Newer
Older

Victor Stepanenko
committed
MODULE SOIL_MOD

Victor Stepanenko
committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
use LAKE_DATATYPES, only : ireals, iintegers
use NUMERICS, only : PROGONKA, STEP
use NUMERIC_PARAMS, only : vector_length
contains
SUBROUTINE COMSOILFORLAKE
!COMSOILFORLAKE specifies parameters of soil according to soil type
use NUMERIC_PARAMS
use DRIVING_PARAMS
use ARRAYS
use ARRAYS_SOIL
implicit none
real(kind=ireals) :: b(1:Num_Soil)
real(kind=ireals) :: psi_max(1:Num_Soil)
real(kind=ireals) :: Porosity(1:Num_Soil)
real(kind=ireals) :: gamma_max(1:Num_Soil)
real(kind=ireals) :: lambda_max(1:Num_Soil)
real(kind=ireals) :: W_0(1:Num_Soil)
real(kind=ireals) :: W_m(1:Num_Soil)
real(kind=ireals) :: pow
integer(kind=iintegers) :: i, j
logical :: firstcall
data firstcall /.true./
SAVE
if (firstcall) then
! allocate (AL(1:ns+2),DLT(1:ns+2),DVT(1:ns+2),DL(1:ns+2),
!& ALV(1:ns+2),DV(1:ns+2),Z(1:ns+2),T(1:ns+2),WL(1:ns+2),
!& WV(1:ns+2),WI(1:ns+2),dens(1:ns+2))
endif
!I=1 ! SAND
!I=2 ! LOAMY SAND
!I=3 ! SANDY LOAM
!I=4 ! LOAM
!I=5 ! SILT LOAM
!I=6 ! SANDY CLAY LOAM
!I=7 ! CLAY LOAM
!I=8 ! SILTY CLAY LOAM
!I=9 ! SANDY CLAY
!I=10! SILTY CLAY
!I=11! CLAY
!----------------------------------------------------------------
! NN b psi_max Por gamma_max lambda_max W_0 W_m
!----------------------------------------------------------------
! 1 4.05 3.50 0.395 0.01760 0.29800 0.02 0.01
! 2 4.38 1.78 0.410 0.01560 0.13900 0.05 0.02
! 3 4.90 7.18 0.435 0.00340 0.13700 0.08 0.03
! 4 5.39 14.6 0.451 0.00069 0.06190 0.20 0.08
! 5 5.30 56.6 0.485 0.00072 0.20400 0.18 0.07
! 6 7.12 8.63 0.420 0.00063 0.03070 0.13 0.06
! 7 8.52 36.1 0.476 0.00024 0.03720 0.27 0.12
! 8 7.75 14.6 0.477 0.00017 0.01240 0.24 0.11
! 9 10.4 6.16 0.426 0.00021 0.00641 0.23 0.10
! 10 10.4 17.4 0.492 0.00010 0.00755 0.30 0.15
! 11 11.4 18.6 0.482 0.00013 0.00926 0.40 0.20
!-----------------------------------------------------------------
zsoil(1) = 0.
if (UpperLayer > 0.) then
pow = log(UpperLayer/depth%par)/log(1.d0/float(ns-1))
do i = 2, ns
zsoil(i) = (1.*(i-1)/(ns-1))**pow*depth%par
end do
else
do i = 2, ns
zsoil(i) = (1.*(i-1)/(ns-1))*depth%par
end do
end if
do i = 1, ns-1
dzs(i) = zsoil(i+1) - zsoil(i)
end do
do i = 1, ns
if (i == 1) then
dzss(i) = 0.5d0*dzs(i)
elseif (i == ns) then
dzss(i) = 0.5d0*dzs(i-1)
else
dzss(i) = 0.5d0*(dzs(i-1) + dzs(i))
endif
end do
!SoilType = 7
b(1) = 4.05
b(2) = 4.38
b(3) = 4.90
b(4) = 5.39
b(5) = 5.30
b(6) = 7.12
b(7) = 8.52
b(8) = 7.75
b(9) = 10.4
b(10)= 10.4
b(11)= 11.4
psi_max( 1) = 3.50/100.
psi_max( 2) = 1.78/100.
psi_max( 3) = 7.18/100.
psi_max( 4) = 14.6/100.
psi_max( 5) = 56.6/100.
psi_max( 6) = 8.63/100.
psi_max( 7) = 36.1/100.
psi_max( 8) = 14.6/100.
psi_max( 9) = 6.16/100.
psi_max(10) = 17.4/100.
psi_max(11) = 18.6/100.
Porosity( 1) = 0.395
Porosity( 2) = 0.410
Porosity( 3) = 0.435
Porosity( 4) = 0.451
Porosity( 5) = 0.485
Porosity( 6) = 0.420
Porosity( 7) = 0.476
Porosity( 8) = 0.477
Porosity( 9) = 0.426
Porosity(10) = 0.492
Porosity(11) = 0.482
gamma_max( 1) = 0.01760/100.
gamma_max( 2) = 0.01560/100.
gamma_max( 3) = 0.00340/100.
gamma_max( 4) = 0.00069/100.
gamma_max( 5) = 0.00072/100.
gamma_max( 6) = 0.00063/100.
gamma_max( 7) = 0.00024/100.
gamma_max( 8) = 0.00017/100.
gamma_max( 9) = 0.00021/100.
gamma_max(10) = 0.00010/100.
gamma_max(11) = 0.00013/100.
lambda_max( 1) = 0.29800/10000.
lambda_max( 2) = 0.13900/10000.
lambda_max( 3) = 0.13700/10000.
lambda_max( 4) = 0.06190/10000.
lambda_max( 5) = 0.20400/10000.
lambda_max( 6) = 0.03070/10000.
lambda_max( 7) = 0.03720/10000.
lambda_max( 8) = 0.01240/10000.
lambda_max( 9) = 0.00641/10000.
lambda_max(10) = 0.00755/10000.
