Skip to content
Snippets Groups Projects
bl-turb-scalar.h 31.4 KiB
Newer Older
  • Learn to ignore specific revisions
  • Debolskiy Andrey's avatar
    Debolskiy Andrey committed
    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954
    #pragma once
    
    // [bl-turb-scalar.h]: boundary-layer scalar turbulence statistics and budgets
    //
    // -------------------------------------------------------------------------------------------- //
    
    #include "wstgrid3d.h"
    
    //
    // *[Note]: we need gcz >= 2 for computation of production terms:
    //         _
    //        dC
    // - w'w' --
    //        dz
    //
    
    
    namespace nse
    {
    	// Heat eq. balance
    	// -------------------------------------------------------------------------------------------- //
    	template< typename T >
    	void heat_eq(
    		T* heat_balance,				// node: [W]
    		T* turbulent_heat_flux,			// node: [W]
    		T* heat_stress,					// node: [W]
    
    		const T* const Tw_flux,			// node: [W]
    		const T* const T_grad,			// node: [W]
    		const T c_diffusivity, const wstGrid3d< T >& grid);
    	// -------------------------------------------------------------------------------------------- //
    
    	// SVA production
    	// -------------------------------------------------------------------------------------------- //
    	template< typename T >
    	void SVA_production(T* _SVA_production,		// node: [C]
    
    		const T* const CW_bottom,				// node: [C (W -- C)]
    		const T* const CW_top,					// node: [C (W -- C)]
    		const T* const C,						// node: [C]
    		const T* const W,						// node: [W]
    		const wstGrid3d< T >& grid);
    	// -------------------------------------------------------------------------------------------- //
    
    	// SVA transport
    	// -------------------------------------------------------------------------------------------- //
    	template< typename T >
    	void SVA_transport(T* _SVA_transport,	// node: [C]
    
    		const T* const cc_w_flux,			// node: [W]
    		const wstGrid3d< T >& grid);
    	// -------------------------------------------------------------------------------------------- //
    
    	// SVA dissipation
    	// -------------------------------------------------------------------------------------------- //
    	template< typename T >
    	void SVA_dissipation(T* _SVA_dissipation,	// node: [C]
    
    		const T* const C_dissipation,			// node: [C]
    		const T* const C,						// node: [C]
    		const T c_diffusivity, const wstGrid3d< T >& grid);
    	// -------------------------------------------------------------------------------------------- //
    
    	// SVA iso dissipation
    	// -------------------------------------------------------------------------------------------- //
    	template< typename T >
    	void SVA_iso_dissipation(T* _SVA_iso_dissipation,	// node: [C]
    
    		const T* const C_iso_dissipation,				// node: [C]
    		const T* const C,								// node: [C]
    		const T c_diffusivity, const wstGrid3d< T >& grid);
    	// -------------------------------------------------------------------------------------------- //
    
    
    	// c'ui' flux budget: production
    	// -------------------------------------------------------------------------------------------- //
    	template< typename T >
    	void cu_production_shear(T* _cu_production_shear,	// node: [C]
    
    		const T* const CW_bottom_u,		// node: [C (W -- C)]
    		const T* const CW_top_u,		// node: [C (W -- C)]
    		const T* const C,				// node: [C]
    		const T* const U,				// node: [C]
    		const T* const W,				// node: [W]
    		const wstGrid3d< T >& grid);
    
    	template< typename T >
    	void cu_production_gradC(T* _cu_production_gradC,	// node: [C]
    
    		const T* const UW_bottom,		// node: [C (W -- C)]
    		const T* const UW_top,			// node: [C (W -- C)]
    		const T* const C,				// node: [C]
    		const T* const U,				// node: [C]
    		const T* const W,				// node: [W]
    		const wstGrid3d< T >& grid);
    
    
    	template< typename T >
    	void cv_production_shear(T* _cv_production_shear,	// node: [C]
    
    		const T* const CW_bottom_v,		// node: [C (W -- C)]
    		const T* const CW_top_v,		// node: [C (W -- C)]
    		const T* const C,				// node: [C]
    		const T* const V,				// node: [C]
    		const T* const W,				// node: [W]
    		const wstGrid3d< T >& grid);
    
    	template< typename T >
    	void cv_production_gradC(T* _cv_production_gradC,	// node: [C]
    
    		const T* const VW_bottom,		// node: [C (W -- C)]
    		const T* const VW_top,			// node: [C (W -- C)]
    		const T* const C,				// node: [C]
    		const T* const V,				// node: [C]
    		const T* const W,				// node: [W]
    		const wstGrid3d< T >& grid);
    
    
    	template< typename T >
    	void cw_production_shear(T* _cw_production_shear,	// node: [W]
    
    		const T* const CW_bottom_w,		// node: [W (C -- W)]
    		const T* const CW_top_w,		// node: [W (C -- W)]
    		const T* const C,				// node: [W]
    		const T* const W,				// node: [C]
    		const wstGrid3d< T >& grid);
    
    	template< typename T >
    	void cw_production_gradC(T* _cw_production_gradC,	// node: [W]
    
    		const T* const W2_w,			// node: [W]
    		const T* const W2_c,			// node: [C]
    		const T* const C,				// node: [C]
    		const T* const W,				// node: [W]
    		const wstGrid3d< T >& grid);
    	// -------------------------------------------------------------------------------------------- //
    
