Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
import numpy as np
import os
import numpy as np
from .binSubfunctions import *
class ProcData:
def __init__(self, filename):
self.filename = filename
self.data = {}
self.nse_read_bin_data = {}
self.variable_names = ""
def __get_variable_names_plt(self):
with open(self.filename, "r") as file:
file_data = file.read().split('\n')
file.close()
names = [variable_name.replace(" ", "").replace('"' , "") for variable_name in file_data[1].split('=')[1].split(',')]
self.variable_names = np.array(names, dtype=object)
def __get_variable_names_bin(self):
f = open(self.filename,'rb')
_ = read_int(f)
_ = read_int(f)
ndims = read_int(f)
data_type_size = read_int(f)
if ndims == 1:
self.variable_names = ['I']
elif ndims == 2:
self.variable_names = ['I', 'J']
elif ndims == 3:
self.variable_names = ['I', 'J', 'K']
if data_type_size == 4:
read_float = read_float32
read_floats = read_floats32
float_type = np.float32
elif data_type_size == 8:
read_float = read_float64
read_floats = read_floats64
float_type = np.float64
else:
raise Exception(f"Unknown data_type value: {data_type_size}. Must be either 4 or 8.")
for _ in range(24):
read_float(f)
nx = read_int(f)
ny = read_int(f)
nz = read_int(f)
# skip gap; reserved for future usage
for _ in range(21):
read_int(f)
for _ in range(2):
read_floats(f, num=nx)
read_floats(f, num=ny)
read_floats(f, num=nz)
read_float(f)
field_type = read_int(f)
if field_type == 0:
nvars = 1
elif field_type == 1:
nvars = ndims
else:
raise Exception(f"Unknown field_type value: {field_type}. Must be either 0 or 1")
len_varnames = []
for _ in range(nvars):
len_varnames += [read_int(f)]
varnames = []
for nvar in range(nvars):
varnames += [read_str(f, length=len_varnames[nvar])]
self.variable_names += varnames
self.variable_names = np.array(self.variable_names, dtype=object)
def __read_plt(self, ndim):
with open(self.filename, "r") as file:
file_data = file.read().split('\n')
file.close()
I = int(file_data[2].split(',')[0].split('=')[1])
if ndim == 1:
var_begin = 1
J = 0
K = 0
elif ndim == 2:
var_begin = 2
J = int(file_data[2].split(',')[1].split('=')[1])
K = 0
elif ndim == 3:
var_begin = 3
J = int(file_data[2].split(',')[1].split('=')[1])
K = int(file_data[2].split(',')[2].split('=')[1])
file_data = np.loadtxt(self.filename, dtype = float, delimiter=' ', skiprows=3, unpack=False, ndmin=2, encoding='bytes')
file_data = file_data.T
if self.var == None:
column_names = [self.variable_names[i] for i in range(var_begin, len(self.variable_names))]
else:
column_names = self.var
if self.mval != None:
print(self.mval)
for col, abs_val in zip(column_names, self.mval):
check_variable_idx = np.where(self.variable_names == col)[0][0]
idx = np.where(np.abs(file_data[check_variable_idx]) > abs_val)[0]
file_data[check_variable_idx][idx] = np.nan
self.data[self.variable_names[0]] = file_data[0][0:I]
if ndim == 2:
self.data[self.variable_names[1]] = file_data[1][: : I]
elif ndim == 3:
self.data[self.variable_names[1]] = file_data[1][: : I]
self.data[self.variable_names[2]] = file_data[2][: : I * J]
i = 0
for name in self.variable_names[ndim : ]:
if ndim == 1:
self.data[name] = file_data[ndim + i]
elif ndim == 2:
self.data[name] = file_data[ndim + i].reshape( J, I )
elif ndim == 3:
self.data[name] = file_data[ndim + i].reshape( K, J, I )
i += 1
self.data['cx'] = I
self.data['cy'] = J
self.data['cz'] = K
def __read_bin(self):
f = open(self.filename,'rb')
fid = read_int(f)
grid_type = read_int(f)
ndims = read_int(f)
data_type_size = read_int(f)
if data_type_size == 4:
read_float = read_float32
read_floats = read_floats32
float_type = np.float32
elif data_type_size == 8:
read_float = read_float64
read_floats = read_floats64
float_type = np.float64
else:
raise Exception(f"Unknown data_type value: {data_type_size}. Must be either 4 or 8.")
