Newer
Older
!pbl_dry_contrgradient.f90
!>@brief implements mass-flux contr-gradient parametrization
module pbl_dry_contrgradient
implicit none
type pblContrGradDataType
real, allocatable :: wu(:), &
theta_up(:), &
thetav_up(:), &
ua_up(:), &
va_up(:), &
qv_up(:), &
entr(:)
real :: theta_up0, thetav_up0, qv_up0
real :: ua_up0, va_up0
real :: ua_upH, va_upH
real :: theta_upH, thetav_upH, qv_upH
end type pblContrGradDataType
real, parameter :: c_entr = 0.38 !< dry entrainment parameterization
real, parameter :: b1 = 1.8; !< vertical velocity in updraft Bernulli equation constant
real, parameter :: b2 = 3.5; !< vertical velocity in updraft Bernulli equation constant
real, parameter :: wstrmin = 1.0e-6 !< minimimal deardorff velocity
real, parameter :: lmin_entr = 1.0e6 !< maximum entrainement scale above CBL
real, parameter :: tau_dry_scale = 500.0 !< Time scale for entrainment
real, parameter :: a0 = 0.08 !< Updraft fraction area
real, parameter :: alph0 = 0.25 !< amount of surface dispersion to transfer to updraft
public cbl_get_entrainment, cbl_get_up
public cbl_get_wu, cbl_apply_cntrg
integer, intent(in):: kmax
type(pblContrGradDataType), intent(out):: cbl
allocate(cbl%entr(kmax))
allocate(cbl%theta_up(kmax))
allocate(cbl%thetav_up(kmax))
allocate(cbl%qv_up(kmax))
allocate(cbl%ua_up(kmax))
allocate(cbl%va_up(kmax))
allocate(cbl%wu(kmax))
deallocate(cbl%entr)
deallocate(cbl%theta_up)
deallocate(cbl%thetav_up)
deallocate(cbl%qv_up)
deallocate(cbl%ua_up)
deallocate(cbl%va_up)
deallocate(cbl%wu)
end subroutine cbl_deallocate
subroutine cbl_get_entrainment(cbl, bl, fluid, grid)
use scm_state_data, only : stateBLDataType
use pbl_turb_data, only : turbBLDataType
use phys_fluid, only: fluidParamsDataType
use pbl_grid, only : pblgridDataType
implicit none
type(pblContrGradDataType) :: cbl
type(stateBLDataType), intent(inout):: bl
type(fluidParamsDataType), intent(in) :: fluid
type(pblgridDataType), intent(in) :: grid
integer k
real dz
dz =(grid%z_cell(k-1) - grid%z_cell(k)) + 1.0
if (k < bl%kpbl+2) then
cbl%entr(k) = c_entr * ( 1.0/(grid%z_cell(k) + dz) &
+ 1.0/(bl%hpbla_diag - grid%z_cell(k) + dz) &
+ 1.0/ lmin_entr)
write(*,*) 'entr, k = ' , cbl%entr(k), k, grid%z_cell(k)
subroutine cbl_get_up(cbl, bl, fluid, grid)
use scm_state_data, only : stateBLDataType
use pbl_turb_data, only : turbBLDataType
use phys_fluid, only: fluidParamsDataType
use pbl_grid, only : pblgridDataType
implicit none
type(pblContrGradDataType) :: cbl
type(stateBLDataType), intent(inout):: bl
