#include <cmath> #include <iostream> #include "../includeCXX/sfx_compute_sheba.h" #include "../includeCXX/sfx_surface.h" template<typename T> void get_psi_mh(T &psi_m, T &psi_h, const T zeta_m, const T zeta_h, const T alpha_m, const T alpha_h, const T a_m, const T a_h, const T b_m, const T b_h, const T c_h) { T x_m, x_h; T q_m, q_h; if (zeta_m >= 0.0) { q_m = pow((1.0 - b_m) / b_m, 1.0 / 3.0); x_m = pow(1.0 + zeta_m, 1.0 / 3.0); psi_m = -3.0 * (a_m / b_m) * (x_m - 1.0) + 0.5 * (a_m / b_m) * q_m * (2.0 * log((x_m + q_m) / (1.0 + q_m)) - log((x_m * x_m - x_m * q_m + q_m * q_m) / (1.0 - q_m + q_m * q_m)) + 2.0 * sqrt(3.0) * (atan((2.0 * x_m - q_m) / (sqrt(3.0) * q_m)) - atan((2.0 - q_m) / (sqrt(3.0) * q_m)))); } else { x_m = pow(1.0 - alpha_m * zeta_m, 0.25); psi_m = (4.0 * atan(1.0) / 2.0) + 2.0 * log(0.5 * (1.0 + x_m)) + log(0.5 * (1.0 + x_m * x_m)) - 2.0 * atan(x_m); } if (zeta_h >= 0.0) { q_h = sqrt(c_h * c_h - 4.0); x_h = zeta_h; psi_h = -0.5 * b_h * log(1.0 + c_h * x_h + x_h * x_h) + ((-a_h / q_h) + ((b_h * c_h) / (2.0 * q_h))) * (log((2.0 * x_h + c_h - q_h) / (2.0 * x_h + c_h + q_h)) - log((c_h - q_h) / (c_h + q_h))); } else { x_h = pow(1.0 - alpha_h * zeta_h, 0.25); psi_h = 2.0 * log(0.5 * (1.0 + x_h * x_h)); } } template void get_psi_mh(float &psi_m, float &psi_h, const float zeta_m, const float zeta_h, const float alpha_m, const float alpha_h, const float a_m, const float a_h, const float b_m, const float b_h, const float c_h); template void get_psi_mh(double &psi_m, double &psi_h, const double zeta_m, const double zeta_h, const double alpha_m, const double alpha_h, const double a_m, const double a_h, const double b_m, const double b_h, const double c_h); template<typename T> void get_psi(T &psi_m, T &psi_h, const T zeta, const T alpha_m, const T alpha_h, const T a_m, const T a_h, const T b_m, const T b_h, const T c_h) { T x_m, x_h; T q_m, q_h; if (zeta >= 0.0) { q_m = pow((1.0 - b_m) / b_m, 1.0 / 3.0); q_h = sqrt(c_h * c_h - 4.0); x_m = pow(1.0 + zeta, 1.0 / 3.0); x_h = zeta; psi_m = -3.0 * (a_m / b_m) * (x_m - 1.0) + 0.5 * (a_m / b_m) * q_m * (2.0 * log((x_m + q_m) / (1.0 + q_m)) - log((x_m * x_m - x_m * q_m + q_m * q_m) / (1.0 - q_m + q_m * q_m)) + 2.0 * sqrt(3.0) * (atan((2.0 * x_m - q_m) / (sqrt(3.0) * q_m)) - atan((2.0 - q_m) / (sqrt(3.0) * q_m)))); psi_h = -0.5 * b_h * log(1.0 + c_h * x_h + x_h * x_h) + ((-a_h / q_h) + ((b_h * c_h) / (2.0 * q_h))) * (log((2.0 * x_h + c_h - q_h) / (2.0 * x_h + c_h + q_h)) - log((c_h - q_h) / (c_h + q_h))); } else { x_m = pow(1.0 - alpha_m * zeta, 0.25); x_h = pow(1.0 - alpha_h * zeta, 0.25); psi_m = (4.0 * atan(1.0) / 2.0) + 2.0 * log(0.5 * (1.0 + x_m)) + log(0.5 * (1.0 + x_m * x_m)) - 2.0 * atan(x_m); psi_h = 2.0 * log(0.5 * (1.0 + x_h * x_h)); } } template void get_psi(float &psi_m, float &psi_h, const float zeta, const float alpha_m, const float alpha_h, const float a_m, const float a_h, const float b_m, const float b_h, const float c_h); template void get_psi(double &psi_m, double &psi_h, const double zeta, const double alpha_m, const double alpha_h, const double a_m, const double a_h, const double b_m, const double b_h, const double c_h); template<typename T> void get_dynamic_scales(T &Udyn, T &Tdyn, T &Qdyn, T &zeta, const T U, const T Tsemi, const T dT, const T dQ, const T z, const T z0_m, const T z0_t, const T beta, const T kappa, const T Pr_t_0_inv, const T alpha_m, const T alpha_h, const T a_m, const T a_h, const T b_m, const