LAKE is an extended one-dimensional model of thermodynamic, hydrodynamic and biogeochemical processes in the water basin and the bottom sediments (Stepanenko and Lykosov 2005, Stepanenko et al. 2011). The model simulates vertical heat transfer taking into account the penetration of short-wave radiation in water layers (Heiskanen et al., 2015), ice, snow and bottom sediments. The model allows for the evolution of ice layer at the bottom after complete lake freezing in winter. The equations of the model are formulated in terms of quantities averaged over the horizontal section a water body, which leads to an explicit account of the exchange of momentum, heat, and dissolved gases between water and the inclined bottom. In the water column,
The current version of the model is 2.3
The complete model archive with sample input data:
- LAKE2.0.zip
- LAKE2.1.zip (salinity dynamics in ice cover is added)
- LAKE2.2.zip (input/output of control point added, minor bugs fixed)
- LAKE2.3.zip (commit 7d016e79 in gitlab repository, which is updated by testing at GNU Fortran 9.3.0 compiler; the model is adapted to simulate artificial reservoirs with high throughflow and water level variations; a model configuration for simulating the vertical structure of river flow is added)
-
LAKE2.4.zip (commit f29fb387 in repository; bugs related to k-\epsilonmodel fixed, new b.c. options fork-\epsilon, Cuette-Poiseuille flow setup and turbulence closure added, methane production parameters are set specific for each sediment column, new output options)
- LAKE2.5.zip (commit 82350cae in repository; the code is adapted for ifort compiler, bugs fixed)
- LAKE2.6.zip (commit 08aa0758 in repository; new driving parameters, related to background diffusivity in thermocline, methane production and oxidation in water column, are included in setup file)
When publishing results using LAKE2.0 please refer to:
Stepanenko, V., Mammarella, I., Ojala, A., Miettinen, H., Lykosov, V., & Vesala, T. (2016). LAKE 2.0: a model for temperature, methane, carbon dioxide and oxygen dynamics in lakes. Geoscientific Model Development, 9(5), 1977–2006. http://doi.org/10.5194/gmd-9-1977-2016
Any questions regarding LAKE model please address to Victor Stepanenko (stepanen(at)srcc.msu.ru)
References
- Iakunin, Maksim, Victor Stepanenko, Rui Salgado, Miguel Potes, Alexandra Penha, Maria Helena Novais, and Gonçalo Rodrigues. Numerical study of the seasonal thermal and gas regimes of the largest artificial reservoir in western europe using the LAKE 2.0 model. Geoscientific Model Development, 13(8):3475–3488, 2020. http://dx.doi.org/10.5194/gmd-13-3475-2020
- Heiskanen, J. J., Mammarella, I., Ojala, A., Stepanenko, V., Erkkilä, K.-M., Miettinen, H., … Nordbo, A. (2015). Effects of water clarity on lake stratification and lake-atmosphere heat exchange. Journal of Geophysical Research, 120(15). http://doi.org/10.1002/2014JD022938
- Stepanenko, V. M., Machul’skaya, E. E., Glagolev, M. V., & Lykossov, V. N. (2011). Numerical modeling of methane emissions from lakes in the permafrost zone. Izvestiya, Atmospheric and Oceanic Physics, 47(2), 252–264. http://doi.org/10.1134/S0001433811020113
- Stepanenko, V. M., Martynov, A., Jöhnk, K. D., Subin, Z. M., Perroud, M., Fang, X., … Goyette, S. (2013). A one-dimensional model intercomparison study of thermal regime of a shallow, turbid midlatitude lake. Geoscientific Model Development, 6(4), 1337–1352. http://doi.org/10.5194/gmd-6-1337-2013
- Stepanenko, V., Jöhnk, K. D., Machulskaya, E., Perroud, M., Subin, Z., Nordbo, A., … Mironov, D. (2014). Simulation of surface energy fluxes and stratification of a small boreal lake by a set of one-dimensional models. Tellus, Series A: Dynamic Meteorology and Oceanography, 66(1). http://doi.org/10.3402/tellusa.v66.21389
- Stepanenko, V., Mammarella, I., Ojala, A., Miettinen, H., Lykosov, V., & Vesala, T. (2016). LAKE 2.0: a model for temperature, methane, carbon dioxide and oxygen dynamics in lakes. Geoscientific Model Development, 9(5), 1977–2006. http://doi.org/10.5194/gmd-9-1977-2016
- Stepanenko, V. M., Repina, I. A., Ganbat, G., and Davaa, G. Numerical simulation of ice cover of saline lakes (2019). Izvestiya - Atmospheric and Oceanic Physics, 55(1):129–138, 2019. http://dx.doi.org/10.1134/S0001433819010092
- V. M. Stepanenko, G. Valerio, and M. Pilotti (2020). Horizontal pressure gradient parameterization for one-dimensional lake models. JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS, 12(2):e2019MS001906, 2020, http://dx.doi.org/10.1029/2019ms001906.
- S. Guseva, T. Bleninger, K. Jöhnk, B. A. Polli, Z. Tan, W. Thiery, Q. Zhuang, J. A. Rusak, H. Yao, A. Lorke, and V. Stepanenko (2020). Multimodel simulation of vertical gas transfer in a temperate lake. Hydrology and Earth System Sciences, 24:697–715, 2020, http://dx.doi.org/10.5194/hess-24-697-2020.
- Thiery, W., Stepanenko, V., Fang, X., Jöhnk, K., Li, Z., Martynov, A., … van Lipzig, N. (2014). LakeMIP Kivu: evaluating the representation of a large, deep tropical lake by a set of one-dimensional lake models. Tellus, Series A: Dynamic Meteorology and Oceanography, 66. http://doi.org/doi:10.3402/tellusa.v66.21390
- Volodina, E., Bengtsson, L., & Lykosov, V. N. (2000). Parameterization of heat and moisture transfer in a snow cover for modelling of seasonal variations of land hydrological cycle. Russian Meteorology and Hydrology, (5), 5–14.
- Степаненко В.М. (2018) Параметризация сейш для одномерной модели водоёма. Труды Московского физико-технического института. том 10, № 1, с. 97-111.
- В. М. Степаненко, М. Г. Гречушникова, И. А. Репина. Численное моделирование эмиссии метана из водохранилища. Фундаментальная и прикладная климатология, 2:76–99, 2020.http://dx.doi.org/10.21513/2410-8758-2020-2-76-99
Acknowledgements
The LAKE model development is supported by Russian Science Foundation, grant 17-17-01210.