#include "../includeF/sfx_def.fi" module sfx_sheba !< @brief SHEBA surface flux module ! modules used ! -------------------------------------------------------------------------------- #ifdef SFX_CHECK_NAN use sfx_common #endif use sfx_data use sfx_surface use sfx_sheba_param #if defined(INCLUDE_CUDA) || defined(INCLUDE_CXX) use iso_c_binding, only: c_loc use C_FUNC #endif ! -------------------------------------------------------------------------------- ! directives list ! -------------------------------------------------------------------------------- implicit none private ! -------------------------------------------------------------------------------- ! public interface ! -------------------------------------------------------------------------------- public :: get_surface_fluxes public :: get_surface_fluxes_vec ! -------------------------------------------------------------------------------- ! -------------------------------------------------------------------------------- type, public :: numericsType integer :: maxiters_charnock = 10 !< maximum (actual) number of iterations in charnock roughness end type ! -------------------------------------------------------------------------------- contains #if defined(INCLUDE_CXX) subroutine set_c_struct_sfx_sheba_param_values(sfx_model_param) type (sfx_sheba_param), intent(inout) :: sfx_model_param sfx_model_param%kappa = kappa sfx_model_param%Pr_t_0_inv = Pr_t_0_inv sfx_model_param%alpha_m = alpha_m sfx_model_param%alpha_h = alpha_h sfx_model_param%a_m = a_m sfx_model_param%b_m = b_m sfx_model_param%a_h = a_h sfx_model_param%b_h = b_h sfx_model_param%c_h = c_h end subroutine set_c_struct_sfx_sheba_param_values #endif ! -------------------------------------------------------------------------------- subroutine get_surface_fluxes_vec(sfx, meteo, numerics, n) !< @brief surface flux calculation for array data !< @details contains C/C++ & CUDA interface ! ---------------------------------------------------------------------------- type (sfxDataVecType), intent(inout) :: sfx type (meteoDataVecType), intent(in) :: meteo type (numericsType), intent(in) :: numerics integer, intent(in) :: n ! ---------------------------------------------------------------------------- ! --- local variables type (meteoDataType) meteo_cell type (sfxDataType) sfx_cell integer i ! ---------------------------------------------------------------------------- #if defined(INCLUDE_CXX) type (meteoDataVecTypeC), pointer :: meteo_c !< meteorological data (input) type (sfxDataVecTypeC), pointer :: sfx_c !< surface flux data (output) type (sfx_sheba_param) :: model_param type (sfx_surface_param) :: surface_param type (sfx_sheba_numericsTypeC) :: numerics_c type (sfx_phys_constants) :: phys_constants numerics_c%maxiters_charnock = numerics%maxiters_charnock phys_constants%Pr_m = Pr_m; phys_constants%nu_air = nu_air; phys_constants%g = g; call set_c_struct_sfx_sheba_param_values(model_param) call set_c_struct_sfx_surface_param_values(surface_param) call set_meteo_vec_c(meteo, meteo_c) call set_sfx_vec_c(sfx, sfx_c) ! call get_surface_fluxes_sheba(c_loc(sfx_c), c_loc(meteo_c), model_param, surface_param, numerics_c, phys_constants, n) deallocate(meteo_c) deallocate(sfx_c) #else do i = 1, n meteo_cell = meteoDataType(& h = meteo%h(i), & U = meteo%U(i), dT = meteo%dT(i), Tsemi = meteo%Tsemi(i), dQ = meteo%dQ(i), & z0_m = meteo%z0_m(i)) call get_surface_fluxes(sfx_cell, meteo_cell, numerics) call push_sfx_data(sfx, sfx_cell, i) end do #endif end subroutine get_surface_fluxes_vec ! -------------------------------------------------------------------------------- ! -------------------------------------------------------------------------------- subroutine get_surface_fluxes(sfx, meteo, numerics) !