Newer
Older
MODULE BATHYMSUBR

Victor Stepanenko
committed
use GRID_OPERATIONS_LAKE, only : LININTERPOL, PIECEWISECONSTINT
contains
!> Subroutine BATHYMETRY calculates lake bathymetry characteristics
SUBROUTINE BATHYMETRY(M,Mice,ns,ix,iy,ndatamax,month,day,lakeform,hour,dt, &
& depth_area,area_lake,cellipt, &
& multsoil,trib_inflow,dhwtrib,vol,botar)
! Subroutine updates bathymetry variables
use LAKE_DATATYPES, only : &
& ireals, iintegers
use DRIVING_PARAMS, only : soilcolconjtype
use PHYS_CONSTANTS, only : g, row0
use ARRAYS, only : init
use ARRAYS_WATERSTATE, only: preswat
use ARRAYS_BATHYM, only : &
& area_int, area_half, &
& bathymwater, bathymice, &
& bathymdice, bathymsoil, &
& h1,l1,ls1,Lx,Ly, &
& form_ellipse, form_rectangle
use ARRAYS_GRID, only : &
& ddzi, nsoilcols, zsoilcols, &
& isoilcolc, ksoilcol, &
& z_full, z_half, &

Victor Stepanenko
committed
& z_full_ice, z_half_ice, &
& dzeta_int, dzeta_05int, ddz05, &
& dzetai_int, dzetai_05int
use ARRAYS_SOIL, only : dzs
use NUMERIC_PARAMS, only : &
& pi, small_value
use ATMOS, only : pressure
use TIMEVAR, only : hour_sec
use TRIBUTARIES, only : ABSTR
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
implicit none
! Input variables
integer(kind=iintegers), intent(in) :: M, Mice, ns
integer(kind=iintegers), intent(in) :: ix, iy
integer(kind=iintegers), intent(in) :: ndatamax
integer(kind=iintegers), intent(in) :: month, day
integer(kind=iintegers), intent(in) :: lakeform
real(kind=ireals), intent(in) :: hour
real(kind=ireals), intent(in) :: dt
real(kind=ireals), intent(in) :: depth_area(1:ndatamax,1:2)
real(kind=ireals), intent(in) :: area_lake, cellipt
logical, intent(in) :: multsoil
real(kind=ireals), intent(in) :: trib_inflow
real(kind=ireals), intent(inout) :: dhwtrib
real(kind=ireals), intent(out) :: vol, botar
! Local variables
real(kind=ireals), allocatable :: work1(:), work2(:), work3(:), work4(:), work5(:), work6(:)
integer(kind=iintegers) :: i, j
real(kind=ireals) :: aellipt, bellipt, z, dz, dadz, da
real(kind=ireals) :: watabstr = 0. ! Water abstraction, currently implemented for single lake
logical, save :: water_abstraction = .false.
logical :: flag
!real(kind=ireals), external :: ABSTR
do i = 1, M+1
z_full(i) = dzeta_int(i)*h1
preswat(i) = pressure + row0*g*z_full(i)
enddo
do i = 1, M
z_half(i) = dzeta_05int(i)*h1
enddo

Victor Stepanenko
committed
forall (i = 1:Mice+1) z_full_ice(i) = dzetai_int (i)*l1
forall (i = 1:Mice ) z_half_ice(i) = dzetai_05int(i)*l1
! Constant cross-section
if (depth_area(1,2) < 0.) then ! No data on morphometry
area_int (1:M+1) = area_lake
area_half (1:M) = area_lake
bathymice (1:Mice+1)%area_int = area_lake
bathymice (1:Mice) %area_half = area_lake
bathymdice(1:Mice+1)%area_int = area_lake
bathymdice(1:Mice) %area_half = area_lake
!if (init(ix,iy) == 0 .and. multsoil) then
! bathymsoil(1:nsoilcols+1,ix,iy)%area_int = area_lake
! bathymsoil(1:nsoilcols, ix,iy)%area_half = area_lake
!endif
else
! Multiple soil columns bathymetry (constant in time)
if_multsoil : if (multsoil) then
allocate(work3(1:nsoilcols) )
do i = 1, nsoilcols
work3(i) = 0.5*( zsoilcols(i,ix,iy) + zsoilcols(i+1,ix,iy) )
enddo
if (init(ix,iy) == 0) then
allocate(work5(1:nsoilcols+1), work6(1:nsoilcols))
call LININTERPOL (depth_area(1,1),depth_area(1,2),ndatamax, &
& zsoilcols(1,ix,iy),work5,nsoilcols+1,flag,.true.)
call LININTERPOL (depth_area(1,1),depth_area(1,2),ndatamax, &
& work3,work6,nsoilcols,flag,.true.)
