Newer
Older
MODULE NUMERICS
use LAKE_DATATYPES, only : ireals, iintegers
contains
SUBROUTINE MATRIXSUM(a,b,c,k)
implicit none
!MATRIXES: C=A+B

Victor Stepanenko
committed
real(kind=ireals), dimension (vector_length,2,2)::a,b,c
integer(kind=iintegers) k,j,i
do j=1,2
do i=1,2
c(k,i,j)=a(k,i,j)+b(k,i,j)
enddo
enddo
END SUBROUTINE MATRIXSUM
SUBROUTINE MATRIXMULT(a,b,c,k)
implicit none
!MATRIXES: C=A*B

Victor Stepanenko
committed
real(kind=ireals), dimension (vector_length,2,2)::a,b,c
integer(kind=iintegers) k
c(k,1,1)=a(k,1,1)*b(k,1,1)+a(k,1,2)*b(k,2,1)
c(k,1,2)=a(k,1,1)*b(k,1,2)+a(k,1,2)*b(k,2,2)
c(k,2,1)=a(k,2,1)*b(k,1,1)+a(k,2,2)*b(k,2,1)
c(k,2,2)=a(k,2,1)*b(k,1,2)+a(k,2,2)*b(k,2,2)
END SUBROUTINE MATRIXMULT
SUBROUTINE MATRIXMULTVECTOR(a,g,f,k)
implicit none
!MATRIX A, VECTORS g, f: Ag=f

Victor Stepanenko
committed
real(kind=ireals) a(vector_length,2,2),f(vector_length,2), &

Victor Stepanenko
committed
integer(kind=iintegers) k
f(k,1)=a(k,1,1)*g(k,1)+a(k,1,2)*g(k,2)
f(k,2)=a(k,2,1)*g(k,1)+a(k,2,2)*g(k,2)
return
END SUBROUTINE MATRIXMULTVECTOR
SUBROUTINE VECTORSUM(a,b,c,k)
implicit none
!VECTORS: C=A+B

Victor Stepanenko
committed
real(kind=ireals), dimension(vector_length,2)::a,b,c
integer(kind=iintegers) k
c(k,1)=a(k,1)+b(k,1)
c(k,2)=a(k,2)+b(k,2)
END SUBROUTINE VECTORSUM
SUBROUTINE INVERSMATRIX(a,a1,k)
implicit none
!MATRIXES: A1=A*(-1)

Victor Stepanenko
committed
real(kind=ireals), dimension(vector_length,2,2)::a,a1
integer(kind=iintegers) k
a1(k,1,1)=a(k,2,2)/(a(k,1,1)*a(k,2,2)-a(k,1,2)*a(k,2,1))
a1(k,1,2)=-a(k,1,2)/(a(k,1,1)*a(k,2,2)-a(k,1,2)*a(k,2,1))
a1(k,2,1)=-a(k,2,1)/(a(k,1,1)*a(k,2,2)-a(k,1,2)*a(k,2,1))
a1(k,2,2)=a(k,1,1)/(a(k,1,1)*a(k,2,2)-a(k,1,2)*a(k,2,1))
END SUBROUTINE INVERSMATRIX
SUBROUTINE MATRIXPROGONKA(a,b,c,d,y,N)
!MATRIXPROGONKA solves the set of MATRIX three-point diference equations
implicit none

Victor Stepanenko
committed
real(kind=ireals), dimension(vector_length,2,2):: a,b,c,x3,x32,x31,x4,alpha
real(kind=ireals), dimension(vector_length,2):: y,d,x2,beta,x21
integer(kind=iintegers) N,i,j,k
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
call INVERSMATRIX(c,x32,1)
call MATRIXMULT(x32,b,x3,1)
do j = 1, 2
do i = 1, 2
alpha(2,i,j) = x3(1,i,j)
enddo
enddo
call MATRIXMULTVECTOR(x32,d,x2,1)
do i = 1, 2
beta(2,i) = x2(1,i)
enddo
do k = 3, N
CALL MATRIXMULT(A,ALPHA,X3,k-1)
X4(k-1,1:2,1:2) = - X3(k-1,1:2,1:2)
CALL MATRIXSUM(C,X4,X31,k-1)
CALL INVERSMATRIX(X31,X32,k-1)
CALL MATRIXMULT(X32,B,X3,k-1)
do j = 1, 2
do i = 1, 2
alpha(k,i,j) = X3(k-1,i,j)
enddo
enddo
!call matrixmult(x3,x31,x33,k-1)
!call matrixsum(-b,x33,x3,k-1)
CALL MATRIXMULTVECTOR(A,BETA,X2,K-1)
CALL VECTORSUM(D,X2,X21,K-1)
CALL MATRIXMULTVECTOR(X32,X21,X2,K-1)
do i = 1, 2
beta(k,i) = X2(k-1,i)
enddo
enddo
CALL MATRIXMULT(A,ALPHA,X3,N)
X4(N,1:2,1:2) = - X3(N,1:2,1:2)
CALL MATRIXSUM(C,X4,X31,N)
CALL INVERSMATRIX(X31,X32,N)
CALL MATRIXMULTVECTOR(A,BETA,X2,N)
CALL VECTORSUM(D,X2,X21,N)
CALL MATRIXMULTVECTOR(X32,X21,X2,N)
do i = 1, 2
Y(N,i) = X2(N,i)
enddo
do k = N-1, 1, -1
CALL MATRIXMULTVECTOR(ALPHA,Y,X2,K+1)
CALL VECTORSUM(X2,BETA,X21,K+1)
Y(K,1) = X21(K+1,1)
Y(K,2) = X21(K+1,2)
enddo
return
END SUBROUTINE MATRIXPROGONKA
real(kind=ireals) FUNCTION KRON(i,j)