lambda_max(11) = 0.00926/10000.
W_0( 1) = 0.02
W_0( 2) = 0.05
W_0( 3) = 0.08
W_0( 4) = 0.20
W_0( 5) = 0.18
W_0( 6) = 0.13
W_0( 7) = 0.27
W_0( 8) = 0.24
W_0( 9) = 0.23
W_0(10) = 0.30
W_0(11) = 0.40
W_m( 1) = 0.01
W_m( 2) = 0.02
W_m( 3) = 0.03
W_m( 4) = 0.08
W_m( 5) = 0.07
W_m( 6) = 0.06
W_m( 7) = 0.12
W_m( 8) = 0.11
W_m( 9) = 0.10
W_m(10) = 0.15
W_m(11) = 0.20
if (SoilType%par > 0) then
do j = 1, ns
BH(j)= b(SoilType%par) ! PARAMETER B, DIMENSOINLESS
PSIMAX(j) = - psi_max(SoilType%par) ! SAT. WATER POTENTIAL, M.
POR(j) = Porosity(SoilType%par) ! POROSITY, DIMENSIONLESS
FLWMAX(j) = gamma_max(SoilType%par) ! SAT. HYDR. CONDUCTIVITY, M/S
DLMAX(j) = lambda_max(SoilType%par)! SAT. WATER DIFFUSIVITY, ?KG/(M*SEC)
WLM0(j) = W_0(SoilType%par) ! MAXIMAL UNFREEZING WATER AT 0C
WLM7(j) = W_m(SoilType%par) ! MAXIMAL UNFREEZING WATER AT T<<0C
end do
else
write(*,*) 'LAKE: Soil type is not given: STOP'
STOP
!do j = 1, ns
! BH(j)= BH_soil! PARAMETER B, DIMENSOINLESS
! PSIMAX(j) = PSIMAX_soil ! SAT. WATER POTENTIAL, M.
! POR(j) = POR_soil ! POROSITY, DIMENSIONLESS
! FLWMAX(j) = FLWMAX_soil ! SAT. HYDR. CONDUCTIVITY, M/S
! DLMAX(j) = DLMAX_soil ! SAT. WATER DIFFUSIVITY, ?KG/(M*SEC)
! WLM0(j) = WLM0_soil ! MAXIMAL UNFREEZING WATER AT 0C
! WLM7(j) = WLM7_soil ! MAXIMAL UNFREEZING WATER AT T<<0C
!end do
end if
rosdry(:) = 1.2E+3
if (firstcall) firstcall=.false.
RETURN
END SUBROUTINE COMSOILFORLAKE
SUBROUTINE SOILFORLAKE(dt,a,b,c,d,is)
!SOILFORLAKE calculates profiles of temperature, liquid and solid water
!content in the soil under a lake
use PHYS_CONSTANTS
use METH_OXYG_CONSTANTS!, only : &
!& methhydrdiss, &
!& alphamh, &
!& nch4_d_nh2o, &
!& molmass_h2o
use DRIVING_PARAMS
use ARRAYS
use ARRAYS_SOIL
use ARRAYS_METHANE
use ARRAYS_BATHYM
use PHYS_FUNC!, only : &
!& MELTPNT, &
!& TEMPMHYDRDISS, &
!& UNFRWAT, &
!& WL_MAX, &
!& MELTINGPOINT
use ATMOS!, only : &
!& pressure
implicit none
real(kind=ireals), intent(in) :: dt
!integer(kind=iintegers), intent(in) :: ix, iy
!integer(kind=iintegers), intent(in) :: nx, ny
integer(kind=iintegers), intent(in) :: is ! Number of soil column
!integer(kind=iintegers), intent(in) :: year, month, day
!real(kind=ireals) , intent(in) :: hour
!real(kind=ireals) , intent(in) :: phi
!real(kind=ireals) , intent(in) :: extwat, extice
!real(kind=ireals) , intent(in) :: fetch
real(kind=ireals), intent(inout) :: a(1:vector_length)
real(kind=ireals), intent(inout) :: b(1:vector_length)
real(kind=ireals), intent(inout) :: c(1:vector_length)
real(kind=ireals), intent(inout) :: d(1:vector_length)
!real(kind=ireals) :: Temp(1:vector_length)
real(kind=ireals) :: dzmean
real(kind=ireals) :: ma, mi
real(kind=ireals) :: wflow, wfhigh
real(kind=ireals) :: lammoist1, lammoist2
real(kind=ireals) :: surplus
real(kind=ireals) :: Potphenergy
real(kind=ireals) :: watavailtofreeze
real(kind=ireals) :: filtr_low
real(kind=ireals) :: dhwfsoil1, dhwfsoil2, dhwfsoil3, dhwfsoil4
real(kind=ireals) :: max1
real(kind=ireals) :: work, mhsep
real(kind=ireals), pointer :: hicemelt
real(kind=ireals) :: alp(10)
real(kind=ireals) :: psiit(10)
real(kind=ireals), allocatable :: pressoil(:)
integer(kind=iintegers) :: i, j, k
integer(kind=iintegers) :: iter, iter3
logical :: firstcall
data psiit/6,3,7,2,5,4,8,1,0,0/ !/3,2,4,1,0,0,0,0,0,0/
data firstcall /.true./
SAVE
!open (133, file=dir_out//'\dhwfsoil.dat', status = 'unknown')
!PARAMETERS OF ITERATIONAL PROCESS
ma = 10.5 !5.5
mi = 4.5
do i = 1, 8
alp(i) = 2*(mi+ma-(ma-mi)*cos((2*psiit(i)-1)/16*pi))**(-1)
enddo
allocate (pressoil(1:ns))
do i = 1, ns
pressoil(i) = pressure + row0*g*(h1 + zsoil(i))
enddo
if (tricemethhydr%par > 0.) then
hicemelt => methhydrdiss
else
hicemelt => Lwi
endif
!do i=1, ns
