#include <iostream> #include "../includeCU/sfx_compute_sheba.cuh" #include "../includeCU/sfx_surface.cuh" #define gpuErrchk(ans) { gpuAssert((ans), __FILE__, __LINE__); } inline void gpuAssert(cudaError_t code, const char *file, int line, bool abort=true) { if (code != cudaSuccess) { fprintf(stderr,"GPUassert: %s %s %d\n", cudaGetErrorString(code), file, line); if (abort) exit(code); } } template<typename T> __device__ void get_charnock_roughness(T &z0_m, T &u_dyn0, const T h, const T U, const T kappa, const T h_charnock, const T c1_charnock, const T c2_charnock, const int maxiters) { T Uc, a, b, c, c_min, f; Uc = U; a = 0.0; b = 25.0; c_min = log(h_charnock) / kappa; for (int i = 0; i < maxiters; i++) { f = c1_charnock - 2.0 * log(Uc); for (int j = 0; j < maxiters; j++) { c = (f + 2.0 * log(b)) / kappa; if (U <= 8.0e0) a = log(1.0 + c2_charnock * ( pow(b / Uc, 3) ) ) / kappa; c = max(c - a, c_min); b = c; } z0_m = h_charnock * exp(-c * kappa); z0_m = max(z0_m, T(0.000015e0)); Uc = U * log(h_charnock / z0_m) / log(h / z0_m); } u_dyn0 = Uc / c; } template __device__ void get_charnock_roughness(float &z0_m, float &u_dyn0, const float h, const float U, const float kappa, const float h_charnock, const float c1_charnock, const float c2_charnock, const int maxiters); template __device__ void get_charnock_roughness(double &z0_m, double &u_dyn0, const double h, const double U, const double kappa, const double h_charnock, const double c1_charnock, const double c2_charnock, const int maxiters); template<typename T> __device__ void get_thermal_roughness(T &z0_t, T &B, const T z0_m, const T Re, const T Re_rough_min, const T B1_rough, const T B2_rough, const T B3_rough, const T B4_rough, const T B_max_ocean, const T B_max_lake, const T B_max_land, const int surface_type) { // --- define B = log(z0_m / z0_t) if (Re <= Re_rough_min) B = B1_rough * log(B3_rough * Re) + B2_rough; else // *: B4 takes into account Re value at z' ~ O(10) z0 B = B4_rough * (pow(Re, B2_rough)); // --- apply max restriction based on surface type if (surface_type == 0) B = min(B, B_max_ocean); else if (surface_type == 2) B = min(B, B_max_lake); else if (surface_type == 1) B = min(B, B_max_land); // --- define roughness [thermal] z0_t = z0_m / exp(B); } template __device__ void get_thermal_roughness(float &z0_t, float &B, const float z0_m, const float Re, const float Re_rough_min, const float B1_rough, const float B2_rough, const float B3_rough, const float B4_rough, const float B_max_ocean, const float B_max_lake, const float B_max_land, const int surface_type); template __device__ void get_thermal_roughness(double &z0_t, double &B, const double z0_m, const double Re, const double Re_rough_min, const double B1_rough, const double B2_rough, const double B3_rough, const double B4_rough, const double B_max_ocean, const double B_max_lake, const double B_max_land, const int surface_type); template<typename T> __device__ void get_psi_mh(T &psi_m, T &psi_h, const T zeta_m, const T zeta_h, const T alpha_m, const T alpha_h, const T a_m, const T a_h, const T b_m, const T b_h, const T c_h) { T x_m, x_h; T q_m, q_h; if (zeta_m >= 0.0) { q_m = pow((1.0 - b_m) / b_m, 1.0 / 3.0); x_m = pow(1.0 + zeta_m, 1.0 / 