Victor Stepanenko
committed
integer(kind=iintegers) i,j
kron=0.
if(i==j) kron=1.
END FUNCTION
SUBROUTINE IND_STAB_FACT_DB (a,b,c,N,M,ind_stab,ind_bound)
implicit none

Victor Stepanenko
committed
real(kind=ireals), dimension(1:vector_length):: a,b,c
integer(kind=iintegers) M,i,N
logical ind_stab, ind_bound
SAVE
ind_stab=.true.
if (ind_bound .eqv. .true.) then
if (abs(b(N))>=abs(c(N)).or.abs(a(M))>=abs(c(M))) then
ind_stab=.false.
RETURN
endif
endif
do i=N+1,M-1
if (abs(a(i))+abs(b(i))>=abs(c(i))) then
ind_stab=.false.
RETURN
endif
enddo
END SUBROUTINE IND_STAB_FACT_DB
LOGICAL FUNCTION CHECK_PROGONKA(N,a,b,c,d,y)
!Function CHECK_PROGONKA checks the accuracy
!of tridiagonal matrix system solution
implicit none

Victor Stepanenko
committed
integer(kind=iintegers), intent(in):: N
real(kind=ireals), intent(in):: a(1:N)
real(kind=ireals), intent(in):: b(1:N)
real(kind=ireals), intent(in):: c(1:N)
real(kind=ireals), intent(in):: d(1:N)
real(kind=ireals), intent(in):: y(1:N)

Victor Stepanenko
committed
real(kind=ireals), parameter:: del0 = 1.0d-13
real(kind=ireals) del

Victor Stepanenko
committed
integer(kind=iintegers) i
del = max(c(1)*y(1)-b(1)*y(2)-d(1),del)
del = max(c(N)*y(N)-a(N)*y(N-1)-d(N),del)
del = max(-a(i)*y(i-1)+c(i)*y(i)-b(i)*y(i+1)-d(i),del)
enddo
CHECK_PROGONKA = del < del0
END FUNCTION CHECK_PROGONKA
SUBROUTINE PROGONKA(a, b, c, f, y, K, N)
implicit none
!FACTORIZATION METHOD FOR THE FOLLOWING SYSTEM OF LINEAR EQUATIONS:
!-a(i)*y(i-1)+c(i)*y(i)-b(i)*y(i+1)=f(i) i=K+1,N-1
! c(K)*y(K)-b(K)*y(K+1)=f(K)
!-a(N)*y(N-1)+c(N)*y(N)=f(N)
!

Victor Stepanenko
committed
integer(kind=iintegers), intent(in) :: K, N
real(kind=ireals), intent(in) :: a(vector_length), b(vector_length), &
& c(vector_length), f(vector_length)

Victor Stepanenko
committed
real(kind=ireals), intent(out) :: y(vector_length)