! wlmax_i = POR(i)*ROW0/(rosdry(i)*(1-por(i)))
! BB1 = BH(i) + 2.
! csoil(i) = cr+WL1(i)*CW+WI1(i)*CI
! rosoil(i) = rosdry(i)*(1-por(i))*(1+wi1(i)+wl1(i))
! ARG = (WL1(i)+WI1(i))/wlmax_i
! ARG = max(ARG,1.d-2)
! PSI = PSIMAX(i)*(ARG)**(-BH(i))
! PF = log(-PSI*100.)/log(10.d0)
! IF(PF>5.1) THEN
! lamsoil(i) = 4.1E-4*418.
! ELSE
! lamsoil(i) = exp(-PF-2.7)*418.
! END IF
! wlmax_i = POR(i)*ROW0/(rosdry(i)*(1-por(i))) - wi1(i)*row0_d_roi
! ARG = (WL1(i))/wlmax_i
! ARG = max(ARG,1.d-2)
! lammoist(i) = dlmax(i)*ARG**BB1
!end do
!do i=1, ns-1
! wlmax_i=WL_MAX(por(i+1),rosdry(i+1),wi1(i+1))
! if (wl1(i+1)/wlmax_i>0.98.or.wlmax_i<0.01) then
! filtr(i) = 0
! else
! wlmax_i = (POR(i)+POR(i+1))*ROW0/((rosdry(i)+rosdry(i+1))*&
!& (1-(por(i)+por(i+1))/2)) - (wi1(i)+wi1(i+1))/2*row0_d_roi
! filtr(i) = (flwmax(i+1)+flwmax(i))/2*((wl1(i+1)+&
!& wl1(i))/2/wlmax_i)**(bh(i+1)+bh(i)+3)
! endif
!enddo
!SPLITTING-UP METHOD FOR TEMPERATURE EQUATION:
!STEP 1: HEAT DIFFUSION
!do i = 1, ns-1
! lammoist1 = 0.5*(lammoist(i)+lammoist(i+1))
! wsoil(i) = ( - lammoist1*(wl1(i+1)-wl1(i))/dzs(i) + &
! & filtr(i) ) *0.5*(rosdry(i)+rosdry(i+1))* &
! & (1-0.5*(por(i)+por(i+1)) )/row0
!enddo
!SPLITTING-UP METHOD FOR MOISTURE EQUATION:
!STEP 1: MOISTURE DIFFUSION
Wflow = 0.
dhwfsoil=0.
dhwfsoil1=0.
dhwfsoil2=0.
dhwfsoil3=0.
dhwfsoil4=0.
if ((l1 /= 0.and. h1 == 0.).or.ls1/=0.or. &
& (hs1/=0.and.l1==0.and.h1==0)) then
Wfhigh = 0
!c(1)=1
!b(1)=1
!d(1)=0
c(1) = -1-dt*(lammoist(1)+lammoist(2))/(dzs(1)**2)
b(1) = -dt*(lammoist(1)+lammoist(2))/(dzs(1)**2)
d(1) = -wl1(1,is)
endif
if (h1 /= 0.and.ls1 == 0) then
c(1)=1
b(1)=0
d(1)=WL_MAX(por(1),rosdry(1),wi1(1,is),tricemethhydr%par)
!dhwfsoil1 = dt*(wl1(2)-wl1(1))*rosdry(1)*(1-por(1))/row0
!& /dzs(1)*(lammoist(1)+lammoist(2))/2 !-
!& (WL_MAX(por(1),rosdry(1),wi1(1))-wl1(1)) VS,23.09.07
!& *rosdry(1)*(1-por(1))*dzss(1)/row0 VS,23.09.07
endif
lammoist1 = (lammoist(ns-1)+lammoist(ns))/2
!c(ns)=-lammoist1/dzs(ns-1)
!a(ns)=-lammoist1/dzs(ns-1)
!d(ns)=Wflow
c(ns) = -1-2*dt*lammoist1/dzs(ns-1)**2
a(ns) = -2*dt*lammoist1/dzs(ns-1)**2
d(ns) = -wl1(ns,is)
do i=2,ns-1
lammoist2 = (lammoist(i)+lammoist(i+1))/2
lammoist1 = (lammoist(i-1)+lammoist(i))/2
dzmean = (dzs(i-1)+dzs(i))/2
a(i)=-dt/dzmean*lammoist1/dzs(i-1)
b(i)=-dt/dzmean*lammoist2/dzs(i)
c(i)=-dt/dzmean*(lammoist1/dzs(i-1) + &
& lammoist2/dzs(i))-1
d(i)=-wl1(i,is)
!wl2(i) = wl1(i)+dt*(lammoist2/dzs(i)*(wl1(i+1)-wl1(i))-
!& lammoist1/dzs(i-1)*(wl1(i)-wl1(i-1)))/dzmean
enddo
call PROGONKA(a,b,c,d,wl2,1,ns)
if (h1 /= 0.and.ls1 == 0) then
lammoist1 = (lammoist(1)+lammoist(2))/2.
dhwfsoil1 = -(wl2(1)*(dzs(1)/(2*dt)+lammoist1/dzs(1)) - &
& wl2(2)*lammoist1/dzs(1)-wl1(1,is)*dzs(1)/(2*dt)) * &
& rosdry(1)*(1-por(1))/row0*dt
endif
!STEP 2 OF SPLITTING-UP METHOD FOR MOISTURE EQUATION:
!EVOLUTION OF MOISTURE DUE TO GRAVITATIONAL INFILTRATION
do i=2,ns-1
wl3(i) = wl2(i) + dt*(filtr(i-1)-filtr(i))/dzss(i)
enddo
if ((h1==0.and.l1/=0).or.ls1 /= 0) then
wl3(1) = wl2(1) + dt*(-filtr(1)+0)/dzss(1)
endif
if (h1/=0.and.ls1 == 0) then
wl3(1) = WL_MAX(por(1),rosdry(1),wi1(1,is),tricemethhydr%par)
dhwfsoil2 = - filtr(1)*rosdry(1)*(1-por(1))/row0*dt
endif
filtr_low = 0
wl3(ns) = wl2(ns) + dt*(-filtr_low+filtr(ns-1))/dzss(ns)
do i=1,ns
if (wl3(i)>WL_MAX(por(i),rosdry(i),wi1(i,is),tricemethhydr%par)) then
surplus=wl3(i)-WL_MAX(por(i),rosdry(i),wi1(i,is),tricemethhydr%par)
cy1:do j=1,ns
if (WL_MAX(por(j),rosdry(j),wi1(j,is),tricemethhydr%par)-wl3(j)>0) then
if (WL_MAX(por(j),rosdry(j),wi1(j,is),tricemethhydr%par) - wl3(j) > &
& surplus*rosdry(i)*(1-por(i))*dzss(i) / &
& (rosdry(j)*(1-por(j))*dzss(j))) then
wl3(j)=wl3(j)+surplus*rosdry(i)*(1-por(i))*dzss(i) / &
& (rosdry(j)*(1-por(j))*dzss(j))
surplus=0
exit cy1

