module module_z0t_snow !< @brief surface thermal roughness parameterizations for snow implicit none public :: get_thermal_roughness_kl public :: get_thermal_roughness_ca public :: get_thermal_roughness_zm public :: get_thermal_roughness_br ! -------------------------------------------------------------------------------- real, parameter, private :: kappa = 0.40 !< von Karman constant [n/d] real, parameter, private :: Pr_m = 0.71 !< molecular Prandtl number (air) [n/d] !< Re fully roughness minimum value [n/d] real, parameter :: Re_rough_min = 16.3 !< roughness model coeff. [n/d] !< --- transitional mode !< B = log(z0_m / z0_t) = B1 * log(B3 * Re) + B2 real, parameter :: B1_rough = 5.0 / 6.0 real, parameter :: B2_rough = 0.45 real, parameter :: B3_rough = kappa * Pr_m !< --- fully rough mode (Re > Re_rough_min) !< B = B4 * Re^(B2) real, parameter :: B4_rough =(0.14 * (30.0**B2_rough)) * (Pr_m**0.8) real, parameter :: B_max_snow = 8.0 contains ! thermal roughness definition by Kazakov, Lykosov ! -------------------------------------------------------------------------------- subroutine get_thermal_roughness_kl(z0_t, B, & z0_m, Re) ! ---------------------------------------------------------------------------- real, intent(out) :: z0_t !< thermal roughness [m] real, intent(out) :: B !< = log(z0_m / z0_t) [n/d] real, intent(in) :: z0_m !< aerodynamic roughness [m] real, intent(in) :: Re !< roughness Reynolds number [n/d] ! ---------------------------------------------------------------------------- !--- define B = log(z0_m / z0_t) if (Re <= Re_rough_min) then B = B1_rough * alog(B3_rough * Re) + B2_rough else ! *: B4 takes into account Re value at z' ~ O(10) z0 B = B4_rough * (Re**B2_rough) end if B = min(B, B_max_snow) z0_t = z0_m / exp(B) end subroutine ! -------------------------------------------------------------------------------- ! thermal roughness definition by Cahill, A.T., Parlange, M.B., Albertson, J.D., 1997. ! -------------------------------------------------------------------------------- subroutine get_thermal_roughness_ca(z0_t, B, & z0_m, Re) ! ---------------------------------------------------------------------------- real, intent(out) :: z0_t !< thermal roughness [m] real, intent(out) :: B !< = log(z0_m / z0_t) [n/d] real, intent(in) :: z0_m !< aerodynamic roughness [m] real, intent(in) :: Re !< roughness Reynolds number [n/d] B=2.46*(Re**0.25)-3.8 !4-Cahill et al. ! --- define roughness [thermal] z0_t = z0_m / exp(B) end subroutine ! -------------------------------------------------------------------------------- ! thermal roughness definition z0_t = C*z0_m ! -------------------------------------------------------------------------------- subroutine get_thermal_roughness_zm(z0_t, B, & z0_m, Czm) ! ---------------------------------------------------------------------------- real, intent(out) :: z0_t !< thermal roughness [m] real, intent(out) :: B !< = log(z0_m / z0_t) [n/d] real, intent(in) :: z0_m !< aerodynamic roughness [m] real, intent(in) :: Czm !< proportionality coefficient z0_t =Czm*z0_m B=log(z0_m / z0_t) end subroutine ! -------------------------------------------------------------------------------- ! thermal roughness definition by Brutsaert W., 2003. ! -------------------------------------------------------------------------------- subroutine get_thermal_roughness_br(z0_t, B, & z0_m, Re) ! ---------------------------------------------------------------------------- real, intent(out) :: z0_t !< thermal roughness [m] real, intent(out) :: B !< = log(z0_m / z0_t) [n/d] real, intent(in) :: z0_m !< aerodynamic roughness [m] real, intent(in) :: Re !< roughness Reynolds number [n/d] B=2.46*(Re**0.25)-2.0 !Brutsaert ! --- define roughness [thermal] z0_t = z0_m / exp(B) end subroutine end module module_z0t_snow