type(fluidParamsDataType), intent(in) :: fluid
type(pblgridDataType), intent(in) :: grid
real phys_beta, wstr, dz, dzentrp, dzentrm, temp
cbl%theta_up(:) = 0.0
cbl%thetav_up(:) = 0
cbl%qv_up = 0.0
cbl%ua_up = 0.0
cbl%va_up = 0.0
kmax = grid%kmax
phys_beta = 0.5 * fluid%g /(bl%theta_v(kmax) + bl%theta_v(kmax-1))
write(*,*) 'bl%hs, ', (bl%surf%hs), phys_beta
if (bl%surf%hs > 0.0) then
wstr = (phys_beta * (bl%surf%hs/bl%rho(kmax)) &
* bl%hpbla_diag)**(0.33333)
wstr = max(wstrmin, wstr)
cbl%thetav_up0 = (bl%surf%hs/(bl%rho(kmax)*fluid%cp)) / wstr
cbl%theta_up0 = (bl%surf%hs/(bl%rho(kmax)*fluid%cp)) / wstr
cbl%qv_up0 = (bl%surf%es/bl%rho(kmax)) / wstr
else
cbl%thetav_up0 = 0.0
cbl%theta_up0 = 0.0
cbl%qv_up0 = 0.0
end if
cbl%thetav_up(kmax) = cbl%thetav_up0 + bl%theta_v(kmax)
cbl%theta_up(kmax) = cbl%theta_up0 + bl%theta(kmax)
cbl%qv_up(kmax) = cbl%qv_up0 + bl%qv(kmax)
cbl%ua_up(kmax) = cbl%ua_up0 + bl%u(kmax)
cbl%va_up(kmax) = cbl%va_up0 + bl%v(kmax)
cbl%theta_up(k) = bl%theta(k)
cbl%thetav_up(k) = bl%theta_v(k)
cbl%qv_up(k) = bl%qv(k)
cbl%ua_up(k) = bl%u(k)
cbl%ua_up(k) = bl%u(k)
cbl%va_up(k) = bl%v(k)
else
dz = (grid%z_cell(k) - grid%z_cell(k+1))
cbl%thetav_up(k) = cbl%thetav_up(k+1) - &
dz * cbl%entr(k+1) &
* (cbl%thetav_up(k+1) - bl%theta_v(k+1))
cbl%theta_up(k) = cbl%theta_up(k+1) - &
dz * cbl%entr(k+1) &
* (cbl%theta_up(k+1) - bl%theta(k+1))
write(*,*) 'theta_up, k = ' , cbl%theta_up(k) - bl%theta(k), k
cbl%qv_up(k) = cbl%qv_up(k+1) - &
dz * cbl%entr(k+1) &
* (cbl%qv_up(k+1) - bl%qv(k+1))
cbl%ua_up(k) = cbl%ua_up(k+1) + &
dz * cbl%entr(k+1) &
* (cbl%ua_up(k+1) - bl%u(k+1))
cbl%va_up(k) = cbl%va_up(k+1) - &
dz * cbl%entr(k+1) &
* (cbl%va_up(k+1) - bl%v(k+1))
subroutine cbl_get_wu(cbl, bl, fluid, grid)
use scm_state_data, only : stateBLDataType
use pbl_turb_data, only : turbBLDataType
use phys_fluid, only: fluidParamsDataType
use pbl_grid, only : pblgridDataType
implicit none
type(pblContrGradDataType) :: cbl
type(stateBLDataType), intent(inout):: bl
type(fluidParamsDataType), intent(in) :: fluid
type(pblgridDataType), intent(in) :: grid
real wu, phys_beta, umod, ustr, rhs, a, b, dz
integer k, kmax
kmax = grid%kmax
umod = sqrt(bl%u(kmax)*bl%u(kmax) + bl%v(kmax)*bl%v(kmax))
ustr = sqrt(bl%surf%cm2u /bl%rho(kmax) * umod)
phys_beta = 0.5 * fluid%g /(bl%theta_v(kmax) + bl%theta_v(kmax-1))
- 0.4 * phys_beta * bl%surf%hs &
* (grid%z_cell(k))/bl%rho(kmax))**(1.0/3.0) &
* sqrt(1.0 - grid%z_cell(k) / bl%hpbla_diag)
do k = kmax - 1, 1, -1
dz = (grid%z_cell(K) - grid%z_cell(K+1))