    	// c'ui' flux budget: transport
    	// -------------------------------------------------------------------------------------------- //
    	template< typename T >
    	void cu_transport(T* _cu_transport,		// node: [C]
    
    		const T* const cuw_flux,			// node: [W]
    		const wstGrid3d< T >& grid);
    
    	template< typename T >
    	void cv_transport(T* _cv_transport,		// node: [C]
    
    		const T* const cvw_flux,			// node: [W]
    		const wstGrid3d< T >& grid);
    
    	template< typename T >
    	void cw_transport(T* _cw_transport,		// node: [W]
    
    		const T* const cww_flux,			// node: [C]
    		const wstGrid3d< T >& grid);
    	// -------------------------------------------------------------------------------------------- //
    
    	// c'ui' flux budget: pressure scrambles
    	// -------------------------------------------------------------------------------------------- //
    	template< typename T >
    	void cw_pressure_work(T* _cw_pressure_work,		// node: [W]
    
    		const T* const cp_flux,						// node: [C]
    		const wstGrid3d< T >& grid);
    
    
    	template< typename T >
    	void cu_pressure_gradc(T* _cu_pressure_gradc,	// node: [C]
    		// computing as: 
    		//   p'*dc'/dx = { d(c'p')/dx = 0 } - c'*dp'/dx
    		//											
    
    		const T* const c_dpdx_turb,					// node: [C]
    		const wstGrid3d< T >& grid);
    
    	template< typename T >
    	void cv_pressure_gradc(T* _cv_pressure_gradc,	// node: [C]
    		// computing as: 
    		//   p'*dc'/dy = { d(c'p')/dy = 0 } - c'*dp'/dy
    		//											
    
    		const T* const c_dpdy_turb,					// node: [C]
    		const wstGrid3d< T >& grid);
    
    	template< typename T >
    	void cw_pressure_gradc(T* _cw_pressure_gradc,	// node: [W]
    		// computing as: 
    		//   p'*dc'/dz = d(c'p')/dz - c'*dp'/dz
    		//
    
    		const T* const _cw_pressure_work,			// node: [W]
    		const T* const c_dpdz_turb,					// node: [W]
    		const wstGrid3d< T >& grid);
    	// -------------------------------------------------------------------------------------------- //
    
    	// c'ui' flux budget: dissipation
    	// -------------------------------------------------------------------------------------------- //
    	template< typename T >
    	void cu_dissipation(T* _cu_dissipation,			// node: [C]
    
    		const T* const CU_dissipation,				// node: [C]
    		const T* const C,							// node: [C]
    		const T* const U,							// node: [C]
    		const T c_diffusivity, const T c_kinematic_viscosity,
    		const wstGrid3d< T >& grid);
    
    	template< typename T >
    	void cv_dissipation(T* _cv_dissipation,			// node: [C]
    
    		const T* const CV_dissipation,				// node: [C]
    		const T* const C,							// node: [C]
    		const T* const V,							// node: [C]
    		const T c_diffusivity, const T c_kinematic_viscosity,
    		const wstGrid3d< T >& grid);
    
    	template< typename T >
    	void cw_dissipation(T* _cw_dissipation,			// node: [W]
    
    		const T* const CW_dissipation,				// node: [W]
    		const T* const C,							// node: [C]
    		const T* const W,							// node: [W]
    		const T c_diffusivity, const T c_kinematic_viscosity,
    		const wstGrid3d< T >& grid);
    	// -------------------------------------------------------------------------------------------- //
    
    	// c'w' flux budget: buoyancy 
    	// -------------------------------------------------------------------------------------------- //
    	template< typename T >
    	void cw_buoyancy(T* _cw_buoyancy,		// node: [W]
    
    		const T* const C2_c,				// node: [C]
    		const T* const C2_w,				// node: [W]
    		const T* const C,					// node: [C]
    		const T c_Richardson, const wstGrid3d< T >& grid);
    	// -------------------------------------------------------------------------------------------- //
    
    
    	// TPE structure
    	// -------------------------------------------------------------------------------------------- //
    	template< typename T >
    	void TPE_structure(T* TPE,							// node: [C]
    		T* TPE_heat_flux, T* TPE_diffusion,				// node: [C]
    		T* TPE_dissipation, T* TPE_iso_dissipation,		// node: [C]
    
    		const T* const TVA_production,			// node: [C]
    		const T* const TVA_diffusion,			// node: [C]
    		const T* const TVA_dissipation,			// node: [C]
    		const T* const TVA_iso_dissipation,		// node: [C]
    
    		const T* const T2,						// node: [C]
    		const T* const Tc,						// node: [C]
    		const T* const T_grad,					// node: [W]
    		const T c_Richardson, const wstGrid3d< T >& grid);
    	// -------------------------------------------------------------------------------------------- //
    