< @brief surface flux calculation for single cell !< @details contains C/C++ interface ! ---------------------------------------------------------------------------- #ifdef SFX_CHECK_NAN use ieee_arithmetic #endif type (sfxDataType), intent(out) :: sfx type (meteoDataType), intent(in) :: meteo type (numericsType), intent(in) :: numerics ! ---------------------------------------------------------------------------- ! --- meteo derived datatype name shadowing ! ---------------------------------------------------------------------------- real :: h !< constant flux layer height [m] real :: U !< abs(wind speed) at 'h' [m/s] real :: dT !< difference between potential temperature at 'h' and at surface [K] real :: Tsemi !< semi-sum of potential temperature at 'h' and at surface [K] real :: dQ !< difference between humidity at 'h' and at surface [g/g] real :: z0_m !< surface aerodynamic roughness (should be < 0 for water bodies surface) ! ---------------------------------------------------------------------------- ! --- local variables ! ---------------------------------------------------------------------------- real z0_t !< thermal roughness [m] real B !< = ln(z0_m / z0_t) [n/d] real h0_m, h0_t !< = h / z0_m, h / z0_h [n/d] real u_dyn0 !< dynamic velocity in neutral conditions [m/s] real Re !< roughness Reynolds number = u_dyn0 * z0_m / nu [n/d] real zeta !< = z/L [n/d] real Rib !< bulk Richardson number real Udyn, Tdyn, Qdyn !< dynamic scales real phi_m, phi_h !< stability functions (momentum) & (heat) [n/d] real Km !< eddy viscosity coeff. at h [m^2/s] real Pr_t_inv !< invese Prandt number [n/d] real Cm, Ct !< transfer coeff. for (momentum) & (heat) [n/d] integer surface_type !< surface type = (ocean || land) #ifdef SFX_CHECK_NAN real NaN #endif ! ---------------------------------------------------------------------------- #ifdef SFX_CHECK_NAN ! --- checking if arguments are finite if (.not.(is_finite(meteo%U).and.is_finite(meteo%Tsemi).and.is_finite(meteo%dT).and.is_finite(meteo%dQ) & .and.is_finite(meteo%z0_m).and.is_finite(meteo%h))) then NaN = ieee_value(0.0, ieee_quiet_nan) ! setting NaN sfx = sfxDataType(zeta = NaN, Rib = NaN, & Re = NaN, B = NaN, z0_m = NaN, z0_t = NaN, & Rib_conv_lim = NaN, & Cm = NaN, Ct = NaN, Km = NaN, Pr_t_inv = NaN) return end if #endif ! --- shadowing names for clarity U = meteo%U Tsemi = meteo%Tsemi dT = meteo%dT dQ = meteo%dQ h = meteo%h z0_m = meteo%z0_m ! --- define surface type if (z0_m < 0.0) then surface_type = surface_ocean else surface_type = surface_land end if if (surface_type == surface_ocean) then ! --- define surface roughness [momentum] & dynamic velocity in neutral conditions call get_charnock_roughness(z0_m, u_dyn0, U, h, numerics%maxiters_charnock) ! --- define relative height h0_m = h / z0_m endif if (surface_type == surface_land) then ! --- define relative height h0_m = h / z0_m ! --- define dynamic velocity in neutral conditions u_dyn0 = U * kappa / log(h0_m) end if ! --- define thermal roughness & B = log(z0_m / z0_h) Re = u_dyn0 * z0_m / nu_air call get_thermal_roughness(z0_t, B, z0_m, Re, surface_type) ! --- define