B_, double *z0_m_, double *z0_t_, double *Rib_conv_lim_, double *Cm_, double *Ct_, double *Km_, double *Pr_t_inv_,
    const double kappa, const double Pr_t_0_inv, const double Pr_t_inf_inv, 
    const double alpha_m, const double alpha_h, const double alpha_h_fix, 
    const double beta_m, const double beta_h, const double Rib_max, const double Re_rough_min, 
    const double B1_rough, const double B2_rough,
    const double B_max_land, const double B_max_ocean, const double B_max_lake,
    const double gamma_c, const double Re_visc_min,
    const double Pr_m, const double nu_air, const double g, 
    const int maxiters_charnock, const int maxiters_convection, 
    const int grid_size);

template<typename T>
void compute_flux_gpu(const T *U_, const T *dT_, const T *Tsemi_, const T *dQ_, const T *h_, const T *in_z0_m_,
    T *zeta_, T *Rib_, T *Re_, T *B_, T *z0_m_, T *z0_t_, T *Rib_conv_lim_, T *Cm_, T *Ct_, T *Km_, T *Pr_t_inv_,
    const T kappa, const T Pr_t_0_inv, const T Pr_t_inf_inv, 
    const T alpha_m, const T alpha_h, const T alpha_h_fix, 
    const T beta_m, const T beta_h, const T Rib_max, const T Re_rough_min, 
    const T B1_rough, const T B2_rough,
    const T B_max_land, const T B_max_ocean, const T B_max_lake,
    const T gamma_c, const T Re_visc_min,
    const T Pr_m, const T nu_air, const T g, 
    const int maxiters_charnock, const int maxiters_convection, 
    const int grid_size)
{
    const int BlockCount = int(ceil(float(grid_size) / 1024.0));
    dim3 cuBlock = dim3(1024, 1, 1);
	dim3 cuGrid = dim3(BlockCount, 1, 1);

    compute_flux<<<cuGrid, cuBlock>>>(U_, dT_, Tsemi_, dQ_, h_, in_z0_m_,
    zeta_, Rib_, Re_, B_, z0_m_, z0_t_, Rib_conv_lim_, Cm_, Ct_, Km_, Pr_t_inv_,
    kappa, Pr_t_0_inv, Pr_t_inf_inv, 
    alpha_m, alpha_h, alpha_h_fix, 
    beta_m, beta_h, Rib_max, Re_rough_min, 
    B1_rough, B2_rough,
    B_max_land, B_max_ocean, B_max_lake,
    gamma_c, Re_visc_min,
    Pr_m, nu_air, g, 
    maxiters_charnock, maxiters_convection, 
    grid_size);
}

template void compute_flux_gpu(const float *U, const float *dt, const float *T_semi, const float *dq, const float *H, const float *in_z0_m,
    float *zeta_, float *Rib_, float *Re_, float *B_, float *z0_m_, float *z0_t_, float *Rib_conv_lim_, float *Cm_, float *Ct_, float *Km_, float *Pr_t_inv_,
    const float kappa, const float Pr_t_0_inv, const float Pr_t_inf_inv, 
    const float alpha_m, const float alpha_h, const float alpha_h_fix, 
    const float beta_m, const float beta_h, const float Rib_max, const float Re_rough_min, 
    const float B1_rough, const float B2_rough,
    const float B_max_land, const float B_max_ocean, const float B_max_lake,
    const float gamma_c, const float Re_visc_min,
    const float Pr_m, const float nu_air, const float g, 
    const int maxiters_charnock, const int maxiters_convection, 
    const int grid_size);
template void compute_flux_gpu(const double *U, const double *dt, const double *T_semi, const double *dq, const double *H, const double *in_z0_m, 
    double *zeta_, double *Rib_, double *Re_, double *B_, double *z0_m_, double *z0_t_, double *Rib_conv_lim_, double *Cm_, double *Ct_, double *Km_, double *Pr_t_inv_,
    const double kappa, const double Pr_t_0_inv, const double Pr_t_inf_inv, 
    const double alpha_m, const double alpha_h, const double alpha_h_fix, 
    const double beta_m, const double beta_h, const double Rib_max, const double Re_rough_min, 
    const double B1_rough, const double B2_rough,
    const double B_max_land, const double B_max_ocean, const double B_max_lake,
    const double gamma_c, const double Re_visc_min,
    const double Pr_m, const double nu_air, const double g, 
    const int maxiters_charnock, const int maxiters_convection, 
    const int grid_size);