Victor Stepanenko
committed
real(kind=ireals) :: alpha(vector_length+2), beta(vector_length+2)
integer(kind=iintegers) :: i
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
SAVE
alpha(K+1) = b(K)/c(K)
beta(K+1) = f(K)/c(K)
do i = K+2, N+1
alpha(i) = b(i-1)/(c(i-1)-a(i-1)*alpha(i-1))
beta(i) = (f(i-1)+a(i-1)*beta(i-1))/ &
& (c(i-1)-a(i-1)*alpha(i-1))
end do
y(N) = beta(N+1)
do i = N-1, K, -1
y(i) = alpha(i+1)*y(i+1)+beta(i+1)
end do
END SUBROUTINE PROGONKA
FUNCTION STEP(x)
! Heavyside (step) function of x
implicit none
real(kind=ireals) :: STEP
real(kind=ireals), intent(in) :: x
STEP = 0.5*(sign(1._ireals,x) + 1.)
END FUNCTION STEP
!>Function ACCUMSUM updates an accumulated mean
FUNCTION ACCUMM(n,sum_nm1,xn)
implicit none
real(kind=ireals), intent(in) :: sum_nm1 !> mean over n-1 values
real(kind=ireals), intent(in) :: xn !> n-th value of time series
integer(kind=iintegers), intent(in) :: n
real(kind=ireals) :: ACCUMM
ACCUMM = ((n-1)*sum_nm1 + xn)/real(n)
END FUNCTION ACCUMM
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
REAL FUNCTION FindDet(matrix, n)
IMPLICIT NONE
REAL, DIMENSION(n,n) :: matrix
INTEGER, INTENT(IN) :: n
REAL :: m, temp
INTEGER :: i, j, k, l
LOGICAL :: DetExists = .TRUE.
l = 1
!Convert to upper triangular form
DO k = 1, n-1
IF (matrix(k,k) == 0) THEN
DetExists = .FALSE.
DO i = k+1, n
IF (matrix(i,k) /= 0) THEN
DO j = 1, n
temp = matrix(i,j)
matrix(i,j)= matrix(k,j)
matrix(k,j) = temp
END DO
DetExists = .TRUE.
l=-l
EXIT
ENDIF
END DO
IF (DetExists .EQV. .FALSE.) THEN
FindDet = 0
return
END IF
ENDIF
DO j = k+1, n
m = matrix(j,k)/matrix(k,k)
DO i = k+1, n
matrix(j,i) = matrix(j,i) - m*matrix(k,i)
END DO
END DO
END DO
!Calculate determinant by finding product of diagonal elements
FindDet = l
DO i = 1, n
FindDet = FindDet * matrix(i,i)
END DO
END FUNCTION FindDet
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
!> Conservative second-order smoothing after Vreman, 2004
SUBROUTINE SMOOTHER_CONSERV(y,dx,N)
implicit none
!Input/output variables
integer, intent(in) :: N
real(kind=8), intent(inout) :: y(1:N)
real(kind=8), intent(in) :: dx(0:N)
!Local variables
integer :: i
real(kind=8), parameter :: gamma = 0.99
real(kind=8), allocatable :: x(:)
real(kind=8) :: dxi, dxii, xx
allocate(x(1:N))
dxi = 0.5*(dx(0) + dx(1))
dxii = 0.5*(dx(1) + dx(2))
xx = 0.5*(1-gamma)/dxi
x(1) = xx*dx(1)*y(2) + (1. - xx*dx(1))*y(1)
do i = 2, N-1
dxi = 0.5*(dx(i-1) + dx(i))
xx = 0.5*(1-gamma)/dxi
x(i) = xx*dx(i-1)*y(i-1) + gamma*y(i) + xx*dx(i)*y(i+1)
enddo
dxi = 0.5*(dx(N-1) + dx(N))
dxii = 0.5*(dx(N-2) + dx(N-1))
xx = 0.5*(1-gamma)/dxi
x(N) = xx*dx(N-1)*y(N-1) + (1.-xx*dx(N-1))*y(N)
y(1:N) = x(1:N)
deallocate(x)
END SUBROUTINE SMOOTHER_CONSERV