relative height [thermal] h0_t = h / z0_t ! --- define Ri-bulk Rib = (g / Tsemi) * h * (dT + 0.61e0 * Tsemi * dQ) / U**2 ! --- get the fluxes ! ---------------------------------------------------------------------------- call get_dynamic_scales(Udyn, Tdyn, Qdyn, zeta, & U, Tsemi, dT, dQ, h, z0_m, z0_t, (g / Tsemi), 10) ! ---------------------------------------------------------------------------- call get_phi(phi_m, phi_h, zeta) ! ---------------------------------------------------------------------------- ! --- define transfer coeff. (momentum) & (heat) Cm = 0.0 if (U > 0.0) then Cm = Udyn / U end if Ct = 0.0 if (abs(dT) > 0.0) then Ct = Tdyn / dT end if ! --- define eddy viscosity & inverse Prandtl number Km = kappa * Cm * U * h / phi_m Pr_t_inv = phi_m / phi_h ! --- setting output sfx = sfxDataType(zeta = zeta, Rib = Rib, & Re = Re, B = B, z0_m = z0_m, z0_t = z0_t, & Rib_conv_lim = 0.0, & Cm = Cm, Ct = Ct, Km = Km, Pr_t_inv = Pr_t_inv) end subroutine get_surface_fluxes ! -------------------------------------------------------------------------------- !< @brief get dynamic scales ! -------------------------------------------------------------------------------- subroutine get_dynamic_scales(Udyn, Tdyn, Qdyn, zeta, & U, Tsemi, dT, dQ, z, z0_m, z0_t, beta, maxiters) ! ---------------------------------------------------------------------------- real, intent(out) :: Udyn, Tdyn, Qdyn !< dynamic scales real, intent(out) :: zeta !< = z/L real, intent(in) :: U !< abs(wind speed) at z real, intent(in) :: Tsemi !< semi-sum of temperature at z and at surface real, intent(in) :: dT, dQ !< temperature & humidity difference between z and at surface real, intent(in) :: z !< constant flux layer height real, intent(in) :: z0_m, z0_t !< roughness parameters real, intent(in) :: beta !< buoyancy parameter integer, intent(in) :: maxiters !< maximum number of iterations ! ---------------------------------------------------------------------------- ! --- local variables real, parameter :: gamma = 0.61 real :: psi_m, psi_h real :: psi0_m, psi0_h real :: Linv integer :: i ! ---------------------------------------------------------------------------- Udyn = kappa * U / log(z / z0_m) Tdyn = kappa * dT * Pr_t_0_inv / log(z / z0_t) Qdyn = kappa * dQ * Pr_t_0_inv / log(z / z0_t) zeta = 0.0 ! --- no wind if (Udyn < 1e-5) return Linv = kappa * beta * (Tdyn + gamma * Qdyn * Tsemi) / (Udyn * Udyn) zeta = z * Linv ! --- near neutral case if (Linv < 1e-5) return do i = 1, maxiters call get_psi(psi_m, psi_h, zeta) call get_psi_mh(psi0_m, psi0_h, z0_m * Linv, z0_t * Linv) Udyn = kappa * U / (log(z / z0_m) - (psi_m - psi0_m)) Tdyn = kappa * dT * Pr_t_0_inv / (log(z / z0_t) - (psi_h - psi0_h)) Qdyn = kappa * dQ * Pr_t_0_inv / (log(z / z0_t) - (psi_h - psi0_h)) if (Udyn < 1e-5) exit Linv = kappa * beta * (Tdyn + gamma * Qdyn * Tsemi) / (Udyn * Udyn) zeta = z * Linv end do end subroutine get_dynamic_scales ! -------------------------------------------------------------------------------- ! stability functions ! -------------------------------------------------------------------------------- subroutine get_phi(phi_m, phi_h, zeta) !< @brief stability functions (momentum) & (heat): neutral case ! ---------------------------------------------------------------------------- real, intent(out) :: phi_m, phi_h !< stability functions real, intent(in) :: zeta !