3.0); psi_m = -3.0 * (a_m / b_m) * (x_m - 1.0) + 0.5 * (a_m / b_m) * q_m * (2.0 * log((x_m + q_m) / (1.0 + q_m)) - log((x_m * x_m - x_m * q_m + q_m * q_m) / (1.0 - q_m + q_m * q_m)) + 2.0 * sqrt(3.0) * (atan((2.0 * x_m - q_m) / (sqrt(3.0) * q_m)) - atan((2.0 - q_m) / (sqrt(3.0) * q_m)))); } else { x_m = pow(1.0 - alpha_m * zeta_m, 0.25); psi_m = (4.0 * atan(1.0) / 2.0) + 2.0 * log(0.5 * (1.0 + x_m)) + log(0.5 * (1.0 + x_m * x_m)) - 2.0 * atan(x_m); } if (zeta_h >= 0.0) { q_h = sqrt(c_h * c_h - 4.0); x_h = zeta_h; psi_h = -0.5 * b_h * log(1.0 + c_h * x_h + x_h * x_h) + ((-a_h / q_h) + ((b_h * c_h) / (2.0 * q_h))) * (log((2.0 * x_h + c_h - q_h) / (2.0 * x_h + c_h + q_h)) - log((c_h - q_h) / (c_h + q_h))); } else { x_h = pow(1.0 - alpha_h * zeta_h, 0.25); psi_h = 2.0 * log(0.5 * (1.0 + x_h * x_h)); } } template __device__ void get_psi_mh(float &psi_m, float &psi_h, const float zeta_m, const float zeta_h, const float alpha_m, const float alpha_h, const float a_m, const float a_h, const float b_m, const float b_h, const float c_h); template __device__ void get_psi_mh(double &psi_m, double &psi_h, const double zeta_m, const double zeta_h, const double alpha_m, const double alpha_h, const double a_m, const double a_h, const double b_m, const double b_h, const double c_h); template<typename T> __device__ void get_psi(T &psi_m, T &psi_h, const T zeta, const T alpha_m, const T alpha_h, const T a_m, const T a_h, const T b_m, const T b_h, const T c_h) { T x_m, x_h; T q_m, q_h; if (zeta >= 0.0) { q_m = pow((1.0 - b_m) / b_m, 1.0 / 3.0); q_h = sqrt(c_h * c_h - 4.0); x_m = pow(1.0 + zeta, 1.0 / 3.0); x_h = zeta; psi_m = -3.0 * (a_m / b_m) * (x_m - 1.0) + 0.5 * (a_m / b_m) * q_m * (2.0 * log((x_m + q_m) / (1.0 + q_m)) - log((x_m * x_m - x_m * q_m + q_m * q_m) / (1.0 - q_m + q_m * q_m)) + 2.0 * sqrt(3.0) * (atan((2.0 * x_m - q_m) / (sqrt(3.0) * q_m)) - atan((2.0 - q_m) / (sqrt(3.0) * q_m)))); psi_h = -0.5 * b_h * log(1.0 + c_h * x_h + x_h * x_h) + ((-a_h / q_h) + ((b_h * c_h) / (2.0 * q_h))) * (log((2.0 * x_h + c_h - q_h) / (2.0 * x_h + c_h + q_h)) - log((c_h - q_h) / (c_h + q_h))); } else { x_m = pow(1.0 - alpha_m * zeta, 0.25); x_h = pow(1.0 - alpha_h * zeta, 0.25); psi_m = (4.0 * atan(1.0) / 2.0) + 2.0 * log(0.5 * (1.0 + x_m)) + log(0.5 * (1.0 + x_m * x_m)) - 2.0 * atan(x_m); psi_h = 2.0 * log(0.5 * (1.0 + x_h * x_h)); } } template __device__ void get_psi(float &psi_m, float &psi_h, const float zeta, const float alpha_m, const float alpha_h, const float a_m, const float a_h, const float b_m, const float b_h, const float c_h); template __device__ void get_psi(double &psi_m, double &psi_h, const double zeta, const double alpha_m, const double alpha_h, const double a_m, const double a_h, const double b_m, const double b_h, const double c_h); template<typename T> __device__ void get_dynamic_scales(T &Udyn, T &Tdyn, T &Qdyn, T &zeta, const T U, const T Tsemi, const T dT, const T dQ, const T z, const T z0_m, const T z0_t, const T beta, const T kappa, const T Pr_t_0_inv, const T alpha_m, const T alpha_h, const T a_m, const T a_h, const T b_m, const T b_h, const T c_h, const int maxiters) { T psi_m, psi_h, psi0_m, psi0_h, Linv; const T gamma = 0.61; Udyn = kappa * U / log(z / z0_m); Tdyn = kappa * dT * Pr_t_0_inv / log(z / z0_t); Qdyn = kappa * dQ * Pr_t_0_inv / log(z / z0_t); zeta = 0.0; // --- no wind if (Udyn < 1e-5) return; Linv = kappa * beta * (Tdyn + gamma * Qdyn * Tsemi) / (Udyn * Udyn); zeta = z * Linv; // --- near neutral case if (Linv < 1e-5) return; for (int i = 0; i < maxiters; i++) { get_psi(psi_m, psi_h, zeta, alpha_m, alpha_h, a_m, a_h, b_m, b_h, c_h); get_psi_mh(psi0_m, psi0_h, z0_m * Linv, z0_t * Linv, alpha_m, alpha_h, a_m, a_h, b_m, b_h, c_h); Udyn = kappa * U / (log(z / z0_m) - (psi_m - psi0_m)); Tdyn = kappa * dT * Pr_t_0_inv / (log(z / z0_t) - (psi_h - psi0_h)); Qdyn = kappa * dQ * Pr_t_0_inv / (log(z / z0_t) - (psi_h - psi0_h)); if (Udyn < 1e-5) break; Linv = kappa * beta * (Tdyn + gamma * Qdyn * Tsemi) / (Udyn * Udyn); zeta = z * Linv; } } template __device__ void get_dynamic_scales(float &Udyn, float &Tdyn, float &Qdyn, float & zeta, const float U, const float Tsemi, const float dT, const float dQ, const float z, const float z0_m, const float z0_t, const float beta, const float kappa, const float Pr_t_0_inv, const float alpha_m, const float alpha_h, const float a_m, const float a_h, const float b_m, const float b_h, const float c_h, const int maxiters); template __device__ void get_dynamic_scales(double &Udyn, double &Tdyn, double &Qdyn, double & zeta, const double U, const double Tsemi, const double dT, const double dQ, const double z, const double z0_m, const double z0_t, const double beta, const double kappa, const double Pr_t_0_inv, const double alpha_m, const double alpha_h, const double a_m, const double a_h, const double b_m, const double b_h, const double c_h, const int maxiters); template<typename T> __device__ void get_phi(T &phi_m, T &phi_h, const T zeta, const T alpha_m, const T alpha_h, const T a_m, const T a_h, const T b_m, const T b_h, const T c_h) { if (zeta >= 0.0) { phi_m = 1.0 + (a_m * zeta * pow(1.0 + zeta, 1.0 / 3.0) ) / (1.0 + b_m * zeta); phi_h = 1.0 + (a_h * zeta + b_h * zeta * zeta) / (1.0 + c_h * zeta + zeta * zeta); } else { phi_m = pow(1.0 - alpha_m * zeta, -0.25); phi_h = pow(1.0 - alpha_h * zeta, -0.5); } } template __device__ void get_phi(float &phi_m, float &phi_h, const float zeta, const float alpha_m, const float alpha_h, const float a_m, const float a_h, const float b_m, const float b_h, const float c_h); template __device__ void get_phi(double &phi_m, double &phi_h, const double zeta, const double alpha_m, const double alpha_h, const double a_m, const double a_h, const double b_m, const double b_h, const double c_h); template<typename T> __global__ void kernel_compute_flux_sheba(T *zeta_, T *Rib_, T *Re_, T *B_, T *z0_m_, T *z0_t_, T *Rib_conv_lim_, T *Cm_, T *Ct_, T *Km_, T *Pr_t_inv_, const T *U_, const T *dT_, const T *Tsemi_, const T *dQ_, const T *h_, const T *in_z0_m_, const T kappa, const T Pr_t_0_inv, const T alpha_m, const T alpha_h, const T a_m, const T a_h, const T b_m, const T b_h, const T c_h, const T Re_rough_min, const T B1_rough, const T B2_rough, const T B_max_land, const T B_max_ocean, const T B_max_lake, const T gamma_c, const T Re_visc_min, const T Pr_m, const T nu_air, const T g, const int maxiters_charnock, const int grid_size) { const int index = blockIdx.x * blockDim.x + threadIdx.x; T h, U, dT, Tsemi, dQ, z0_m; T z0_t, B, h0_m, h0_t, u_dyn0, Re, zeta, Rib, Udyn, Tdyn, Qdyn, phi_m, phi_h, Km, Pr_t_inv, Cm, Ct; const T B3_rough = kappa * Pr_m, B4_rough =(0.14 * (pow(30.0, B2_rough))) * (pow(Pr_m, 0.8)); const T h_charnock = 10.0, c1_charnock = log(h_charnock * (g / gamma_c)), c2_charnock = Re_visc_min * nu_air * c1_charnock; int surface_type; if(index < grid_size) { U = U_[index]; Tsemi = Tsemi_[index]; dT = dT_[index]; dQ = dQ_[index]; h = h_[index]; z0_m = in_z0_m_[index]; if (z0_m < 0.0) surface_type = 0; else surface_type = 1; if (surface_type == 0) { get_charnock_roughness(z0_m, u_dyn0, h, U, kappa, h_charnock, c1_charnock, c2_charnock, maxiters_charnock); h0_m = h / z0_m; } if (surface_type == 1) { h0_m = h / z0_m; u_dyn0 = U * kappa / log(h0_m); } Re = u_dyn0 * z0_m / nu_air; get_thermal_roughness(z0_t, B, z0_m, Re, Re_rough_min, B1_rough, B2_rough, B3_rough, B4_rough, B_max_ocean, B_max_lake, B_max_land, surface_type); // --- define relative height [thermal] h0_t = h / z0_t; // --- define Ri-bulk Rib = (g / Tsemi) * h * (dT + 0.61e0 * Tsemi * dQ) / (U*U); // --- get the fluxes // ---------------------------------------------------------------------------- get_dynamic_scales(Udyn, Tdyn, Qdyn, zeta, U, Tsemi, dT, dQ, h, z0_m, z0_t, (g / Tsemi), kappa, Pr_t_0_inv, alpha_m, alpha_h, a_m, a_h, b_m, b_h, c_h, 10); // ---------------------------------------------------------------------------- get_phi(phi_m, phi_h, zeta, alpha_m, alpha_h, a_m, a_h, b_m, b_h, c_h); // ---------------------------------------------------------------------------- // --- define transfer coeff. (momentum) & (heat) Cm = 0.0; if (U > 0.0) Cm = Udyn / U; Ct = 0.0; if (fabs(dT) > 0.0) Ct = Tdyn / dT; // --- define eddy viscosity & inverse Prandtl number Km = kappa * Cm * U * h / phi_m; Pr_t_inv = phi_m / phi_h; zeta_[index] = zeta; Rib_[index] = Rib; Re_[index] = Re; B_[index] = B; z0_m_[index] = z0_m; z0_t_[index] = z0_t; Rib_conv_lim_[index] = 0.0; Cm_[index] = Cm; Ct_[index] = Ct; Km_[index] = Km; Pr_t_inv_[index] = Pr_t_inv; } } template __global__ void kernel_compute_flux_sheba(float *zeta_, float *Rib_, float *Re_, float *B_, float *z0_m_, float *z0_t_, float *Rib_conv_lim_, float *Cm_, float *Ct_, float *Km_, float *Pr_t_inv_, const float *U_, const float *dT_, const float *Tsemi_, const float *dQ_, const float *h_, const float *in_z0_m_, const float kappa, const float Pr_t_0_inv, const float alpha_m, const float alpha_h, const float a_m, const float a_h, const float b_m, const float b_h, const float c_h, const float Re_rough_min, const float B1_rough, const float B2_rough, const float B_max_land, const float B_max_ocean, const float B_max_lake, const float gamma_c, const float Re_visc_min, const float Pr_m, const float nu_air, const float g, const int maxiters_charnock, const int grid_size); template __global__ void kernel_compute_flux_sheba(double *zeta_, double *Rib_, double *Re_, double *B_, double *z0_m_, double *z0_t_, double *Rib_conv_lim_, double *Cm_, double *Ct_, double *Km_, double *Pr_t_inv_, const double *U_, const double *dT_, const double *Tsemi_, const double *dQ_, const double *h_, const double *in_z0_m_, const