Victor Stepanenko
committed
surplus = surplus - &
& (WL_MAX(por(j),rosdry(j),wi1(j,is),tricemethhydr%par)-wl3(j)) * &
& (rosdry(j)*(1-por(j))*dzss(j)) / &
& (rosdry(i)*(1-por(i))*dzss(i))
wl3(j)=WL_MAX(por(j),rosdry(j),wi1(j,is),tricemethhydr%par)

Victor Stepanenko
committed
endif
enddo cy1
dhwfsoil3 = dhwfsoil3 + surplus*rosdry(i)*(1-por(i))*dzss(i)/row0
wl3(i) = WL_MAX(por(i),rosdry(i),wi1(i,is),tricemethhydr%par)
endif
if(wl3(i)<0) then
if (i/=1) then
do j=i-1,1,-1
if (wl3(j)>-wl3(i)*rosdry(i)*(1-por(i))*dzss(i) / &
& (rosdry(j)*(1-por(j))*dzss(j))) then
wl3(j)=wl3(j)+wl3(i)*rosdry(i)*(1-por(i))*dzss(i) / &
& (rosdry(j)*(1-por(j))*dzss(j))
goto 1

Victor Stepanenko
committed
enddo
endif
if (i/=ns) then
do j=i+1,ns
if (wl3(j)>-wl3(i)*rosdry(i)*(1-por(i))*dzss(i) / &
& (rosdry(j)*(1-por(j))*dzss(j))) then
wl3(j)=wl3(j)+wl3(i)*rosdry(i)*(1-por(i))*dzss(i) / &
& (rosdry(j)*(1-por(j))*dzss(j))
goto 1

Victor Stepanenko
committed
enddo
endif
!dhwfsoil = dhwfsoil - abs(wl4(i))*rosdry(i)*(1-por(i))*dzss(i)/row
1 wl3(i)=0.
endif
enddo

Victor Stepanenko
committed

Victor Stepanenko
committed
! STEP 3 OF SPLITTING-UP METHOD : PHASE PROCESSES
mhsep = (1. + tricemethhydr%par*alphamh)
20 c2: do i = 1, ns

Victor Stepanenko
committed
work = MELTINGPOINT(Sals1(i,is)/wl3(i),pressoil(i),tricemethhydr%par)

Victor Stepanenko
committed
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
if (wi1(i,is) > 0 .and. Tsoil2(i) > work + 0.01) then
Potphenergy = (Tsoil2(i) - (work + 0.01)) * &
& csoil(i)*rosoil(i)*dzss(i)
if (Potphenergy >= wi1(i,is)*rosdry(i)*dzss(i)*(1-por(i))*hicemelt) then
wl4(i,is) = wl3(i) + wi1(i,is)/mhsep
wi2(i,is) = 0.d0
Tsoil3(i,is) = work + 0.01 + &
& (Potphenergy-(wi1(i,is)*rosdry(i)*dzss(i)* &
& (1 - por(i))*hicemelt))/(csoil(i)*rosoil(i)*dzss(i))
else
wl4(i,is) = wl3(i) + Potphenergy / &
& (rosdry(i)*dzss(i)*(1 - por(i))*hicemelt)/mhsep
wi2(i,is) = wi1(i,is) - Potphenergy / &
& (rosdry(i)*dzss(i)*(1 - por(i))*hicemelt)
Tsoil3(i,is) = work + 0.01
endif
else
if (wl3(i) >= 0 .and. Tsoil2(i) < work - 0.01) then
Potphenergy = - (Tsoil2(i) - work + 0.01) * &
& csoil(i)*rosoil(i)*dzss(i)
watavailtofreeze = (wl3(i) - UNFRWAT(Tsoil2(i),i)) * &
& rosdry(i)*dzss(i)*(1 - por(i))*mhsep*hicemelt
if (watavailtofreeze < 0) then
!cc = csoil(i)*rosoil(i)*dzss(i)
!cc1 = rosdry(i)*dzss(i)*(1-por(i))*Lwi
!bb = (-Potphenergy-0.1*cc-wl3(i)*cc1)/cc
!aa = cc1/cc
!call phase_iter(aa,bb,i,Tsoil3(i))
Tsoil3(i,is) = Tsoil2(i) + watavailtofreeze/(csoil(i)*rosoil(i)*dzss(i))
wi2(i,is) = wi1(i,is) + (wl3(i) - UNFRWAT(Tsoil2(i),i))*mhsep
wl4(i,is) = UNFRWAT(Tsoil2(i),i)
cycle c2
endif
if (Potphenergy >= watavailtofreeze) then
Tsoil3(i,is) = work - 0.01 - &
& (Potphenergy - watavailtofreeze) / &
& (csoil(i)*rosoil(i)*dzss(i))
wi2(i,is) = wi1(i,is) + (wl3(i) - UNFRWAT(Tsoil2(i),i))*mhsep
wl4(i,is) = UNFRWAT(Tsoil2(i),i)
else
wl4(i,is) = wl3(i) - Potphenergy/(rosdry(i)*dzss(i)*(1 - por(i))*hicemelt)/mhsep
wi2(i,is) = wi1(i,is) + Potphenergy/(rosdry(i)*dzss(i)*(1 - por(i))*hicemelt)
Tsoil3(i,is) = work - 0.01
endif
else
wl4(i,is) = wl3(i)
wi2(i,is) = wi1(i,is)
Tsoil3(i,is) = Tsoil2(i)
endif
endif
enddo c2