T b_h, const T c_h, const int maxiters) { T psi_m, psi_h, psi0_m, psi0_h, Linv; const T gamma = 0.61; Udyn = kappa * U / log(z / z0_m); Tdyn = kappa * dT * Pr_t_0_inv / log(z / z0_t); Qdyn = kappa * dQ * Pr_t_0_inv / log(z / z0_t); zeta = 0.0; // --- no wind if (Udyn < 1e-5) return; Linv = kappa * beta * (Tdyn + gamma * Qdyn * Tsemi) / (Udyn * Udyn); zeta = z * Linv; // --- near neutral case if (Linv < 1e-5) return; for (int i = 0; i < maxiters; i++) { get_psi(psi_m, psi_h, zeta, alpha_m, alpha_h, a_m, a_h, b_m, b_h, c_h); get_psi_mh(psi0_m, psi0_h, z0_m * Linv, z0_t * Linv, alpha_m, alpha_h, a_m, a_h, b_m, b_h, c_h); Udyn = kappa * U / (log(z / z0_m) - (psi_m - psi0_m)); Tdyn = kappa * dT * Pr_t_0_inv / (log(z / z0_t) - (psi_h - psi0_h)); Qdyn = kappa * dQ * Pr_t_0_inv / (log(z / z0_t) - (psi_h - psi0_h)); if (Udyn < 1e-5) break; Linv = kappa * beta * (Tdyn + gamma * Qdyn * Tsemi) / (Udyn * Udyn); zeta = z * Linv; } } template void get_dynamic_scales(float &Udyn, float &Tdyn, float &Qdyn, float & zeta, const float U, const float Tsemi, const float dT, const float dQ, const float z, const float z0_m, const float z0_t, const float beta, const float kappa, const float Pr_t_0_inv, const float alpha_m, const float alpha_h, const float a_m, const float a_h, const float b_m, const float b_h, const float c_h, const int maxiters); template void get_dynamic_scales(double &Udyn, double &Tdyn, double &Qdyn, double & zeta, const double U, const double Tsemi, const double dT, const double dQ, const double z, const double z0_m, const double z0_t, const double beta, const double kappa, const double Pr_t_0_inv, const double alpha_m, const double alpha_h, const double a_m, const double a_h, const double b_m, const double b_h, const double c_h, const int maxiters); template<typename T> void get_phi(T &phi_m, T &phi_h, const T zeta, const T alpha_m, const T alpha_h, const T a_m, const T a_h, const T b_m, const T b_h, const T c_h) { if (zeta >= 0.0) { phi_m = 1.0 + (a_m * zeta * pow(1.0 + zeta, 1.0 / 3.0) ) / (1.0 + b_m * zeta); phi_h = 1.0 + (a_h * zeta + b_h * zeta * zeta) / (1.0 + c_h * zeta + zeta * zeta); } else { phi_m = pow(1.0 - alpha_m * zeta, -0.25); phi_h = pow(1.0 - alpha_h * zeta, -0.5); } } template void get_phi(float &phi_m, float &phi_h, const float zeta, const float alpha_m, const float alpha_h, const float a_m, const float a_h, const float b_m, const float b_h, const float c_h); template void get_phi(double &phi_m, double &phi_h, const double zeta, const double alpha_m, const double alpha_h, const double a_m, const double a_h, const double b_m, const double b_h, const double c_h); template<typename T> void compute_flux_sheba_cpu(T *zeta_, T *Rib_, T *Re_, T *B_, T *z0_m_, T *z0_t_, T *Rib_conv_lim_, T *Cm_, T *Ct_, T *Km_, T *Pr_t_inv_, const T *U_, const T *dT_, const T *Tsemi_, const T *dQ_, const T *h_, const T *in_z0_m_, const T kappa, const T Pr_t_0_inv, const T alpha_m, const T alpha_h, const T a_m, const T a_h, const T b_m, const T b_h, const T c_h, const T Re_rough_min, const T B1_rough, const T B2_rough, const T B_max_land, const T B_max_ocean, const T B_max_lake, const T gamma_c, const T Re_visc_min, const T Pr_m, const T nu_air, const T g, const int maxiters_charnock, const int grid_size) { T h, U, dT, Tsemi, dQ, z0_m; T z0_t, B, h0_m, h0_t, u_dyn0, Re, zeta, Rib, Udyn, Tdyn, Qdyn, phi_m, phi_h, Km, Pr_t_inv, Cm, Ct; const T B3_rough = kappa * Pr_m, B4_rough =(0.14 * (pow(30.0, B2_rough))) * (pow(Pr_m, 0.8)); const T h_charnock = 10.0, c1_charnock = log(h_charnock * (g / gamma_c)), c2_charnock = Re_visc_min * nu_air * c1_charnock; int surface_type; for (int step = 0; step < grid_size; step++) { U = U_[step]; Tsemi = Tsemi_[step]; dT = dT_[step]; dQ = dQ_[step]; h = h_[step]; z0_m = in_z0_m_[step]; if (z0_m < 0.0) surface_type = 0; else surface_type = 1; if (surface_type == 0) { get_charnock_roughness(z0_m, u_dyn0, h, U, kappa, h_charnock, c1_charnock, c2_charnock, maxiters_charnock); h0_m = h / z0_m; } if (surface_type == 1) { h0_m = h / z0_m; u_dyn0 = U * kappa / log(h0_m); } Re = u_dyn0 * z0_m / nu_air; get_thermal_roughness(z0_t, B, z0_m, Re, Re_rough_min, B1_rough, B2_rough, B3_rough, B4_rough, B_max_ocean, B_max_lake, B_max_land, surface_type); // --- define relative height [thermal] h0_t = h / z0_t; // --- define Ri-bulk Rib = (g / Tsemi) * h * (dT + 0.61e0 * Tsemi * dQ) / (U*U); // --- get the fluxes // ---------------------------------------------------------------------------- get_dynamic_scales(Udyn, Tdyn, Qdyn, zeta, U, Tsemi, dT, dQ, h, z0_m, z0_t, (g / Tsemi), kappa, Pr_t_0_inv, alpha_m, alpha_h, a_m, a_h, b_m, b_h, c_h, 10); // ---------------------------------------------------------------------------- get_phi(phi_m, phi_h, zeta, alpha_m, alpha_h, a_m, a_h, b_m, b_h, c_h); // ---------------------------------------------------------------------------- // --- define transfer coeff. (momentum) & (heat) Cm = 0.0; if (U > 0.0) Cm = Udyn / U; Ct = 0.0; if (fabs(dT) > 0.0) Ct = Tdyn / dT; // --- define eddy viscosity & inverse Prandtl number Km = kappa * Cm * U * h / phi_m; Pr_t_inv = phi_m / phi_h; zeta_[step] = zeta; Rib_[step] = Rib; Re_[step] = Re; B_[step] = B; z0_m_[step] = z0_m; z0_t_[step] = z0_t; Rib_conv_lim_[step] = 0.0; Cm_[step] = Cm; Ct_[step] = Ct; Km_[step] = Km; Pr_t_inv_[step] = Pr_t_inv; } } template void compute_flux_sheba_cpu(float *zeta_, float *Rib_, float *Re_, float *B_, float *z0_m_, float *z0_t_, float *Rib_conv_lim_, float *Cm_, float *Ct_, float *Km_, float *Pr_t_inv_, const float *U, const float *dt, const float *T_semi, const float *dq, const float *H, const float *in_z0_m, const float kappa, const float Pr_t_0_inv, const float alpha_m, const float alpha_h, const float a_m, const float a_h, const float b_m, const float b_h, const float c_h, const float Re_rough_min, const float B1_rough, const float B2_rough, const float B_max_land, const float B_max_ocean, const float B_max_lake, const float gamma_c, const float Re_visc_min, const float Pr_m, const float nu_air, const float g, const int maxiters_charnock, const int grid_size); template void compute_flux_sheba_cpu(double *zeta_, double *Rib_, double *Re_, double *B_, double *z0_m_, double *z0_t_, double *Rib_conv_lim_, double *Cm_, double *Ct_, double *Km_, double *Pr_t_inv_, const double *U, const double *dt, const double *T_semi, const double *dq, const double *H, const double *in_z0_m, const double kappa, const double Pr_t_0_inv, const double alpha_m, const double alpha_h, const double a_m, const double a_h, const double b_m, const double b_h, const double c_h, const double Re_rough_min, const double B1_rough, const double B2_rough, const double B_max_land, const double B_max_ocean, const double B_max_lake, const double gamma_c, const double Re_visc_min, const double Pr_m, const double nu_air, const double g, const int maxiters_charnock, const int grid_size);