    	// Energy structure
    	// -------------------------------------------------------------------------------------------- //
    	template< typename T >
    	void energy_structure(T* TKE_share, T* TPE_share,	// node: [C]
    
    		const T* const TKE,		// node: [C]
    		const T* const TPE,		// node: [C]
    		const wstGrid3d< T >& grid);
    	// -------------------------------------------------------------------------------------------- //
    }
    
    
    // Heat eq. balance
    // -------------------------------------------------------------------------------------------- //
    template< typename T >
    void nse::heat_eq(
    	T* heat_balance,				// node: [W]
    	T* turbulent_heat_flux,			// node: [W]
    	T* heat_stress,					// node: [W]
    
    	const T* const Tw_flux,			// node: [W]
    	const T* const T_grad,			// node: [W]
    	const T c_diffusivity, const wstGrid3d< T >& grid)
    	// integrated [T] averaged heat equation
    	//                  _
    	//    ____   1  1  dT
    	//	- T'w' + -- -- -- = const 
    	//			 Re Pr dz
    	//    (1)      (2)
    	// (1) - turbulent heat flux
    	// (2) - heat stress
    	// terms are defined at [W] nodes (averaged in [W] nodes)
    	//
    	// [T'w', dT/dz] have to be known at all [W] nodes, including walls
    {
    	int k;
    #pragma omp parallel for private(k) shared(heat_balance, \
    	turbulent_heat_flux, heat_stress)
    	for (k = grid.gcz; k <= grid.nz - grid.gcz; k++) { // all [W] nodes
    		turbulent_heat_flux[k] = -Tw_flux[k];
    		heat_stress[k] = c_diffusivity * T_grad[k];
    
    		heat_balance[k] = turbulent_heat_flux[k] + heat_stress[k];
    	}
    }
    // -------------------------------------------------------------------------------------------- //
    
    // SVA production
    // -------------------------------------------------------------------------------------------- //
    template< typename T >
    void nse::SVA_production(
    	T* _SVA_production,			// node: [C]
    
    	const T* const CW_bottom,	// node: [C (W -- C)]
    	const T* const CW_top,		// node: [C (W -- C)]
    	const T* const C,			// node: [C]
    	const T* const W,			// node: [W]
    	const wstGrid3d< T >& grid)
    	// production term of scalar variance equation defined at [C] node
    	//            _
    	//    ____   dC
    	//	- c'w' * -- 
    	//			 dz
    	// [W] average has to be known at all [W] nodes, including walls
    	// [C] average has to be known at all [C] nodes and ghost nodes: (k + 1/2), (k - 1/2)
    {
    	int k;
    #pragma omp parallel for private(k) shared(_SVA_production)
    	for (k = grid.gcz; k < grid.nz - grid.gcz; k++) {
    		_SVA_production[k] = -(T) 0.5 * (
    			// discretization is based on ADV. form //
    			// correct for SKEW.form (checked) //
    			(CW_bottom[k] - C[k] * W[k]) * (C[k] - C[k - 1]) * grid.dzi[k] +
    			(CW_top[k] - C[k] * W[k + 1]) * (C[k + 1] - C[k]) * grid.dzi[k]);
    	}
    }
    // -------------------------------------------------------------------------------------------- //
    
    // SVA transport
    // -------------------------------------------------------------------------------------------- //
    template< typename T >
    void nse::SVA_transport(
    	T* _SVA_transport,			// node: [C]
    
    	const T* const cc_w_flux,	// node: [W]
    	const wstGrid3d< T >& grid)
    	// transport term of scalar variance equation defined at [C] node
    	//       ______________
    	//      d[(c')^2 * w')] 
    	//	-  ---------------- 
    	//			 dz
    	// [c'c'w'] flux has to be known at all [W] nodes, including walls
    {
    	int k;
    #pragma omp parallel for private(k) shared(_SVA_transport)
    	for (k = grid.gcz; k < grid.nz - grid.gcz; k++) {
    		_SVA_transport[k] = -(T) 0.5 *
    			(cc_w_flux[k + 1] - cc_w_flux[k]) * grid.dzi[k];
    	}
    }
    // -------------------------------------------------------------------------------------------- //
    
    // SVA dissipation
    // -------------------------------------------------------------------------------------------- //
    template< typename T >
    void nse::SVA_dissipation(
    	T* _SVA_dissipation,			// node: [C]
    
    	const T* const C_dissipation,	// node: [C]
    	const T* const C,				// node: [C]
    	const T c_diffusivity, const wstGrid3d< T >& grid)
    	// dissipation component of scalar variance equation defined at [C] node
    	//       ___________
    	//          d^2(c')
    	//	 k * c' ------- 
    	//			dx(j)^2
    	// [C] average has be known at all [C] nodes and ghost nodes: (k + 1/2), (k - 1/2)
    {
    	int k;
    #pragma omp parallel for private(k) shared(_SVA_dissipation)
    	for (k = grid.gcz; k < grid.nz - grid.gcz; k++) {
    		_SVA_dissipation[k] = C_dissipation[k] -
    			c_diffusivity * (C[k] *
    			((C[k + 1] - C[k]) * grid.dzp2i[k] - (C[k] - C[k - 1]) * grid.dzm2i[k]));
    	}
    }
    // -------------------------------------------------------------------------------------------- //
    