< = z/L ! ---------------------------------------------------------------------------- if (zeta >= 0.0) then phi_m = 1.0 + (a_m * zeta * (1.0 + zeta)**(1.0 / 3.0)) / (1.0 + b_m * zeta) phi_h = 1.0 + (a_h * zeta + b_h * zeta * zeta) / (1.0 + c_h * zeta + zeta * zeta) else phi_m = (1.0 - alpha_m * zeta)**(-0.25) phi_h = (1.0 - alpha_h * zeta)**(-0.5) end if end subroutine ! -------------------------------------------------------------------------------- ! universal functions ! -------------------------------------------------------------------------------- subroutine get_psi(psi_m, psi_h, zeta) !< @brief universal functions (momentum) & (heat): neutral case ! ---------------------------------------------------------------------------- real, intent(out) :: psi_m, psi_h !< universal functions real, intent(in) :: zeta !< = z/L ! ---------------------------------------------------------------------------- ! --- local variables real :: x_m, x_h real :: q_m, q_h ! ---------------------------------------------------------------------------- if (zeta >= 0.0) then q_m = ((1.0 - b_m) / b_m)**(1.0 / 3.0) q_h = sqrt(c_h * c_h - 4.0) x_m = (1.0 + zeta)**(1.0 / 3.0) x_h = zeta psi_m = -3.0 * (a_m / b_m) * (x_m - 1.0) + 0.5 * (a_m / b_m) * q_m * (& 2.0 * log((x_m + q_m) / (1.0 + q_m)) - & log((x_m * x_m - x_m * q_m + q_m * q_m) / (1.0 - q_m + q_m * q_m)) + & 2.0 * sqrt(3.0) * (& atan((2.0 * x_m - q_m) / (sqrt(3.0) * q_m)) - & atan((2.0 - q_m) / (sqrt(3.0) * q_m)))) psi_h = -0.5 * b_h * log(1.0 + c_h * x_h + x_h * x_h) + & ((-a_h / q_h) + ((b_h * c_h) / (2.0 * q_h))) * (& log((2.0 * x_h + c_h - q_h) / (2.0 * x_h + c_h + q_h)) - & log((c_h - q_h) / (c_h + q_h))) else x_m = (1.0 - alpha_m * zeta)**(0.25) x_h = (1.0 - alpha_h * zeta)**(0.25) psi_m = (4.0 * atan(1.0) / 2.0) + 2.0 * log(0.5 * (1.0 + x_m)) + log(0.5 * (1.0 + x_m * x_m)) - 2.0 * atan(x_m) psi_h = 2.0 * log(0.5 * (1.0 + x_h * x_h)) end if end subroutine subroutine get_psi_mh(psi_m, psi_h, zeta_m, zeta_h) !< @brief universal functions (momentum) & (heat): neutral case ! ---------------------------------------------------------------------------- real, intent(out) :: psi_m, psi_h !< universal functions real, intent(in) :: zeta_m, zeta_h !< = z/L ! ---------------------------------------------------------------------------- ! --- local variables real :: x_m, x_h real :: q_m, q_h ! ---------------------------------------------------------------------------- if (zeta_m >= 0.0) then q_m = ((1.0 - b_m) / b_m)**(1.0 / 3.0) x_m = (1.0 + zeta_m)**(1.0 / 3.0) psi_m = -3.0 * (a_m / b_m) * (x_m - 1.0) + 0.5 * (a_m / b_m) * q_m * (& 2.0 * log((x_m + q_m) / (1.0 + q_m)) - & log((x_m * x_m - x_m * q_m + q_m * q_m) / (1.0 - q_m + q_m * q_m)) + & 2.0 * sqrt(3.0) * (& atan((2.0 * x_m - q_m) / (sqrt(3.0) * q_m)) - & atan((2.0 - q_m) / (sqrt(3.0) * q_m)))) else x_m = (1.0 - alpha_m * zeta_m)**(0.25) psi_m = (4.0 * atan(1.0) / 2.0) + 2.0 * log(0.5 * (1.0 + x_m)) + log(0.5 * (1.0 + x_m * x_m)) - 2.0 * atan(x_m) end if if (zeta_h >= 0.0) then q_h = sqrt(c_h * c_h - 4.0) x_h = zeta_h psi_h = -0.5 * b_h * log(1.0 + c_h * x_h + x_h * x_h) + & ((-a_h / q_h) + ((b_h * c_h) / (2.0 * q_h))) * (& log((2.0 * x_h + c_h - q_h) / (2.0 * x_h + c_h + q_h)) - & log((c_h - q_h) / (c_h + q_h))) else x_h = (1.0 - alpha_h * zeta_h)**(0.25) psi_h = 2.0 * log(0.5 * (1.0 + x_h * x_h)) end if end subroutine ! -------------------------------------------------------------------------------- end module sfx_sheba