Victor Stepanenko
committed
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
!************************************************************************
!* *
!* Program to calculate the first kind modified Bessel function of *
!* integer order N, for any REAL X, using the function BESSI(N,X). *
!* *
!* -------------------------------------------------------------------- *
!* *
!* SAMPLE RUN: *
!* *
!* (Calculate Bessel function for N=2, X=0.75). *
!* *
!* Bessel function of order 2 for X = 0.7500: *
!* *
!* Y = 0.73666878E-01 *
!* *
!* -------------------------------------------------------------------- *
!* Reference: From Numath Library By Tuan Dang Trong in Fortran 77. *
!* *
!* F90 Release 1.2 By J-P Moreau, Paris. *
!* (www.jpmoreau.fr) *
!* *
!* Version 1.1: corected value of P4 in BESSIO (P4=1.2067492 and not *
!* 1.2067429) Aug. 2011. *
!* Version 2: all variables are declared. *
!************************************************************************
!PROGRAM TBESSI
!
! IMPLICIT NONE
! REAL*8 BESSI, X, Y
! INTEGER N
!
! N=2
! X=0.75D0
!
! Y = BESSI(N,X)
!
! write(*,10) N, X
! write(*,20) Y
!
! stop
!
!10 format (/' Bessel Function of order ',I2,' for X=',F8.4,':')
!20 format(/' Y = ',E15.8/)
!
!END
! ----------------------------------------------------------------------
! Auxiliary Bessel functions for N=0, N=1
FUNCTION BESSI0(X)
IMPLICIT NONE
REAL *8 X,BESSI0,Y,P1,P2,P3,P4,P5,P6,P7, &
& Q1,Q2,Q3,Q4,Q5,Q6,Q7,Q8,Q9,AX,BX
DATA P1,P2,P3,P4,P5,P6,P7/1.D0,3.5156229D0,3.0899424D0,1.2067492D0, &
& 0.2659732D0,0.360768D-1,0.45813D-2/
DATA Q1,Q2,Q3,Q4,Q5,Q6,Q7,Q8,Q9/0.39894228D0,0.1328592D-1, &
& 0.225319D-2,-0.157565D-2,0.916281D-2,-0.2057706D-1, &
& 0.2635537D-1,-0.1647633D-1,0.392377D-2/
IF(ABS(X).LT.3.75D0) THEN
Y=(X/3.75D0)**2
BESSI0=P1+Y*(P2+Y*(P3+Y*(P4+Y*(P5+Y*(P6+Y*P7)))))
ELSE
AX=ABS(X)
Y=3.75D0/AX
BX=EXP(AX)/SQRT(AX)
AX=Q1+Y*(Q2+Y*(Q3+Y*(Q4+Y*(Q5+Y*(Q6+Y*(Q7+Y*(Q8+Y*Q9)))))))
BESSI0=AX*BX
ENDIF
RETURN
END
! ----------------------------------------------------------------------
FUNCTION BESSI1(X)
IMPLICIT NONE
REAL *8 X,BESSI1,Y,P1,P2,P3,P4,P5,P6,P7, &
& Q1,Q2,Q3,Q4,Q5,Q6,Q7,Q8,Q9,AX,BX
DATA P1,P2,P3,P4,P5,P6,P7/0.5D0,0.87890594D0,0.51498869D0, &
& 0.15084934D0,0.2658733D-1,0.301532D-2,0.32411D-3/
DATA Q1,Q2,Q3,Q4,Q5,Q6,Q7,Q8,Q9/0.39894228D0,-0.3988024D-1, &
& -0.362018D-2,0.163801D-2,-0.1031555D-1,0.2282967D-1, &
& -0.2895312D-1,0.1787654D-1,-0.420059D-2/
IF(ABS(X).LT.3.75D0) THEN
Y=(X/3.75D0)**2
BESSI1=X*(P1+Y*(P2+Y*(P3+Y*(P4+Y*(P5+Y*(P6+Y*P7))))))
ELSE
AX=ABS(X)
Y=3.75D0/AX
BX=EXP(AX)/SQRT(AX)
AX=Q1+Y*(Q2+Y*(Q3+Y*(Q4+Y*(Q5+Y*(Q6+Y*(Q7+Y*(Q8+Y*Q9)))))))
BESSI1=AX*BX
ENDIF
RETURN
END
! ----------------------------------------------------------------------
! ----------------------------------------------------------------------
FUNCTION BESSI(N,X)
!
! This subroutine calculates the first kind modified Bessel function
! of integer order N, for any REAL X. We use here the classical
! recursion formula, when X > N. For X < N, the Miller's algorithm
! is used to avoid overflows.
! REFERENCE:
! C.W.CLENSHAW, CHEBYSHEV SERIES FOR MATHEMATICAL FUNCTIONS,
! MATHEMATICAL TABLES, VOL.5, 1962.
!
IMPLICIT NONE
INTEGER, PARAMETER :: IACC = 40
REAL*8, PARAMETER :: BIGNO = 1.D10, BIGNI = 1.D-10
INTEGER N, M, J
REAL *8 X,BESSI,TOX,BIM,BI,BIP !,BESSI0,BESSI1
IF (N.EQ.0) THEN
BESSI = BESSI0(X)
RETURN
ENDIF
IF (N.EQ.1) THEN
BESSI = BESSI1(X)
RETURN
ENDIF
IF(X.EQ.0.D0) THEN
BESSI=0.D0
RETURN
ENDIF
TOX = 2.D0/X
BIP = 0.D0
BI = 1.D0
BESSI = 0.D0
M = 2*((N+INT(SQRT(FLOAT(IACC*N)))))
DO 12 J = M,1,-1
BIM = BIP+DFLOAT(J)*TOX*BI
BIP = BI
BI = BIM
IF (ABS(BI).GT.BIGNO) THEN
BI = BI*BIGNI
BIP = BIP*BIGNI
BESSI = BESSI*BIGNI
ENDIF
IF (J.EQ.N) BESSI = BIP
12 CONTINUE
BESSI = BESSI*BESSI0(X)/BI
RETURN
END