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
bathymsoil(1:nsoilcols+1,ix,iy)%area_int = work5(1:nsoilcols+1)
bathymsoil(1:nsoilcols, ix,iy)%area_half = work6(1:nsoilcols)
deallocate (work5, work6)
!! Horizontal cross-section area of soil columns at soil numerical grid levels
!do i = 1, nsoilcols-1
! bathymsoil(i,ix,iy)%sarea_int(1) = small_value
! z = 0.; j = 1
! dz = zsoilcols(i+1,ix,iy) - zsoilcols(i,ix,iy)
! da = bathymsoil(i,ix,iy)%area_int - bathymsoil(i+1,ix,iy)%area_int
! dadz = da / dz
! do while (z < dz)
! j = j + 1
! z = z + dzs(j-1)
! bathymsoil(i,ix,iy)%sarea_int(j) = bathymsoil(i,ix,iy)%sarea_int(j-1) + dadz*dzs(j-1)
! bathymsoil(i,ix,iy)%sarea_half(j-1) = &
! & 0.5*(bathymsoil(i,ix,iy)%sarea_int(j) + bathymsoil(i,ix,iy)%sarea_int(j-1))
! enddo
! bathymsoil(i,ix,iy)%sarea_int(j) = min(bathymsoil(i,ix,iy)%sarea_int(j) ,da)
! bathymsoil(i,ix,iy)%sarea_half(j-1) = min(bathymsoil(i,ix,iy)%sarea_half(j-1),da)
! bathymsoil(i,ix,iy)%sarea_int(j+1:ns) = bathymsoil(i,ix,iy)%sarea_int(j)
! bathymsoil(i,ix,iy)%sarea_half(j:ns-1) = bathymsoil(i,ix,iy)%sarea_half(j-1)
!enddo
!!Lowest soil column
!i = nsoilcols
!bathymsoil(i,ix,iy)%sarea_int(1:ns) = bathymsoil(nsoilcols,ix,iy)%area_int
!bathymsoil(i,ix,iy)%sarea_half(1:ns-1) = bathymsoil(nsoilcols,ix,iy)%area_int
endif
dz = - maxval(depth_area(:,1)) + h1 + ls1 ! Relating coordinate systems before interpolation
do i = 2, nsoilcols
do j = M, 1, -1
if (zsoilcols(i,ix,iy) + dz > z_full(j) .and. &
zsoilcols(i,ix,iy) + dz <= z_full(j+1)) then
bathymsoil(i,ix,iy)%itop = j
bathymsoil(i,ix,iy)%dzSL = work3(i) + dz - z_full(j)
endif
enddo
enddo
bathymsoil(1,ix,iy)%itop = 1
bathymsoil(1,ix,iy)%dzSL = work3(1) + dz - z_full(1)
do i = 2, nsoilcols
do j = 1, M
if (zsoilcols(i,ix,iy) + dz > z_full(j) .and. &
zsoilcols(i,ix,iy) + dz <= z_full(j+1)) then
bathymsoil(i-1,ix,iy)%ibot = j
endif
enddo
enddo
bathymsoil(nsoilcols,ix,iy)%ibot = M+1

Victor Stepanenko
committed
bathymsoil(:,ix,iy)%icent = 1
do i = 1, nsoilcols-1
do j = 1, M-1
if (work3(i) + dz > z_half(j) .and. &
work3(i) + dz <= z_half(j+1)) then
bathymsoil(i,ix,iy)%icent = j+1
bathymsoil(i,ix,iy)%dzSLc = work3(i) + dz - z_half(j)
endif
enddo
enddo
deallocate(work3)
else
!i = nsoilcols
!bathymsoil(i,ix,iy)%sarea_int(1:ns) = area_lake
!bathymsoil(i,ix,iy)%sarea_half(1:ns-1) = area_lake
endif if_multsoil
! Interpolation of the predefined area-depth dependence to the current grid...