    // SVA iso dissipation
    // -------------------------------------------------------------------------------------------- //
    template< typename T >
    void nse::SVA_iso_dissipation(
    	T* _SVA_iso_dissipation,			// node: [C]
    
    	const T* const C_iso_dissipation,	// node: [C]
    	const T* const C,					// node: [C]
    	const T c_diffusivity, const wstGrid3d< T >& grid)
    	// isotropic dissipation component of scalar variance equation defined at [C] node
    	//       _____________
    	//       d(c')   d(c')
    	// - k * ----- * -----  
    	//		 dx(j)   dx(j)
    	// [C] average has be known at all [C] nodes and ghost nodes: (k + 1/2), (k - 1/2)
    {
    	int k;
    #pragma omp parallel for private(k) shared(_SVA_iso_dissipation)
    	for (k = grid.gcz; k < grid.nz - grid.gcz; k++) {
    		_SVA_iso_dissipation[k] = -(C_iso_dissipation[k] -
    			c_diffusivity * (
    			(T)0.5 * (C[k + 1] - C[k]) * (C[k + 1] - C[k]) * grid.dzp2i[k] +
    			(T)0.5 * (C[k] - C[k - 1]) * (C[k] - C[k - 1]) * grid.dzm2i[k]));
    	}
    }
    // -------------------------------------------------------------------------------------------- //
    
    // c'ui' flux budget: production
    // -------------------------------------------------------------------------------------------- //
    template< typename T >
    void nse::cu_production_shear(
    	T* _cu_production_shear,		// node: [C]
    
    	const T* const CW_bottom_u,		// node: [C (W -- C)]
    	const T* const CW_top_u,		// node: [C (W -- C)]
    	const T* const C,				// node: [C]
    	const T* const U,				// node: [C]
    	const T* const W,				// node: [W]
    	const wstGrid3d< T >& grid)
    	//
    	// production [shear] term of [c'u'] budget equation defined at [C] node
    	//           _
    	//   ____   dU
    	// - c'w' * --
    	//          dz
    	//
    	// [W] average has to be known at all [W] nodes, including walls
    	// [U] average has be known at all [C] nodes and ghost nodes: (k + 1/2), (k - 1/2)
    {
    	int k;
    #pragma omp parallel for private(k) shared(_cu_production_shear)
    	for (k = grid.gcz; k < grid.nz - grid.gcz; k++) {
    		_cu_production_shear[k] = -(T)0.5 * (
    			// discretization is based on ADV. form //
    			(CW_bottom_u[k] - C[k] * W[k]) * (U[k] - U[k - 1]) * grid.dzi[k] +
    			(CW_top_u[k] - C[k] * W[k + 1]) * (U[k + 1] - U[k]) * grid.dzi[k]);
    	}
    }
    
    template< typename T >
    void nse::cu_production_gradC(
    	T* _cu_production_gradC,		// node: [C]
    
    	const T* const UW_bottom,		// node: [C (W -- C)]
    	const T* const UW_top,			// node: [C (W -- C)]
    	const T* const C,				// node: [C]
    	const T* const U,				// node: [C]
    	const T* const W,				// node: [W]
    	const wstGrid3d< T >& grid)
    	//
    	// production [gradC] term of [c'u'] budget equation defined at [C] node
    	//           _
    	//   ____   dC
    	// - u'w' * --
    	//          dz
    	//
    	// [W] average has to be known at all [W] nodes, including walls
    	// [C] average has be known at all [C] nodes and ghost nodes: (k + 1/2), (k - 1/2)
    {
    	int k;
    #pragma omp parallel for private(k) shared(_cu_production_gradC)
    	for (k = grid.gcz; k < grid.nz - grid.gcz; k++) {
    		_cu_production_gradC[k] = -(T)0.5 * (
    			// discretization is based on ADV. form //
    			(UW_bottom[k] - U[k] * W[k]) * (C[k] - C[k - 1]) * grid.dzi[k] +
    			(UW_top[k] - U[k] * W[k + 1]) * (C[k + 1] - C[k]) * grid.dzi[k]);
    	}
    }
    
    
    template< typename T >
    void nse::cv_production_shear(
    	T* _cv_production_shear,		// node: [C]
    
    	const T* const CW_bottom_v,		// node: [C (W -- C)]
    	const T* const CW_top_v,		// node: [C (W -- C)]
    	const T* const C,				// node: [C]
    	const T* const V,				// node: [C]
    	const T* const W,				// node: [W]
    	const wstGrid3d< T >& grid)
    	//
    	// production [shear] term of [c'v'] budget equation defined at [C] node
    	//           _
    	//   ____   dV
    	// - c'w' * --
    	//          dz
    	//
    	// [W] average has to be known at all [W] nodes, including walls
    	// [V] average has be known at all [C] nodes and ghost nodes: (k + 1/2), (k - 1/2)
    {
    	int k;
    #pragma omp parallel for private(k) shared(_cv_production_shear)
    	for (k = grid.gcz; k < grid.nz - grid.gcz; k++) {
    		_cv_production_shear[k] = -(T)0.5 * (
    			// discretization is based on ADV. form //
    			(CW_bottom_v[k] - C[k] * W[k]) * (V[k] - V[k - 1]) * grid.dzi[k] +
    			(CW_top_v[k] - C[k] * W[k + 1]) * (V[k + 1] - V[k]) * grid.dzi[k]);
    	}
    }
    