a = 0.0
if (abs(cbl%entr(k)) >= 1.0e-8 .and. abs(cbl%wu(k+1)) > 1.0e-6 ) then
a = b1 * cbl%entr(k) * cbl%wu(k+1) * dz
b = b2 * 9.81 * (dz/cbl%wu(k+1)) &
* (cbl%thetav_up(k) - bl%theta_v(k))/bl%theta_v(k);
rhs = cbl%wu(k+1) - a + b;
if (rhs > 0) then
cbl%wu(k) = rhs;
else
cbl%wu(k) = 0.0;
endif
else
cbl%wu(k) = 0.0;
endif
enddo
subroutine cbl_apply_cntrg(cbl, bl, fluid, grid, dt)
use scm_state_data, only : stateBLDataType
use pbl_turb_data, only : turbBLDataType
use phys_fluid, only: fluidParamsDataType
use pbl_grid, only : pblgridDataType
implicit none
type(stateBLDataType), intent(inout):: bl
type(fluidParamsDataType), intent(in) :: fluid
type(pblgridDataType), intent(in) :: grid
real, intent(in) :: dt
real, dimension(grid%kmax) :: rhs_up, rhs
real a0w0
integer kmax, kpbl, k
kmax = grid%kmax
kpbl = bl%kpbl
a0w0 = 0.15 * cbl%wu(kpbl)
call cbl_get_entrainment(cbl, bl, fluid, grid)
call cbl_get_up(cbl, bl, fluid, grid)
call cbl_get_wu(cbl, bl, fluid, grid)
!apply upwind
rhs_up(:) = 0
do k = kmax-1, 1, -1
rhs_up(k) = 0.1 * (cbl%wu(k)) * &
(cbl%theta_up(k+1) - cbl%theta_up(k) - bl%theta(k+1) + bl%theta(k)) &
/ (grid%z_cell(k) - grid%z_cell(k+1))
else
rhs_up(k)=0
end if
end do
bl%theta = bl%theta + dt * rhs_up
rhs_up = 0
do k = kmax-1, 1, -1
if (abs(cbl%wu(k)) > 1.0e-7) then
(cbl%qv_up(+1) - cbl%qv_up(k) &
- bl%qv(k+1) + bl%qv(k)) / (grid%z_cell(k) -grid%z_cell(k+1))
else
rhs_up(k)=0
end if
end do
bl%qv(:) = bl%qv(:) + dt * rhs_up(:)
rhs_up(:) = 0
do k = kmax-1, 1, -1
if (abs(cbl%wu(k)) > 1.0e-8) then
(cbl%ua_up(k+1) - cbl%ua_up(k) - bl%u(k+1) + bl%u(k)) &
/ (grid%z_cell(k) - grid%z_cell(k+1))
else
rhs_up(k)=0
end if
end do
bl%u(:) = bl%u(:) + dt * rhs_up(:)
rhs_up(:) = 0
do k = kmax-1, 1, -1
if (abs(cbl%wu(k)) > 1.0e-8) then
(cbl%va_up(k+1) - cbl%va_up(k) - bl%v(k+1) + bl%v(k)) &
/ (grid%z_cell(k) - grid%z_cell(k+1))
else
rhs_up(k)=0
end if
end do
bl%v(:) = bl%v(:) + dt * rhs_up(:)
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
subroutine new_cntrg(cbl, bl, fluid, grid, dt)
use scm_state_data, only : stateBLDataType
use pbl_turb_data, only : turbBLDataType
use phys_fluid, only: fluidParamsDataType
use pbl_grid, only : pblgridDataType
implicit none
type(pblContrGradDataType), intent(inout) :: cbl
type(stateBLDataType), intent(inout):: bl
type(fluidParamsDataType), intent(in) :: fluid
type(pblgridDataType), intent(in) :: grid
real, intent(in) :: dt
! local variables
real, save, allocatable :: rhs_up(:), rhs(:)
real, save, allocatable :: bouf(:)