! ...in water layer

Victor Stepanenko
committed
if_waterexist : if (h1 > small_value) then
if (soilcolconjtype == 1) then
allocate(work1(1:nsoilcols+1),work2(1:nsoilcols+1))
work2(:) = bathymsoil(:,ix,iy)%area_int
work1(:) = zsoilcols(:,ix,iy) - maxval(zsoilcols(:,ix,iy)) + &
& h1 + ls1 ! Relating coordinate systems before interpolation
call PIECEWISECONSTINT (work1,work2,nsoilcols+1,z_full,area_int,M+1,1_iintegers)
call PIECEWISECONSTINT (work1,work2,nsoilcols+1,z_half,area_half,M,1_iintegers)
area_int(M+1) = bathymsoil(nsoilcols+1,ix,iy)%area_int
elseif (soilcolconjtype == 2) then
allocate(work1(1:ndatamax),work2(1:ndatamax))
work2(:) = depth_area(:,2)
work1(:) = depth_area(:,1) - maxval(depth_area(:,1)) + &
& h1 + ls1 ! Relating coordinate systems before interpolation
call LININTERPOL (work1,work2,ndatamax,z_full,area_int,M+1,flag,.true.)
call LININTERPOL (work1,work2,ndatamax,z_half,area_half,M,flag,.true.)

Victor Stepanenko
committed
else
print*, 'Warining in BATHYM: water does not exist'
endif if_waterexist
!... in ice layer
if (l1 > small_value) then
allocate (work3(1:Mice+1), work4(1:Mice))
work3(1) = 0.
do i = 2, Mice+1
work3(i) = work3(i-1) + ddzi(i-1)*l1
enddo
work4(1) = 0.5*ddzi(1)*l1
do i = 2, Mice
work4(i) = work4(i-1) + 0.5*(ddzi(i-1) + ddzi(i))*l1
enddo
allocate(work5(1:Mice+1), work6(1:Mice))
if (soilcolconjtype == 1) then
work1(:) = zsoilcols(:,ix,iy) - maxval(zsoilcols(:,ix,iy)) + h1 + l1 + ls1
call PIECEWISECONSTINT (work1,work2,nsoilcols,work3,work5,Mice+1,1_iintegers)
call PIECEWISECONSTINT (work1,work2,nsoilcols,work4,work6,Mice,1_iintegers)
elseif (soilcolconjtype == 2) then
work1(:) = depth_area(:,1) - maxval(depth_area(:,1)) + &
& h1 + l1 + ls1
call LININTERPOL (work1,work2,ndatamax,work3,work5,Mice+1,flag,.true.)
call LININTERPOL (work1,work2,ndatamax,work4,work6,Mice,flag,.true.)
endif
bathymice(1:Mice+1)%area_int = work5(1:Mice+1)
bathymice(1:Mice) %area_half = work6(1:Mice)
deallocate(work3, work4, work5, work6)
endif
! ... in deep ice layer
if (ls1 > small_value) then
allocate (work3(1:Mice+1), work4(1:Mice))
work3(1) = 0.
do i = 2, Mice+1
work3(i) = work3(i-1) + ddzi(i-1)*ls1
enddo
work4(1) = 0.5*ddzi(1)*ls1
do i = 2, Mice
work4(i) = work4(i-1) + 0.5*(ddzi(i-1) + ddzi(i))*ls1
enddo
allocate(work5(1:Mice+1), work6(1:Mice))
if (soilcolconjtype == 1) then
work1(:) = zsoilcols(:,ix,iy) - maxval(zsoilcols(:,ix,iy)) + ls1
call PIECEWISECONSTINT (work1,work2,nsoilcols,work3,work5,Mice+1,1_iintegers)
call PIECEWISECONSTINT (work1,work2,nsoilcols,work4,work6,Mice,1_iintegers)
work5(Mice+1) = bathymsoil(nsoilcols+1,ix,iy)%area_int
elseif (soilcolconjtype == 2) then
work1(:) = depth_area(:,1) - maxval(depth_area(:,1)) + ls1
call LININTERPOL (work1,work2,ndatamax,work3,work5,Mice+1,flag,.true.)
call LININTERPOL (work1,work2,ndatamax,work4,work6,Mice,flag,.true.)