    template< typename T >
    void nse::cv_production_gradC(
    	T* _cv_production_gradC,		// node: [C]
    
    	const T* const VW_bottom,		// node: [C (W -- C)]
    	const T* const VW_top,			// node: [C (W -- C)]
    	const T* const C,				// node: [C]
    	const T* const V,				// node: [C]
    	const T* const W,				// node: [W]
    	const wstGrid3d< T >& grid)
    	//
    	// production [gradC] term of [c'v'] budget equation defined at [C] node
    	//           _
    	//   ____   dC
    	// - v'w' * --
    	//          dz
    	//
    	// [W] average has to be known at all [W] nodes, including walls
    	// [C] average has be known at all [C] nodes and ghost nodes: (k + 1/2), (k - 1/2)
    {
    	int k;
    #pragma omp parallel for private(k) shared(_cv_production_gradC)
    	for (k = grid.gcz; k < grid.nz - grid.gcz; k++) {
    		_cv_production_gradC[k] = -(T)0.5 * (
    			// discretization is based on ADV. form //
    			(VW_bottom[k] - V[k] * W[k]) * (C[k] - C[k - 1]) * grid.dzi[k] +
    			(VW_top[k] - V[k] * W[k + 1]) * (C[k + 1] - C[k]) * grid.dzi[k]);
    	}
    }
    
    
    template< typename T >
    void nse::cw_production_shear(
    	T* _cw_production_shear,		// node: [W]
    
    	const T* const CW_bottom_w,		// node: [W (C -- W)]
    	const T* const CW_top_w,		// node: [W (C -- W)]
    	const T* C,						// node: [C]
    	const T* W,						// node: [W]
    	const wstGrid3d< T >& grid)
    	//
    	// production [shear] term of [c'w'] budget equation defined at [W] node
    	//           _
    	//   ____   dW
    	// - c'w' * --
    	//          dz
    	//
    	// [W] average has to be known at all [W] nodes, including walls
    {
    	int k;
    #pragma omp parallel for private(k) shared(_cw_production_shear)
    	for (k = grid.gcz; k < grid.nz - grid.gcz; k++) {	// all [W] nodes, excluding walls
    		_cw_production_shear[k] = - (
    			// discretization is based on ADV. form //
    			(CW_bottom_w[k] - (T)0.25 * (C[k] + C[k - 1]) * (W[k] + W[k - 1])) * (W[k] - W[k - 1]) * grid.dzmi[k] +
    			(CW_top_w[k] - (T)0.25 * (C[k] + C[k - 1]) * (W[k] + W[k + 1])) * (W[k + 1] - W[k]) * grid.dzmi[k]);
    	}
    
    	w_dirichlet_bc_z(_cw_production_shear, (T)0, (T)0, grid);
    }
    
    template< typename T >
    void nse::cw_production_gradC(
    	T* _cw_production_gradC,	// node: [W]
    
    	const T* const W2_w,		// node: [W]
    	const T* const W2_c,		// node: [C]
    	const T* C,					// node: [C]
    	const T* W,					// node: [W]
    	const wstGrid3d< T >& grid)
    	//
    	// production [gradC] term of [c'w'] budget equation defined at [W] node
    	//           _
    	//   ____   dC
    	// - w'w' * --
    	//          dz
    	//
    	// [W^2, W] averages have to be known at all [W] nodes, including walls
    	// [C] average has be known at all [C] nodes and ghost nodes: (k + 1/2), (k - 1/2)
    {
    	int k;
    #pragma omp parallel for private(k) shared(_cw_production_gradC)
    	for (k = grid.gcz; k < grid.nz - grid.gcz; k++) {	// all [W] nodes, excluding walls
    		_cw_production_gradC[k] = - (
    			// discretization is based on ADV. form //
    			(W2_c[k] - W[k] * W[k + 1]) * (C[k + 1] - C[k]) * grid.dziq[k] +
    			(W2_c[k - 1] - W[k] * W[k - 1]) * (C[k - 1] - C[k - 2]) * grid.dziq[k - 1] +
    
    			(W2_w[k] - W[k] * W[k]) * (C[k] - C[k - 1]) * (grid.dziq[k] + grid.dziq[k - 1]));
    	}
    
    	w_dirichlet_bc_z(_cw_production_gradC, (T)0, (T)0, grid);
    }
    // -------------------------------------------------------------------------------------------- //
    