Victor Stepanenko
committed
max1 = 0.
do i = 1, ns
if (Tsoil3(i,is) < &

Victor Stepanenko
committed
& MELTINGPOINT(Sals1(i,is)/wl4(i,is),pressoil(i),tricemethhydr%par) - 0.01 &

Victor Stepanenko
committed
&.and. abs(wl4(i,is) - UNFRWAT(Tsoil3(i,is),i)) > max1) then
max1 = abs(wl4(i,is) - UNFRWAT(Tsoil3(i,is),i))
endif
enddo
if (max1 > 0.01 .and. iter3 < 20) then
!wl3=(wl4+wl3)/2.
!wi1=(wi2+wi1)/2.
!Tsoil2=(Tsoil3+Tsoil2)/2.
wl3 = wl3 + alp(iter+1)*(wl4(:,is)-wl3)
wi1(:,is) = wi1(:,is) + &
& alp(iter+1)*(wi2(:,is) - wi1(:,is))
Tsoil2 = Tsoil2 + alp(iter+1)*(Tsoil3(:,is)-Tsoil2)
iter = iter + 1
iter3 = iter3 + 1
if(iter == 8) iter = 0
goto 20
else
iter = 0
iter3 = 0
endif
!evol=0
do i = 1, ns
if (wi2(i,is) < 0) then
wl4(i,is) = wl4(i,is) + wi2(i,is)/mhsep
wi2(i,is) = 0
endif
enddo
! Methane generation due to methane hydrate dissociation
do i = 1, ns
methgenmh(i) = - tricemethhydr%par*(wi2(i,is) - wi1(i,is))*1.d+3 / &
& (dt*mhsep*molmass_h2o)*nch4_d_nh2o*rosdry(i)*(1. - por(i))
enddo
do i=1,ns
if (wl4(i,is) > &
& POR(i)*ROW0/(rosdry(i)*(1-por(i))) - wi2(i,is)*row0_d_roi) then
surplus = wl4(i,is) - &
& (POR(i)*ROW0/(rosdry(i)*(1-por(i))) - wi2(i,is)*row0_d_roi)
if (POR(j)*ROW0/(rosdry(j)*(1-por(j))) - wi2(j,is)*row0_d_roi - &
& wl4(j,is) > 0) then
if (POR(j)*ROW0/(rosdry(j)*(1-por(j))) - wi2(j,is)*row0_d_roi - &
& wl4(j,is) > surplus*rosdry(i)*(1 - por(i))*dzss(i) / &
wl4(j,is)=wl4(j,is)+surplus*rosdry(i)*(1-por(i))*dzss(i) / &
& (rosdry(j)*(1-por(j))*dzss(j))
surplus=0
exit c3
else
surplus=surplus-(POR(j)*ROW0/(rosdry(j)*(1-por(j))) - &
& wi2(j,is)*row0_d_roi-wl4(j,is)) * &
& (rosdry(j)*(1-por(j))*dzss(j)) / &
wl4(j,is) = &
& POR(j)*ROW0/(rosdry(j)*(1-por(j))) - wi2(j,is)*row0_d_roi
endif
endif
enddo c3
dhwfsoil4 = dhwfsoil4 + surplus*rosdry(i)*(1-por(i))*dzss(i)/row0
wl4(i,is) = &
& POR(i)*ROW0/(rosdry(i)*(1-por(i))) - wi2(i,is)*row0_d_roi
if (wl4(j,is) > - wl4(i,is)*rosdry(i)*(1-por(i))*dzss(i) / &
wl4(j,is) = wl4(j,is) + &
& wl4(i,is)*rosdry(i)*(1-por(i))*dzss(i) / &
& (rosdry(j)*(1-por(j))*dzss(j))
goto 2
endif
enddo
endif
if (i/=ns) then
do j=i+1,ns
if (wl4(j,is) > -wl4(i,is)*rosdry(i)*(1-por(i))*dzss(i) / &
wl4(j,is) = wl4(j,is) + &
& wl4(i,is)*rosdry(i)*(1-por(i))*dzss(i) / &
& (rosdry(j)*(1-por(j))*dzss(j))
goto 2
endif
enddo
endif
!dhwfsoil = dhwfsoil - abs(wl4(i))*rosdry(i)*(1-por(i))*dzss(i)/row
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
endif
enddo
!!!!! II. FREEZING AND MELTING IN CASE OF TSOIL<MELTING POINT (O C)!!!!!
!do i=1, ns
! if (Tsoil3(i)<-1.) then
! wi3(i) = wi2(i) + (wl4(i)-unfrwat(Tsoil3(i),i))
! wl5(i) = unfrwat(Tsoil3(i),i)
! Tsoil4(i) = Tsoil3(i) + &
! (wl4(i)-unfrwat(Tsoil3(i),i))*rosdry(i)*dzss(i)*(1-por(i))*Lwi/&
! (csoil(i)*rosoil(i)*dzss(i))
! else
! wi3(i) = wi2(i)
! wl5(i) = wl4(i)
! Tsoil4(i) = Tsoil3(i)
! end if
! if (wl5(i)>POR(i)*ROW/(rosdry(i)*(1-por(i))) - wi3(i)*row/roi) then
! surplus = wl5(i)-(POR(i)*ROW/(rosdry(i)*(1-por(i))) - wi3(i)*row/roi)
! dhwfsoil = dhwfsoil + surplus*rosdry(i)*(1-por(i))*dzss(i)/row
! wl5(i) = POR(i)*ROW/(rosdry(i)*(1-por(i))) - wi3(i)*row/roi
! endif
! if(wl5(i)<0) then
! dhwfsoil = dhwfsoil - abs(wl5(i))*rosdry(i)*(1-por(i))*dzss(i)/row
! wl5(i)=0
! endif
!enddo
! evol=0
! evol1=0
! do i=1,ns
! evol=evol+(Tsoil3(i)-Tsoil1(i))*rosoil(i)*csoil(i)*dzss(i)
! evol1=evol1+(wi2(i)-wi1(i))*rosdry(i)*(1-por(i))*dzss(i)*Lwi
! enddo
dhwfsoil = dhwfsoil1 + dhwfsoil2 + dhwfsoil3 + dhwfsoil4
Tsoil1(:,is) = Tsoil3(:,is)
wl1 (:,is) = wl4 (:,is)
wi1 (:,is) = wi2 (:,is)
! Diagnostic calculation of air content, kg/kg
! (air mass per unit mass of the dry soil)
! assuming that the air occupies all the pore space
! free from liquid water and ice
do i = 1, ns
wa(i) = por(i)*roa0/((1.-por(i))*rosdry(i)) - &
& roa0_d_row0*wl1(i,is) - roa0_d_roi*wi1(i,is)
enddo
deallocate(pressoil)
if (firstcall) firstcall=.false.
RETURN
END SUBROUTINE SOILFORLAKE
SUBROUTINE SOIL_COND_HEAT_COEF(is)