x = read_float(f)
y = read_float(f)
z = read_float(f)
xdomainsize = read_float(f)
ydomainsize = read_float(f)
zdomainsize = read_float(f)
# skip gap; reserved for future usage
for _ in range(18):
read_float(f)
nx = read_int(f)
ny = read_int(f)
nz = read_int(f)
if ndims < 3:
nz = 0
if ndims < 2:
ny = 0
dimsizes = ([nx, ny, nz])[0:ndims]
gcx = read_int(f)
gcy = read_int(f)
gcz = read_int(f)
# skip gap; reserved for future usage
for _ in range(18):
read_int(f)
cx = read_floats(f, num=nx)
cy = read_floats(f, num=ny)
cz = read_floats(f, num=nz)
ex = read_floats(f, num=nx)
ey = read_floats(f, num=ny)
ez = read_floats(f, num=nz)
time = read_float(f)
field_type = read_int(f)
if field_type == 0:
nvars = 1
elif field_type == 1:
nvars = ndims
else:
raise Exception(f"Unknown field_type value: {field_type}. Must be either 0 or 1")
len_varnames = []
for _ in range(nvars):
len_varnames += [read_int(f)]
varnames = []
for nvar in range(nvars):
varnames += [read_str(f, length=len_varnames[nvar])]
values = np.fromfile(f, dtype=float_type, count=np.prod(dimsizes)).reshape(dimsizes + [1])
for nvar in range(1,nvars):
vadd = np.fromfile(f, dtype=float_type, count=np.prod(dimsizes)).reshape(dimsizes + [1])
values = np.concatenate((values, vadd), axis=-1)
f.close()
I = nx - 2 * gcx
J = ny - 2 * gcy
K = nz - 2 * gcz
self.data['cx'] = I
self.data['cy'] = J
self.data['cz'] = K
self.variable_names = ['I', 'J', 'K']
for i in range(nvars):
self.variable_names.append(varnames[i][0])
self.data['I'] = cx[gcx:nx - gcx]
self.data['J'] = cy[gcy:ny - gcy]
self.data['K'] = cz[gcz:nz - gcz]
values = values.T
for i in range(ndims, ndims + nvars):
print(values[:, :, :, i - ndims].shape)
self.data[self.variable_names[i]] = values[i - ndims, gcz:nz - gcz, gcy:ny - gcy, gcx:nx - gcx]
if ndims == 1:
var_begin = 1
elif ndims == 2:
var_begin = 2
elif ndims == 3:
var_begin = 3
if self.var == None:
column_names = [self.variable_names[i] for i in range(var_begin, len(self.variable_names))]
else:
column_names = self.var
if self.mval != None:
# print(self.mval)
for col, abs_val in zip(column_names, self.mval):
idx = np.where(np.abs(self.data[col]) > abs_val)
self.data[col][idx] = np.nan
def process_file(self, ndim, column_names, mval):
filename_parts = os.path.splitext(self.filename)
filename_extension = filename_parts[-1]
self.var = column_names
self.mval = mval
if filename_extension == '.plt':
self.__read_plt(ndim)
elif filename_extension == '.nsx':
self.__read_bin()
def get_variable_names(self):
filename_parts = os.path.splitext(self.filename)
filename_extension = filename_parts[-1]
if filename_extension == '.plt':
self.__get_variable_names_plt()
elif filename_extension == '.nsx':
self.__get_variable_names_bin()