double kappa, const double Pr_t_0_inv, const double alpha_m, const double alpha_h, const double a_m, const double a_h, const double b_m, const double b_h, const double c_h, const double Re_rough_min, const double B1_rough, const double B2_rough, const double B_max_land, const double B_max_ocean, const double B_max_lake, const double gamma_c, const double Re_visc_min, const double Pr_m, const double nu_air, const double g, const int maxiters_charnock, const int grid_size); template<typename T> void compute_flux_sheba_gpu(T *zeta_, T *Rib_, T *Re_, T *B_, T *z0_m_, T *z0_t_, T *Rib_conv_lim_, T *Cm_, T *Ct_, T *Km_, T *Pr_t_inv_, const T *U_, const T *dT_, const T *Tsemi_, const T *dQ_, const T *h_, const T *in_z0_m_, const T kappa, const T Pr_t_0_inv, const T alpha_m, const T alpha_h, const T a_m, const T a_h, const T b_m, const T b_h, const T c_h, const T Re_rough_min, const T B1_rough, const T B2_rough, const T B_max_land, const T B_max_ocean, const T B_max_lake, const T gamma_c, const T Re_visc_min, const T Pr_m, const T nu_air, const T g, const int maxiters_charnock, const int grid_size) { const int BlockCount = int(ceil(float(grid_size) / 512.0)); dim3 cuBlock = dim3(512, 1, 1); dim3 cuGrid = dim3(BlockCount, 1, 1); kernel_compute_flux_sheba<<<cuGrid, cuBlock>>>(zeta_, Rib_, Re_, B_, z0_m_, z0_t_, Rib_conv_lim_, Cm_, Ct_, Km_, Pr_t_inv_, U_, dT_, Tsemi_, dQ_, h_, in_z0_m_, kappa, Pr_t_0_inv, alpha_m, alpha_h, a_m, a_h, b_m, b_h, c_h, Re_rough_min, B1_rough, B2_rough, B_max_land, B_max_ocean, B_max_lake, gamma_c, Re_visc_min, Pr_m, nu_air, g, maxiters_charnock, grid_size); gpuErrchk( cudaPeekAtLastError() ); } template void compute_flux_sheba_gpu(float *zeta_, float *Rib_, float *Re_, float *B_, float *z0_m_, float *z0_t_, float *Rib_conv_lim_, float *Cm_, float *Ct_, float *Km_, float *Pr_t_inv_, const float *U_, const float *dT_, const float *Tsemi_, const float *dQ_, const float *h_, const float *in_z0_m_, const float kappa, const float Pr_t_0_inv, const float alpha_m, const float alpha_h, const float a_m, const float a_h, const float b_m, const float b_h, const float c_h, const float Re_rough_min, const float B1_rough, const float B2_rough, const float B_max_land, const float B_max_ocean, const float B_max_lake, const float gamma_c, const float Re_visc_min, const float Pr_m, const float nu_air, const float g, const int maxiters_charnock, const int grid_size); template void compute_flux_sheba_gpu(double *zeta_, double *Rib_, double *Re_, double *B_, double *z0_m_, double *z0_t_, double *Rib_conv_lim_, double *Cm_, double *Ct_, double *Km_, double *Pr_t_inv_, const double *U_, const double *dT_, const double *Tsemi_, const double *dQ_, const double *h_, const double *in_z0_m_, const double kappa, const double Pr_t_0_inv, const double alpha_m, const double alpha_h, const double a_m, const double a_h, const double b_m, const double b_h, const double c_h, const double Re_rough_min, const double B1_rough, const double B2_rough, const double B_max_land, const double B_max_ocean, const double B_max_lake, const double gamma_c, const double Re_visc_min, const double Pr_m, const double nu_air, const double g, const int maxiters_charnock, const int grid_size);