Victor Stepanenko
committed
use ARRAYS_SOIL, only : rosdry,csoil,rosoil,lamsoil, &
lammoist,filtr,wsoil,por,bh,wl1,wi1,psimax,flwmax,dlmax,dzs
use ARRAYS_GRID, only : nsoilcols
use DRIVING_PARAMS, only : ns, tricemethhydr

Victor Stepanenko
committed
use PHYS_CONSTANTS, only : &
& row0, &
& cw, &
& ci, &
& roi, &
& row0_d_roi
use PHYS_FUNC, only : &
& WL_MAX, &
& SOIL_COND_JOHANSEN
use METH_OXYG_CONSTANTS, only : &
& cpmethhydr

Victor Stepanenko
committed
! Input variables
integer(kind=iintegers), intent(in) :: is

Victor Stepanenko
committed

Victor Stepanenko
committed
real(kind=ireals), parameter :: cr = 0.2*4180.d0

Victor Stepanenko
committed
real(kind=ireals) :: wlmax_i
real(kind=ireals) :: bb1
real(kind=ireals) :: arg
real(kind=ireals) :: psi
real(kind=ireals) :: pf
real(kind=ireals) :: lammoist1
real(kind=ireals), save, pointer :: cimh

Victor Stepanenko
committed
integer(kind=iintegers) :: i
logical, save :: firstcall = .true.
if (firstcall) then
if (tricemethhydr%par > 0.) then
cimh => cpmethhydr
else
cimh => ci
endif
endif

Victor Stepanenko
committed
!rosdry(:) = 1200. !2400.
do i = 1, ns
wlmax_i = POR(i)*ROW0/(rosdry(i)*(1-por(i)))
BB1 = BH(i) + 2.d0
csoil(i) = (cr + wl1(i,is)*CW + wi1(i,is)*cimh) !*1.d-3 !1.d-3 - for sensitivity experiment
rosoil(i) = rosdry(i)*(1 - por(i))*(1 + wi1(i,is) + wl1(i,is))
! if(PF>5.1) then
! lamsoil(i) = 4.1E-4*418.
! else
lamsoil(i) = SOIL_COND_JOHANSEN(wl1(i,is),wi1(i,is),rosdry(i),por(i))
wlmax_i = WL_MAX(por(i),rosdry(i),wi1(i,is),tricemethhydr%par)
ARG = (wl1(i,is))/wlmax_i
lammoist(i) = dlmax(i)*ARG**BB1
end do
do i = 1, ns-1
wlmax_i = WL_MAX(por(i+1),rosdry(i+1),wi1(i+1,is),tricemethhydr%par)
if (wlmax_i < 0.01) then !wl1(i+1,is)/wlmax_i>0.98.or.
filtr(i) = 0
else
wlmax_i = WL_MAX(0.5*(por(i)+por(i+1)),0.5*(rosdry(i)+rosdry(i+1)), &
& 0.5*(wi1(i,is) + wi1(i+1,is)),tricemethhydr%par)
filtr(i) = 0.5*(flwmax(i+1)+flwmax(i))*(0.5*(wl1(i+1,is) + &
& wl1(i,is))/wlmax_i)**(bh(i+1)+bh(i)+3)
endif
enddo
do i = 1, ns-1
lammoist1 = 0.5*(lammoist(i)+lammoist(i+1))
wsoil(i) = ( - lammoist1*(wl1(i+1,is) - wl1(i,is))/dzs(i) + &

Victor Stepanenko
committed
& (1. - 0.5*(por(i)+por(i+1)) )/row0
enddo
if (firstcall) firstcall = .false.
END SUBROUTINE SOIL_COND_HEAT_COEF

Victor Stepanenko
committed

Victor Stepanenko
committed
SUBROUTINE SOILCOLSTEMP(gs,gsp,dt,ls,ftot,ch4_pres_atm, &
& wst,SR,a,b,c,d,add_to_winter, &

Victor Stepanenko
committed
& bathymwater,bathymice, &
& bathymdice,bathymsoil, &
& soilflux,fdiffbot, contr)

Victor Stepanenko
committed
! Subroutine calculates temperature in soil columns,

Victor Stepanenko
committed
! excepting for the lowest column, assuming
! nsoilcols = M+1

Victor Stepanenko
committed
use LAKE_DATATYPES, only : &
& iintegers, ireals
use DRIVING_PARAMS, only : soilcolconjtype