    // c'ui' flux budget: transport
    // -------------------------------------------------------------------------------------------- //
    template< typename T >
    void nse::cu_transport(T* _cu_transport,	// node: [C]
    
    	const T* const cuw_flux,				// node: [W]
    	const wstGrid3d< T >& grid)
    	//
    	// transport term of [c'u'] equation defined at [C] node
    	//       ______________
    	//      d[(c'u') * u'] 
    	//	-  ---------------- 
    	//			 dz
    	// [c'u'w'] flux has be known at all [W] nodes, including walls
    {
    	int k;
    #pragma omp parallel for private(k) shared(_cu_transport)
    	for (k = grid.gcz; k < grid.nz - grid.gcz; k++) {
    		_cu_transport[k] = -(cuw_flux[k + 1] - cuw_flux[k]) * grid.dzi[k];
    	}
    }
    
    template< typename T >
    void nse::cv_transport(T* _cv_transport,	// node: [C]
    
    	const T* const cvw_flux,				// node: [W]
    	const wstGrid3d< T >& grid)
    	//
    	// transport term of [c'v'] equation defined at [C] node
    	//       ______________
    	//      d[(c'v') * v'] 
    	//	-  ---------------- 
    	//			 dz
    	// [c'v'w'] flux has be known at all [W] nodes, including walls
    {
    	int k;
    #pragma omp parallel for private(k) shared(_cv_transport)
    	for (k = grid.gcz; k < grid.nz - grid.gcz; k++) {
    		_cv_transport[k] = -(cvw_flux[k + 1] - cvw_flux[k]) * grid.dzi[k];
    	}
    }
    
    template< typename T >
    void nse::cw_transport(T* _cw_transport,	// node: [W]
    
    	const T* const cww_flux,				// node: [C]
    	const wstGrid3d< T >& grid)
    	//
    	// transport term of [c'w'] budget equation defined at [W] node
    	//       ______________
    	//      d[(c'w') * w'] 
    	//	-  ---------------- 
    	//			 dz
    	// [c'w'w'] flux has be known at all [C] nodes and ghost nodes: (k + 1/2), (k - 1/2)
    {
    	int k;
    #pragma omp parallel for private(k) shared(_cw_transport)
    	for (k = grid.gcz; k < grid.nz - grid.gcz; k++) {
    		_cw_transport[k] = -(cww_flux[k] - cww_flux[k - 1]) * (T)2.0 * grid.dzmi[k];
    	}
    }
    // -------------------------------------------------------------------------------------------- //
    
    // c'ui' flux budget: pressure scrambles
    // -------------------------------------------------------------------------------------------- //
    template< typename T >
    void nse::cw_pressure_work(T* _cw_pressure_work,	// node: [W]
    
    	const T* const cp_flux,							// node: [C]
    	const wstGrid3d< T >& grid)
    	//
    	// pressure work term of [c'w'] budget equation defined at [W]
    	//       ______
    	//      d[c'p'] 
    	//	-  -------- 
    	//		  dz
    	// [c'p'] flux has to be known at all [C] nodes and ghost nodes: (k + 1/2), (k - 1/2)
    {
    	int k;
    #pragma omp parallel for private(k) shared(_cw_pressure_work)
    	for (k = grid.gcz; k <= grid.nz - grid.gcz; k++) {	// all [W] nodes
    		_cw_pressure_work[k] = -(cp_flux[k] - cp_flux[k - 1]) * (T)2.0 * grid.dzmi[k];
    	}
    }
    
    
    template< typename T >
    void nse::cu_pressure_gradc(
    	T* _cu_pressure_gradc,			// node: [C]
    
    	const T* const c_dpdx_turb,		// node: [C]
    	const wstGrid3d< T >& grid)
    	//
    	//  p'*dc'/dx = { d(c'p')/dx = 0 } - c'*dp'/dx
    	//
    {
    	int k;
    #pragma omp parallel for private(k) shared(_cu_pressure_gradc)
    	for (k = grid.gcz; k < grid.nz - grid.gcz; k++) {
    		_cu_pressure_gradc[k] = - c_dpdx_turb[k];
    	}
    }
    
    template< typename T >
    void nse::cv_pressure_gradc(
    	T* _cv_pressure_gradc,				// node: [C]
    
    	const T* const c_dpdy_turb,			// node: [C]
    	const wstGrid3d< T >& grid)
    	//
    	//  p'*dc'/dy = { d(c'p')/dy = 0 } - c'*dp'/dy
    	//
    {
    	int k;
    #pragma omp parallel for private(k) shared(_cv_pressure_gradc)
    	for (k = grid.gcz; k < grid.nz - grid.gcz; k++) {
    		_cv_pressure_gradc[k] = -c_dpdy_turb[k];
    	}
    }
    
    template< typename T >
    void nse::cw_pressure_gradc(
    	T* _cw_pressure_gradc,					// node: [W]
    
    	const T* const _cw_pressure_work,		// node: [W]
    	const T* const c_dpdz_turb,				// node: [W]
    	const wstGrid3d< T >& grid)
    	//
    	//  p'*dc'/dz = d(c'p')/dz - c'*dp'/dz
    	//
    {
    	int k;
    #pragma omp parallel for private(k) shared(_cw_pressure_gradc)
    	for (k = grid.gcz; k <= grid.nz - grid.gcz; k++) {	// all [W] nodes
    		_cw_pressure_gradc[k] = -_cw_pressure_work[k] - c_dpdz_turb[k];
    	}
    }
    // -------------------------------------------------------------------------------------------- //
    