real wu, phys_beta, umod, rhs_ws, a, b
real dz, dzentrp, dzentrm, temp,dth
real sigmaw, sigmath, sigmaqc
real wstr, ustr, thstar, thvstar, qstar
real z1, hpb, hpbmf
real entrint, entexp, entexpu
real wp, entw, wn2
real a0w0
integer kmax, kpbl, k
kmax = grid%kmax
kmax = grid%kmax
if (.not.(allocated(rhs_up))) then
allocate(rhs_up(grid%kmax), source=0.0)
end if
if (.not.(allocated(rhs))) then
allocate(rhs(grid%kmax), source=0.0)
end if
if (.not.(allocated(bouf))) then
allocate(bouf(grid%kmax), source=0.0)
end if
kpbl = bl%kpbl
cbl%theta_up(:) = 0.0
cbl%thetav_up(:) = 0
cbl%qv_up(:) = 0.0
cbl%ua_up(:) = 0.0
cbl%va_up(:) = 0.0
cbl%entr(:) = 0.0
cbl%wu(:) = 0.0
rhs_up(:) = 0.0
rhs(:) = 0.0
! Check if the flux is convective
if (bl%surf%hs > 0.0) then
! get surface properties
z1 = grid%z_cell(kmax)
hpb = bl%hpbla_diag
phys_beta = 0.5 * fluid%g /(bl%theta_v(kmax) + bl%theta_v(kmax-1))
wstr = (phys_beta * (bl%surf%hs/bl%rho(kmax)/fluid%cp) &
* bl%hpbla_diag)**(0.33333)
wstr = max(wstrmin, wstr)
! Initial condition for vertical velocity
umod = sqrt(bl%u(kmax)*bl%u(kmax) + bl%v(kmax)*bl%v(kmax))
ustr = sqrt(bl%surf%cm2u /bl%rho(kmax) * umod)
!cbl%wu(kmax) = 1.0 * ((ustr)**3.0 & !2.46
! + 0.4 * wstr**3.0)**(1.0/3.0) &
! * sqrt(1.0 - grid%z_cell(kmax) / bl%hpbla_diag)
sigmaw = 1.3 * (ustr**3.0 + 0.6 * wstr**3.0 * z1/hpb) * &
sqrt(1.0 - z1 / hpb)
thstar = (bl%surf%hs/(bl%rho(kmax))) / wstr
thvstar = (bl%surf%hs/(bl%rho(kmax))) / wstr
qstar = (bl%surf%es/bl%rho(kmax)) / wstr
cbl%wu(kmax) = 0.5 * sigmaw
! initial perturbation
cbl%thetav_up0 = (bl%surf%hs/(bl%rho(kmax))) / sigmaw
cbl%theta_up0 = (bl%surf%hs/(bl%rho(kmax))) / sigmaw
cbl%qv_up0 = (bl%surf%es/bl%rho(kmax)) / sigmaw
cbl%ua_up0 = 0.5 * (bl%u(kmax) + bl%u(kmax-1))
cbl%va_up0 = 0.5 * (bl%v(kmax) + bl%v(kmax-1))
cbl%thetav_up(kmax) = alph0 *cbl%thetav_up0 + bl%theta_v(kmax)
cbl%theta_up(kmax) = alph0 * cbl%theta_up0 + bl%theta(kmax)
cbl%qv_up(kmax) = alph0 * cbl%qv_up0 + bl%qv(kmax)
cbl%ua_up(kmax) = cbl%ua_up0 + bl%u(kmax)
cbl%va_up(kmax) = cbl%va_up0 + bl%v(kmax)
!Initial entrainment
!cbl%entr(kmax) = 1.0 / (cbl%wu(kmax) * tau_dry_scale) &
!+ c_entr / grid%z_cell(kmax)
dz = grid%z_cell(kmax) - grid%z_edge(kmax)
cbl%entr(kmax) = c_entr * ( 1.0/(grid%z_cell(kmax) + dz) &
+ 1.0/(bl%hpbla_diag - grid%z_cell(kmax) + dz))
bl%kpbld_mf = bl%kpbl
! get non-entraiened parcel height
!do k = kmax - 1, 2, -1
! dth = cbl%thetav_up(kmax) - bl%theta_v(k)
! if (bl%kpbld_mf == 0 .and. dth < 0.0 ) then
! bl%kpbld_mf = k
! end if
!end do