Victor Stepanenko
committed
use T_SOLVER_MOD, only : &
& T_DIFF

Victor Stepanenko
committed
use ATMOS, only : &
& pressure, wind10

Victor Stepanenko
committed
use PHYS_CONSTANTS, only : &

Victor Stepanenko
committed
use PHYS_FUNC, only : &

Victor Stepanenko
committed

Victor Stepanenko
committed
use ARRAYS_BATHYM, only : bathym, dhw, dhw0, layers_type

Victor Stepanenko
committed
use ARRAYS_SOIL, only : csoil, rosoil, lamsoil, Tsoil3, Tsoil2, Tsoil1, &

Victor Stepanenko
committed
& wl4,wi2,wa,Sals1,rosdry,por,lsm,dzs,zsoil,rosoil

Victor Stepanenko
committed
use ARRAYS_GRID, only : ddz05, gridsize_type, gridspacing_type
use ARRAYS_METHANE, only : veg,TgrAnn,methgenmh,qwater,lammeth, &
& fplant,febul0, fdiff_lake_surf, &
& plant_sum,bull_sum,oxid_sum,rprod_sum, anox, &
& rprod_total_oldC,rprod_total_newC, &
& ice_meth_oxid_total, &
& h_talik,tot_ice_meth_bubbles,rootss
use ARRAYS_WATERSTATE, only : Tw2, waterstate_type
use ARRAYS_TURB, only: eps1
use ARRAYS_OXYGEN, only : sodbot
use ARRAYS, only : gas, dt_inv
use METHANE_MOD, only : METHANE

Victor Stepanenko
committed
use METH_OXYG_CONSTANTS, only : CH4_exp_growth

Victor Stepanenko
committed
implicit none
! Input variables
type(gridsize_type), intent(inout) :: gs

Victor Stepanenko
committed
type(gridspacing_type), intent(in) :: gsp

Victor Stepanenko
committed
type(layers_type), intent(in) :: ls

Victor Stepanenko
committed
real(kind=ireals), intent(in) :: dt !> timestep, st
real(kind=ireals), intent(inout) :: ftot
real(kind=ireals), intent(in) :: ch4_pres_atm
real(kind=ireals), intent(in) :: ddz(1:gs%M), ddzi(1:gs%Mice), zsoilcols(1:gs%nsoilcols+1)
type(waterstate_type), intent(in) :: wst

Victor Stepanenko
committed
real(kind=ireals), intent(in) :: SR(0:gs%M+1) ! Shortwave radiation
type(bathym), intent(in) :: bathymwater(1:gs%M+1), bathymice(1:gs%Mice+1)
type(bathym), intent(in) :: bathymdice(1:gs%Mice+1), bathymsoil(1:gs%nsoilcols+1)

Victor Stepanenko
committed
integer(kind=iintegers), intent(in) :: contr(1:2)
real(kind=ireals), intent(inout), dimension(1:vector_length) :: a, b, c, d

Victor Stepanenko
committed
logical, intent(inout) :: add_to_winter
! Output variables
real(kind=ireals), intent(inout) :: soilflux(1:gs%nsoilcols), fdiffbot(1:gs%nsoilcols)

Victor Stepanenko
committed
! Local variables

Victor Stepanenko
committed
integer(kind=iintegers), parameter :: bcswitch = 1 !1 - continuity of flux and temperature
!2 - continuity of flux, calculated from surface layer theory

Victor Stepanenko
committed
integer(kind=iintegers) :: is, i ! Number of soil column
real(kind=ireals) :: Tsoilsurf(1:gs%nsoilcols), qsoilsurf(1:gs%nsoilcols)
real(kind=ireals) :: exchcoef, Tws, qwaters
real(kind=ireals), allocatable :: work(:), work1(:)
integer(kind=iintegers), allocatable :: iwork(:)

Victor Stepanenko
committed
real(kind=ireals) :: xx

Victor Stepanenko
committed
if ((ls%l1 /= 0. .or. ls%ls1 /= 0) .and. bcswitch == 2) then
print*, "bcswitch == 2 is not operational when &

Victor Stepanenko
committed
&l1 /= 0. .or. ls1 /= 0", ls%l1, ls%ls1
STOP
endif
if (bcswitch == 2) then
allocate(work1(1:gs%nsoilcols))
allocate(iwork(1:gs%nsoilcols))
if (soilcolconjtype == 1) then
forall(is=1:gs%nsoilcols-1) work1(is) = bathymsoil(is)%dzSLc
forall(is=1:gs%nsoilcols-1) iwork(is) = bathymsoil(is)%icent
elseif (soilcolconjtype == 2) then
forall(is=1:gs%nsoilcols-1) work1(is) = bathymsoil(is)%dzSL
forall(is=1:gs%nsoilcols-1) iwork(is) = bathymsoil(is)%itop
endif
endif
if (contr(1) == 1) then
! Heat equation in soil columns
if (bcswitch == 1) then ! Continuity of flux and temperature across soil-water interface
if (soilcolconjtype == 1) then
do is = 1, gs%nsoilcols-1
i = bathymsoil(is)%icent
Tsoilsurf(is) = wst%Tw1(i)
enddo
elseif (soilcolconjtype == 2) then

Victor Stepanenko
committed
call TSURFSOILCOL(gs%M,gs%Mice,gs%nsoilcols,ls%h1,ls%l1,ls%ls1, &
& ddz,ddzi,zsoilcols, &