endif
bathymdice(1:Mice+1)%area_int = work5(1:Mice+1)
bathymdice(1:Mice) %area_half = work6(1:Mice)
deallocate(work3, work4, work5, work6)
endif
if (allocated(work1)) deallocate (work1)
if (allocated(work2)) deallocate (work2)
endif
! Cross-section parameters for water
if (h1 > small_value) then
do i = 1, M+1
! Assuming horizontal cross-section to be an ellipse at every level
call LXLY(area_int(i),Lx(i),Ly(i))
call LXLY(area_half(i),bathymwater(i)%Lx_half,bathymwater(i)%Ly_half)
enddo
bathymwater(1:M+1)%area_int = area_int (1:M+1)
bathymwater(1:M )%area_half = area_half(1:M )
bathymwater(1:M+1)%Lx = Lx (1:M+1)
bathymwater(1:M+1)%Ly = Ly (1:M+1)
bathymwater(1:M+1)%rad_int = sqrt(area_int (1:M+1)/pi)
endif
! Cross-section parameters for ice
if (l1 > small_value) then
do i = 1, Mice+1
! Assuming horizontal cross-section to be an ellipse at every level
call LXLY(bathymice(i)%area_int,bathymice(i)%Lx,bathymice(i)%Ly)
call LXLY(bathymice(i)%area_half,bathymice(i)%Lx_half,bathymice(i)%Ly_half)
enddo
endif
! Cross-section parameters for deep ice
if (ls1 > small_value) then
do i = 1, Mice+1
call LXLY(bathymdice(i)%area_int,bathymdice(i)%Lx,bathymdice(i)%Ly)
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
call LXLY(bathymdice(i)%area_half,bathymdice(i)%Lx_half,bathymdice(i)%Ly_half)
enddo
endif
! Cross-section parameters for multiple soil columns
if (init(ix,iy) == 0 .and. multsoil) then
! Assuming horizontal cross-section to be an ellipse at every level
do i = 1, nsoilcols+1
call LXLY(bathymsoil(i,ix,iy)%area_int,bathymsoil(i,ix,iy)%Lx,bathymsoil(i,ix,iy)%Ly)
enddo
endif
if (h1 > small_value .and. multsoil) then
allocate(work1(1:nsoilcols+1))
work1(:) = zsoilcols(:,ix,iy) - maxval(zsoilcols(:,ix,iy)) + &
& h1 + ls1 ! Relating coordinate systems before interpolation
ksoilcol(:) = nsoilcols
do i = 1, nsoilcols-1
z = 0.5*(work1(i) + work1(i+1))
do j = 1, M
if (z_full(j) <= z .and. z_full(j+1) > z) then
isoilcolc(i) = j
exit
endif
enddo
do j = 1, M
if (z_full(j) >= work1(i) .and. &
& z_full(j) < work1(i+1)) then
ksoilcol(j) = i
endif
enddo
enddo
deallocate(work1)
endif
! Lake volume and bottom area
botar = area_int(M+1)
do i = M, 1, -1
!vol = vol + 0.5*(area_int(i+1) + area_int(i))* &
!& (z_full(i+1) - z_full(i))
botar = botar + area_int(i) - area_int(i+1)
enddo
vol = 0.
do i = 1, M+1
vol = vol + area_int(i)*h1*ddz05(i-1)
enddo
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
!TRIBUTARY INFLOW to a lake
if (water_abstraction .and. month == 12 .and. day == 31 &
& .and. (24. - hour)*hour_sec <= dt) then
! Water abstraction for the next year, m**3/s
watabstr = ABSTR(vol)
if (trib_inflow /= -9999.) then
dhwtrib = dhwtrib - watabstr*dt/area_int(1)
endif
endif
contains
!> Subroutine LXLY calculates the length and width of the lake
!! given its cross-section area and form
SUBROUTINE LXLY(area,Lx_,Ly_)
implicit none
real(kind=ireals), intent(in) :: area
real(kind=ireals), intent(out) :: Lx_, Ly_
if (lakeform == form_ellipse) then
bellipt = sqrt(area/(pi*cellipt))
aellipt = bellipt*cellipt
Lx_ = 2.*aellipt
Ly_ = 2.*bellipt
elseif (lakeform == form_rectangle) then
Ly_ = sqrt(area/cellipt)
Lx_ = cellipt*Ly_
else
print*, 'Incorrect LAKEFORM identifier:', lakeform, ', STOP'
STOP
endif
END SUBROUTINE LXLY
END SUBROUTINE BATHYMETRY
END MODULE BATHYMSUBR