hpbmf = 0.5 * (grid%z_cell(bl%kpbld_mf) + &
bl%hpbla_diag)
write(*,*) 'hbp, hmf', grid%z_cell(bl%kpbld_mf), bl%hpbla_diag, bl%surf%hs
! get proper entrainment
do k = grid%kmax-1,1,-1
dz = (grid%z_cell(k) - grid%z_cell(k+1))
if (grid%z_cell(k) <= hpbmf) then
cbl%entr(k) = c_entr * ( 1.0/(grid%z_cell(k) + dz) &
+ 1.0/(hpbmf - grid%z_cell(k) + dz))
else
cbl%entr(k) = 0.0
end if
end do
!get updrafts
do k = grid%kmax-1,bl%kpbld_mf,-1
dz = (grid%z_cell(k) - grid%z_cell(k+1))
entexp = exp( - cbl%entr(k) * dz)
entexpu = exp( - cbl%entr(k) * dz / 3.0 )
cbl%thetav_up(k) = bl%theta_v(k) * (1.0 - entexp) + &
cbl%thetav_up(k+1) * entexp
cbl%theta_up(k) = bl%theta(k) * (1.0 - entexp) + &
cbl%theta_up(k+1) * entexp
cbl%qv_up(k) = bl%qv(k) * (1.0 - entexp) + &
cbl%qv_up(k+1) * entexp
cbl%ua_up(k) = bl%u(k) * (1.0 - entexpu) + &
cbl%ua_up(k+1) * entexpu
cbl%va_up(k) = bl%u(k) * (1.0 - entexpu) + &
cbl%va_up(k+1) * entexpu
bouf(k) = fluid%g * &
(0.5 * (cbl%thetav_up(k) + cbl%thetav_up(k+1)) / &
bl%theta_v(k) - 1.0)
enddo
!get vertical speed
do k = grid%kmax-1,bl%kpbld_mf,-1
dz = (grid%z_cell(k) - grid%z_cell(k+1))
wp = b1 * cbl%entr(k)
if (wp > 0.0) then
entw = exp( -2.0 * wp * dz )
wn2 = cbl%wu(k+1) * cbl%wu(k+1) * entw + &
b2* bouf(k)*(1.0-entw)/entw
else
wn2 = cbl%wu(k+1) * cbl%wu(k+1) + &
2.0 * b2 * bouf(k) * dz
end if
if ( wn2 > 0.0) then
cbl%wu(k) = sqrt(wn2)
else
cbl%wu(k) = 0.0
end if
end do
! apply upwind
rhs_up(:) = 0.0
do k = kmax-1, 1, -1
if (cbl%wu(k) > 0.0) then
rhs_up(k) = a0 * (cbl%wu(k)) * &
(cbl%theta_up(k+1) - cbl%theta_up(k) - bl%theta(k+1) + bl%theta(k)) &
/ (grid%z_cell(k) - grid%z_cell(k+1))
else
rhs_up(k)=0.0
end if
end do
bl%theta = bl%theta + dt * rhs_up
rhs_up(:) = 0.0
do k = kmax-1, 1, -1
if (cbl%wu(k) > 0.0) then
rhs_up(k) = a0 * (cbl%wu(k)) * &
(cbl%qv_up(k+1) - cbl%qv_up(k) &
- bl%qv(k+1) + bl%qv(k)) &
/ (grid%z_cell(k) -grid%z_cell(k+1))
else
rhs_up(k)=0.0
end if
end do
bl%qv(:) = bl%qv(:) + dt * rhs_up(:)
rhs_up(:) = 0.0
do k = kmax-1, 1, -1
if (cbl%wu(k) > 0.0) then
rhs_up(k) = a0 * (cbl%wu(k)) * &
(cbl%ua_up(k+1) - cbl%ua_up(k) - bl%u(k+1) + bl%u(k)) &
/ (grid%z_cell(k) - grid%z_cell(k+1))
else
rhs_up(k)=0.0
end if
end do
bl%u(:) = bl%u(:) + dt * rhs_up(:)
rhs_up(:) = 0.0
do k = kmax-1, 1, -1
if (cbl%wu(k) > 0.0) then
rhs_up(k) = a0 * (cbl%wu(k)) * &
(cbl%va_up(k+1) - cbl%va_up(k) - bl%v(k+1) + bl%v(k)) &
/ (grid%z_cell(k) - grid%z_cell(k+1))
else
rhs_up(k)=0.0
end if
end do
bl%v(:) = bl%v(:) + dt * rhs_up(:)
end if
end subroutine new_cntrg