    // c'ui' flux budget: dissipation
    // -------------------------------------------------------------------------------------------- //
    template< typename T >
    void nse::cu_dissipation(
    	T* _cu_dissipation,					// node: [C]
    
    	const T* const CU_dissipation,		// node: [C]
    	const T* const C,					// node: [C]
    	const T* const U,					// node: [C]
    	const T c_diffusivity, const T c_kinematic_viscosity,
    	const wstGrid3d< T >& grid)
    	//
    	//       ___________       ___________
    	//          d^2(c')           d^2(u')
    	//	 k * u' ------- + nu * c' ------- 
    	//			dx(j)^2           dx(j)^2
    	//
    	// [U, C] average has be known at all [C] nodes and ghost nodes: (k + 1/2), (k - 1/2)
    {
    	int k;
    	T C_diffusion, U_diffusion;
    
    #pragma omp parallel for private(k, C_diffusion, U_diffusion) shared(_cu_dissipation)
    	for (k = grid.gcz; k < grid.nz - grid.gcz; k++) {
    		
    		C_diffusion = c_diffusivity *
    			((C[k + 1] - C[k]) * grid.dzp2i[k] - (C[k] - C[k - 1]) * grid.dzm2i[k]);
    		U_diffusion = c_kinematic_viscosity *
    			((U[k + 1] - U[k]) * grid.dzp2i[k] - (U[k] - U[k - 1]) * grid.dzm2i[k]);
    
    		_cu_dissipation[k] = CU_dissipation[k] -
    			(C[k] * U_diffusion + C_diffusion * U[k]);
    	}
    }
    
    template< typename T >
    void nse::cv_dissipation(
    	T* _cv_dissipation,					// node: [C]
    
    	const T* const CV_dissipation,		// node: [C]
    	const T* const C,					// node: [C]
    	const T* const V,					// node: [C]
    	const T c_diffusivity, const T c_kinematic_viscosity,
    	const wstGrid3d< T >& grid)
    	//
    	//       ___________       ___________
    	//          d^2(c')           d^2(v')
    	//	 k * v' ------- + nu * c' ------- 
    	//			dx(j)^2           dx(j)^2
    	//
    	// [V, C] average has be known at all [C] nodes and ghost nodes: (k + 1/2), (k - 1/2)
    {
    	int k;
    	T C_diffusion, V_diffusion;
    
    #pragma omp parallel for private(k, C_diffusion, V_diffusion) shared(_cv_dissipation)
    	for (k = grid.gcz; k < grid.nz - grid.gcz; k++) {
    
    		C_diffusion = c_diffusivity *
    			((C[k + 1] - C[k]) * grid.dzp2i[k] - (C[k] - C[k - 1]) * grid.dzm2i[k]);
    		V_diffusion = c_kinematic_viscosity *
    			((V[k + 1] - V[k]) * grid.dzp2i[k] - (V[k] - V[k - 1]) * grid.dzm2i[k]);
    
    		_cv_dissipation[k] = CV_dissipation[k] -
    			(C[k] * V_diffusion + C_diffusion * V[k]);
    	}
    }
    
    template< typename T >
    void nse::cw_dissipation(
    	T* _cw_dissipation,					// node: [W]
    
    	const T* const CW_dissipation,		// node: [W]
    	const T* const C,					// node: [C]
    	const T* const W,					// node: [W]
    	const T c_diffusivity, const T c_kinematic_viscosity,
    	const wstGrid3d< T >& grid)
    	//
    	//       ___________       ___________
    	//          d^2(c')           d^2(w')
    	//	 k * w' ------- + nu * c' ------- 
    	//			dx(j)^2           dx(j)^2
    	//
    	// [CW-dissipation, W] averages have to be known at all [W] nodes, including walls
    	// [C] average has be known at all [C] nodes and ghost nodes: (k + 1/2), (k - 1/2)
    {
    	T *C_diffusion, *W_diffusion;
    	int c_buf_id = memStx::get_buf(&C_diffusion, grid.nz);
    	int w_buf_id = memStx::get_buf(&W_diffusion, grid.nz);
    
    	null(C_diffusion, grid.nz);
    	null(W_diffusion, grid.nz);
    
    	int k;
    
    #pragma omp parallel for private(k) shared(C_diffusion, W_diffusion)
    	for (k = grid.gcz; k < grid.nz - grid.gcz; k++) {
    		C_diffusion[k] = c_diffusivity *
    			((C[k + 1] - C[k]) * grid.dzp2i[k] - (C[k] - C[k - 1]) * grid.dzm2i[k]);
    		W_diffusion[k] = c_kinematic_viscosity *
    			((W[k + 1] - W[k]) * grid.dzm2i[k] - (W[k] - W[k - 1]) * grid.dzp2i[k - 1]);
    	}
    
    	// assuming W = 0 & ~linear[laplace(W)] = 0 at walls -> no need for laplace(C) b.c.
    	//
    	w_dirichlet_bc_z(W_diffusion, (T)0, (T)0, grid);
    