Victor Stepanenko
committed
& wst%Tw1,wst%Ti1,wst%Tis1, &
& bathymwater,bathymice,bathymdice,bathymsoil,&
& Tsoilsurf)
endif
do is = 1, gs%nsoilcols-1
call SOIL_COND_HEAT_COEF(is)
call T_DIFF(1,Tsoilsurf(is),dt,0,0,0,0,is,.false.)
soilflux(is) = &
& csoil(1)*rosoil(1)*dt_inv*0.5*dzs(1)*( Tsoil2(1) - Tsoil1(1,is) ) - &
& 0.25* ( lamsoil(1) + lamsoil(2) ) * &
& ( Tsoil2(2) + Tsoil1(2,is) - Tsoil2(1) - Tsoil1(1,is) )/dzs(1)
call SOILFORLAKE(dt,a,b,c,d,is)
enddo
elseif (bcswitch == 2) then ! continuity of flux, calculated from surface layer theory above soil surface
do is = 1, gs%nsoilcols-1
call SOIL_COND_HEAT_COEF(is)
soilflux(is) = LOGFLUX(sqrt(wst%u1(i)*wst%u1(i) + wst%v1(i)*wst%v1(i)), &
& Tsoil1(1,is) - wst%Tw1(i), work1(is), z0_bot, z0_bot, cw_m_row0, 1) + SR(i)
call T_DIFF(1,soilflux(is),dt,0,0,0,0,is,.true.)
call SOILFORLAKE(dt,a,b,c,d,is)
if (contr(2) == 1) then
! Methane equation in soil columns
if (bcswitch == 1) then ! Continuity of flux and concentration across soil-water interface
if (soilcolconjtype == 1) then
do is = 1, gs%nsoilcols-1
i = bathymsoil(is)%icent
qsoilsurf(is) = qwater(i,1)
enddo
elseif (soilcolconjtype == 2) then
allocate (work(1:gs%Mice+1)); work = 0.

Victor Stepanenko
committed
call TSURFSOILCOL(gs%M,gs%Mice,gs%nsoilcols,ls%h1,ls%l1,ls%ls1, &
& ddz,ddzi,zsoilcols, &

Victor Stepanenko
committed
& qwater(1,1),work,work, &
& bathymwater,bathymice,bathymdice,bathymsoil,&
& qsoilsurf)
deallocate (work)
endif
allocate (work(0:gs%M+1))
do is = 1, gs%nsoilcols-1
gs%isoilcol = is
call METHANE &
& (gas,pressure,wind10,ch4_pres_atm,zsoil,Tsoil3(1,is),rosoil, &
& work, work, &

Victor Stepanenko
committed
& wl4(1,is),wi2(1,is),wa,Sals1, &

Victor Stepanenko
committed
& rootss,rosdry,por,veg,qsoilsurf(is)*por(1),TgrAnn, methgenmh, &

Victor Stepanenko
committed
& ddz,ddz05, wst, lammeth, &
& gsp%z_half(bathymsoil(is)%icent), & !0.5*(zsoilcols(is) + zsoilcols(is+1)), &

Victor Stepanenko
committed
& ls, dhw, dhw0, .false., .false., lsm, bathymwater, &
& fplant, febul0(is), fdiffbot(is), ftot, fdiff_lake_surf, &
& plant_sum,bull_sum,oxid_sum,rprod_sum, &

Victor Stepanenko
committed
& anox,gs,gsp,dt,eps1(1),sodbot, &
& rprod_total_oldC, rprod_total_newC, ice_meth_oxid_total, &
& h_talik,tot_ice_meth_bubbles,add_to_winter)
enddo
deallocate(work)
elseif (bcswitch == 2) then! continuity of flux, calculated from surface layer theory above soil surface
allocate (work(0:gs%M+1))
do is = 1, gs%nsoilcols-1
!exchcoef = LOGFLUX(sqrt(wst%u1(i)*wst%u1(i) + wst%v1(i)*wst%v1(i)), &
!& qsoil(1,is)/por(1) - qwater(i,1), bathymsoil(is)%dzSL, z0_bot, z0_bot, 1._ireals,2)
! Methane concentration in water from similarity profile
!qwaters = TEMPWATR(lammeth(i),bathymwater(i)%rad_int,qsoil(1,is)/por(1),exchcoef, &
!& qwater(i,1), lammeth(i)*(qwater(i+1,1) - qwater(i,1))/(ddz(i)*h1))
! Methane flux at the bottom

Victor Stepanenko
committed
! Taking into account depletion of methane in top sediments
if (CH4_exp_growth /= 0.) then
xx = CH4_exp_growth*0.5*dzs(1) / ( (exp(CH4_exp_growth*0.5*dzs(1)) - 1.) * por(1) )
else
xx = 1./por(1)
endif
fdiffbot(is) = LOGFLUX(sqrt(wst%u1(i)*wst%u1(i) + wst%v1(i)*wst%v1(i)), &
& gas%qsoil(1,is)*xx - qwater(i,1), work1(is), &

Victor Stepanenko
committed
& z0_bot, z0_bot, 1._ireals,1)
gs%isoilcol = is
call METHANE &
& (gas,pressure,wind10,ch4_pres_atm,zsoil,Tsoil3(1,is),rosoil, &
& work, work, &

Victor Stepanenko
committed
& wl4(1,is),wi2(1,is),wa,Sals1, &

Victor Stepanenko
committed
& rootss,rosdry,por,veg,fdiffbot(is),TgrAnn, methgenmh, &

Victor Stepanenko
committed
& ddz,ddz05, wst, lammeth, &
& gsp%z_half(bathymsoil(is)%icent), & !0.5*(zsoilcols(is) + zsoilcols(is+1)), &

Victor Stepanenko
committed
& ls, dhw, dhw0, .false., .true., lsm, bathymwater, &
& fplant, febul0(is), fdiffbot(is), ftot, fdiff_lake_surf, &
& plant_sum,bull_sum,oxid_sum,rprod_sum, &

Victor Stepanenko
committed
& anox,gs,gsp,dt,eps1(1),sodbot, &
& rprod_total_oldC, rprod_total_newC, ice_meth_oxid_total, &
& h_talik,tot_ice_meth_bubbles,add_to_winter)
enddo
deallocate(work)
endif
endif

Victor Stepanenko
committed
if (bcswitch == 2) then
deallocate(work1)
deallocate(iwork)