    #pragma omp parallel for private(k) shared(_cw_dissipation,\
    	C_diffusion, W_diffusion)
    	for (k = grid.gcz; k <= grid.nz - grid.gcz; k++) {	// all [W] nodes
    		_cw_dissipation[k] = CW_dissipation[k] -
    			(T)0.5 * (
    			(C[k] + C[k - 1]) * W_diffusion[k] +
    			W[k] * (C_diffusion[k] + C_diffusion[k - 1]));
    	}
    
    	memStx::free_buf(c_buf_id);
    	memStx::free_buf(w_buf_id);
    }
    // -------------------------------------------------------------------------------------------- //
    
    // c'w' flux budget: buoyancy
    // -------------------------------------------------------------------------------------------- //
    template< typename T >
    void nse::cw_buoyancy(
    	T* _cw_buoyancy,			// node: [W]
    
    	const T* const C2_c,		// node: [C]
    	const T* const C2_w,		// node: [W]
    	const T* const C,			// node: [C]
    	const T c_Richardson, const wstGrid3d< T >& grid)
    	//
    	//      ____
    	// Ri * c'c'
    	//
    	// [C^2 at W-node] average has to be known at all [W] nodes, including walls
    	// [C, C^2 at C-node] averages have be known at all [C] nodes and ghost nodes: (k + 1/2), (k - 1/2)
    {
    	int k;
    #pragma omp parallel for private(k) shared(_cw_buoyancy)
    	for (k = grid.gcz; k <= grid.nz - grid.gcz; k++) {	// all [W] nodes
    		_cw_buoyancy[k] = (T)0.25 * c_Richardson * (
    			C2_c[k] - C[k] * C[k] +
    			C2_c[k - 1] - C[k - 1] * C[k - 1] + 
    			(T)2.0 * (C2_w[k] - C[k] * C[k - 1])
    			);
    	}
    }
    // -------------------------------------------------------------------------------------------- //
    
    
    // TPE structure
    // -------------------------------------------------------------------------------------------- //
    template< typename T >
    void nse::TPE_structure(
    	T* TPE,											// node: [C]
    	T* TPE_heat_flux, T* TPE_diffusion,				// node: [C]
    	T* TPE_dissipation, T* TPE_iso_dissipation,		// node: [C]
    
    	const T* const TVA_production,		// node: [C]
    	const T* const TVA_diffusion,		// node: [C]
    	const T* const TVA_dissipation,		// node: [C]
    	const T* const TVA_iso_dissipation,	// node: [C]
    
    	const T* const T2,					// node: [C]
    	const T* const Tc,					// node: [C]
    	const T* const T_grad,				// node: [W]
    	const T c_Richardson, const wstGrid3d< T >& grid)
    	//
    	// TPE = 1/2*T'T'*Ri(b)/[dT/dz]
    	// TPE balance: [temperature variance] * (Ri(b)/[dT/dz])
    	//
    	// [dT/dz] has to be known at all [W] nodes, including walls
    {
    	int k;
    #pragma omp parallel for private(k) shared(TPE,\
    	TPE_heat_flux, TPE_diffusion, TPE_dissipation, TPE_iso_dissipation)
    	for (k = grid.gcz; k < grid.nz - grid.gcz; k++) {
    		TPE[k] = (T)0.5 * (T2[k] - Tc[k] * Tc[k]) *
    			(c_Richardson / ((T)0.5 * (T_grad[k] + T_grad[k + 1])));
    
    		TPE_heat_flux[k] = TVA_production[k] *
    			(c_Richardson / ((T)0.5 * (T_grad[k] + T_grad[k + 1])));
    		TPE_diffusion[k] = TVA_diffusion[k] *
    			(c_Richardson / ((T)0.5 * (T_grad[k] + T_grad[k + 1])));
    		TPE_dissipation[k] = TVA_dissipation[k] *
    			(c_Richardson / ((T)0.5 * (T_grad[k] + T_grad[k + 1])));
    		TPE_iso_dissipation[k] = TVA_iso_dissipation[k] *
    			(c_Richardson / ((T)0.5 * (T_grad[k] + T_grad[k + 1])));
    	}
    }
    // -------------------------------------------------------------------------------------------- //
    
    // Energy structure
    // -------------------------------------------------------------------------------------------- //
    template< typename T >
    void nse::energy_structure(
    	T* TKE_share, T* TPE_share,		// node: [C]
    
    	const T* const TKE,				// node: [C]
    	const T* const TPE,				// node: [C]
    	const wstGrid3d< T >& grid)
    	// 
    	// TKE-TPE shares
    	//
    {
    	int k;
    #pragma omp parallel for private(k) shared(TKE_share, TPE_share)
    	for (k = grid.gcz; k < grid.nz - grid.gcz; k++) {
    		TKE_share[k] = TKE[k] / (TKE[k] + TPE[k]);
    		TPE_share[k] = TPE[k] / (TKE[k] + TPE[k]);
    	}
    }
    // -------------------------------------------------------------------------------------------- //