#include <iostream> #include "../includeCU/sfx_compute_esm.cuh" #include "../includeCU/sfx_surface.cuh" #define gpuErrchk(ans) { gpuAssert((ans), __FILE__, __LINE__); } inline void gpuAssert(cudaError_t code, const char *file, int line, bool abort=true) { if (code != cudaSuccess) { fprintf(stderr,"GPUassert: %s %s %d\n", cudaGetErrorString(code), file, line); if (abort) exit(code); } } template<typename T> __device__ void get_charnock_roughness(T &z0_m, T &u_dyn0, const T h, const T U, const T kappa, const T h_charnock, const T c1_charnock, const T c2_charnock, const int maxiters) { T Uc, a, b, c, c_min, f; Uc = U; a = 0.0; b = 25.0; c_min = log(h_charnock) / kappa; for (int i = 0; i < maxiters; i++) { f = c1_charnock - 2.0 * log(Uc); for (int j = 0; j < maxiters; j++) { c = (f + 2.0 * log(b)) / kappa; if (U <= 8.0e0) a = log(1.0 + c2_charnock * ( pow(b / Uc, 3) ) ) / kappa; c = max(c - a, c_min); b = c; } z0_m = h_charnock * exp(-c * kappa); z0_m = max(z0_m, T(0.000015e0)); Uc = U * log(h_charnock / z0_m) / log(h / z0_m); } u_dyn0 = Uc / c; } template __device__ void get_charnock_roughness(float &z0_m, float &u_dyn0, const float h, const float U, const float kappa, const float h_charnock, const float c1_charnock, const float c2_charnock, const int maxiters); template __device__ void get_charnock_roughness(double &z0_m, double &u_dyn0, const double h, const double U, const double kappa, const double h_charnock, const double c1_charnock, const double c2_charnock, const int maxiters); template<typename T> __device__ void get_convection_lim(T &zeta_lim, T &Rib_lim, T &f_m_lim, T &f_h_lim, const T h0_m, const T h0_t, const T B, const T Pr_t_inf_inv, const T Pr_t_0_inv, const T alpha_h, const T alpha_m, const T alpha_h_fix) { T psi_m, psi_h, f_m, f_h, c; c = pow(Pr_t_inf_inv / Pr_t_0_inv, 4); zeta_lim = (2.0 * alpha_h - c * alpha_m - sqrt( (c * alpha_m)*(c * alpha_m) + 4.0 * c * alpha_h * (alpha_h - alpha_m))) / (2.0 * alpha_h*alpha_h); f_m_lim = pow(1.0 - alpha_m * zeta_lim, 0.25); f_h_lim = sqrt(1.0 - alpha_h * zeta_lim); f_m = zeta_lim / h0_m; f_h = zeta_lim / h0_t; if (fabs(B) < 1.0e-10) f_h = f_m; f_m = pow(1.0 - alpha_m * f_m, 0.25); f_h = sqrt(1.0 - alpha_h_fix * f_h); psi_m = 2.0 * (atan(f_m_lim) - atan(f_m)) + log((f_m_lim - 1.0) * (f_m + 1.0)/((f_m_lim + 1.0) * (f_m - 1.0))); psi_h = log((f_h_lim - 1.0) * (f_h + 1.0)/((f_h_lim + 1.0) * (f_h - 1.0))) / Pr_t_0_inv; Rib_lim = zeta_lim * psi_h / (psi_m * psi_m); } template __device__ void get_convection_lim(float &zeta_lim, float &Rib_lim, float &f_m_lim, float &f_h_lim, const float h0_m, const float h0_t, const float B, const float Pr_t_inf_inv, const float Pr_t_0_inv, const float alpha_h, const float alpha_m, const float alpha_h_fix); template __device__ void get_convection_lim(double &zeta_lim, double &Rib_lim, double &f_m_lim, double &f_h_lim, const double h0_m, const double h0_t, const double B, const double Pr_t_inf_inv, const double Pr_t_0_inv, const double alpha_h, const double alpha_m, const double alpha_h_fix); template<typename T> void __device__ get_psi_stable(T &psi_m, T &psi_h, T &zeta, const T Rib, const T h0_m, const T h0_t, const T B, const T Pr_t_0_inv, const T beta_m) { T Rib_coeff, psi0_m, psi0_h, phi, c; psi0_m = log(h0_m); psi0_h = B / psi0_m; Rib_coeff = beta_m * Rib; c = (psi0_h + 1.0) / Pr_t_0_inv - 2.0 * Rib_coeff; zeta = psi0_m * (sqrt(c*c + 4.0 * Rib_coeff * (1.0 - Rib_coeff)) - c) / (2.0 * beta_m * (1.0 - Rib_coeff)); phi = beta_m * zeta; psi_m = psi0_m + phi; psi_h = (psi0_m + B) / Pr_t_0_inv + phi; } template __device__ void get_psi_stable(float &psi_m, float &psi_h, float &zeta, const float Rib, const float h0_m, const float h0_t, const float B, const float Pr_t_0_inv, const float beta_m); template __device__ void get_psi_stable(double &psi_m, double &psi_h, double &zeta, const double Rib, const double h0_m, const double h0_t, const double B, const double Pr_t_0_inv, const double beta_m); template<typename T> void __device__ get_psi_convection(T &psi_m, T &psi_h, T &zeta, const T Rib, const T h0_m, const T h0_t, const T B, const T zeta_conv_lim, const T f_m_conv_lim, const T f_h_conv_lim, const T Pr_t_0_inv, const T alpha_h, const T alpha_m, const T alpha_h_fix, const int maxiters) { T zeta0_m, zeta0_h, f0_m, f0_h, p_m, p_h, a_m, a_h, c_lim, f; p_m = 2.0 * atan(f_m_conv_lim) + log((f_m_conv_lim - 1.0) / (f_m_conv_lim + 1.0)); p_h = log((f_h_conv_lim - 1.0) / (f_h_conv_lim + 1.0)); zeta = zeta_conv_lim; for (int i = 1; i <= maxiters + 1; i++) { zeta0_m = zeta / h0_m; zeta0_h = zeta / h0_t; if (fabs(B) < 1.0e-10) zeta0_h = zeta0_m; f0_m = pow(1.0 - alpha_m * zeta0_m, 0.25); f0_h = sqrt(1.0 - alpha_h_fix * zeta0_h); a_m = -2.0*atan(f0_m) + log((f0_m + 1.0)/(f0_m - 1.0)); a_h = log((f0_h + 1.0)/(f0_h - 1.0)); c_lim = pow(zeta_conv_lim / zeta, 1.0 / 3.0); f = 3.0 * (1.0 - c_lim); psi_m = f / f_m_conv_lim + p_m + a_m; psi_h = (f / f_h_conv_lim + p_h + a_h) / Pr_t_0_inv; if (i == maxiters + 1) break; zeta = Rib * psi_m * psi_m / psi_h; } } template __device__ void get_psi_convection(float &psi_m, float &psi_h, float &zeta, const float Rib, const float h0_m, const float h0_t, const float B, const float zeta_conv_lim, const float f_m_conv_lim, const float f_h_conv_lim, const float Pr_t_0_inv, const float alpha_h, const float alpha_m, const float alpha_h_fix, const int maxiters); template __device__ void get_psi_convection(double &psi_m, double &psi_h, double &zeta, const double Rib, const double h0_m, const double h0_t, const double B, const double zeta_conv_lim, const double f_m_conv_lim, const double f_h_conv_lim, const double Pr_t_0_inv, const double alpha_h, const double alpha_m, const double alpha_h_fix, const int maxiters); template<typename T> void __device__ get_psi_neutral(T &psi_m, T &psi_h, T &zeta, const T h0_m, const T h0_t, const T B, const T Pr_t_0_inv) { zeta = 0.0; psi_m = log(h0_m); psi_h = log(h0_t) / Pr_t_0_inv; if (fabs(B) < 1.0e-10) psi_h = psi_m / Pr_t_0_inv; } template __device__ void get_psi_neutral(float &psi_m, float &psi_h, float &zeta, const float h0_m, const float h0_t, const float B, const float Pr_t_0_inv); template __device__ void get_psi_neutral(double &psi_m, double &psi_h, double &zeta, const double h0_m, const double h0_t, const double B, const double Pr_t_0_inv); template<typename T> void __device__ get_psi_semi_convection(T &psi_m, T &psi_h, T &zeta, const T Rib, const T h0_m, const T h0_t, const T B, const T Pr_t_0_inv, const T alpha_m, const T alpha_h_fix, const int maxiters) { T zeta0_m, zeta0_h, f0_m, f0_h, f_m, f_h; psi_m = log(h0_m); psi_h = log(h0_t); if (fabs(B) < 1.0e-10) psi_h = psi_m; zeta = Rib * Pr_t_0_inv * psi_m * psi_m / psi_h; for (int i = 1; i <= maxiters + 1; i++) { zeta0_m = zeta / h0_m; zeta0_h = zeta / h0_t; if (fabs(B) < 1.0e-10) zeta0_h = zeta0_m; f_m = pow(1.0 - alpha_m * zeta, 0.25e0); f_h = sqrt(1.0 - alpha_h_fix * zeta); f0_m = pow(1.0 - alpha_m * zeta0_m, 0.25e0); f0_h = sqrt(1.0 - alpha_h_fix * zeta0_h); f0_m = max(f0_m, T(1.000001e0)); f0_h = max(f0_h, T(1.000001e0)); psi_m = log((f_m - 1.0e0)*(f0_m + 1.0e0)/((f_m + 1.0e0)*(f0_m - 1.0e0))) + 2.0e0*(atan(f_m) - atan(f0_m)); psi_h = log((f_h - 1.0e0)*(f0_h + 1.0e0)/((f_h + 1.0e0)*(f0_h - 1.0e0))) / Pr_t_0_inv; if (i == maxiters + 1) break; zeta = Rib * psi_m * psi_m / psi_h; } } template __device__ void get_psi_semi_convection(float &psi_m, float &psi_h, float &zeta, const float Rib, const float h0_m, const float h0_t, const float B, const float Pr_t_0_inv, const float alpha_m, const float alpha_h_fix, const int maxiters); template __device__ void get_psi_semi_convection(double &psi_m, double &psi_h, double &zeta, const double Rib, const double h0_m, const double h0_t, const double B, const double Pr_t_0_inv, const double alpha_m, const double alpha_h_fix, const int maxiters); template<typename T> __global__ void kernel_compute_flux_esm_gpu(T *zeta_, T *Rib_, T *Re_, T *B_, T *z0_m_, T *z0_t_, T *Rib_conv_lim_, T *Cm_, T *Ct_, T *Km_, T *Pr_t_inv_, const T *U_, const T *dT_, const T *Tsemi_, const T *dQ_, const T *h_, const T *in_z0_m_, const T kappa, const T Pr_t_0_inv, const T Pr_t_inf_inv, const T alpha_m, const T alpha_h, const T alpha_h_fix, const T beta_m, const T beta_h, const T Rib_max, const T Re_rough_min, const T B1_rough, const T B2_rough, const T B_max_land, const T B_max_ocean, const T B_max_lake, const T gamma_c, const T Re_visc_min, const T Pr_m, const T nu_air, const T g, const int maxiters_charnock, const int maxiters_convection, const int grid_size) { const int index = blockIdx.x * blockDim.x + threadIdx.x; T h, U, dT, Tsemi, dQ, z0_m; T Re, z0_t, B, h0_m, h0_t, u_dyn0, zeta, Rib, zeta_conv_lim, Rib_conv_lim, f_m_conv_lim, f_h_conv_lim, psi_m, psi_h, phi_m, phi_h, Km, Pr_t_inv, Cm, Ct; int surface_type; T fval; const T B3_rough = kappa * Pr_m, B4_rough =( 0.14 * ( pow(30.0, B2_rough) ) ) * (pow(Pr_m, 0.8)); const T h_charnock = 10.0, c1_charnock = log(h_charnock * (g / gamma_c)), c2_charnock = Re_visc_min * nu_air * c1_charnock; if(index < grid_size) { U = U_[index]; Tsemi = Tsemi_[index]; dT = dT_[index]; dQ = dQ_[index]; h = h_[index]; z0_m = in_z0_m_[index]; if (z0_m < 0.0) surface_type = 0; else surface_type = 1; if (surface_type == 0) { get_charnock_roughness(z0_m, u_dyn0, h, U, kappa, h_charnock, c1_charnock, c2_charnock, maxiters_charnock); h0_m = h / z0_m; } if (surface_type == 1) { h0_m = h / z0_m; u_dyn0 = U * kappa / log(h0_m); } Re = u_dyn0 * z0_m / nu_air; if(Re <= Re_rough_min) B = B1_rough * log(B3_rough * Re) + B2_rough; else B = B4_rough * (pow(Re, B2_rough)); if (surface_type == 0) B = min(B, B_max_ocean); if (surface_type == 1) B = min(B, B_max_land); if (surface_type == 2) B = min(B, B_max_lake); z0_t = z0_m / exp(B); h0_t = h / z0_t; Rib = (g / Tsemi) * h * (dT + 0.61e0 * Tsemi * dQ) / (U*U); get_convection_lim(zeta_conv_lim, Rib_conv_lim, f_m_conv_lim, f_h_conv_lim, h0_m, h0_t, B, Pr_t_inf_inv, Pr_t_0_inv, alpha_h, alpha_m, alpha_h_fix); if (Rib > 0.0) { Rib = min(Rib, Rib_max); get_psi_stable(psi_m, psi_h, zeta, Rib, h0_m, h0_t, B, Pr_t_0_inv, beta_m); fval = beta_m * zeta; phi_m = 1.0 + fval; phi_h = 1.0/Pr_t_0_inv + fval; } else if (Rib < Rib_conv_lim) { get_psi_convection(psi_m, psi_h, zeta, Rib, h0_m, h0_t, B, zeta_conv_lim, f_m_conv_lim, f_h_conv_lim, Pr_t_0_inv, alpha_h, alpha_m, alpha_h_fix, maxiters_convection); fval = pow(zeta_conv_lim / zeta, 1.0/3.0); phi_m = fval / f_m_conv_lim; phi_h = fval / (Pr_t_0_inv * f_h_conv_lim); } else if (Rib > -0.001) { get_psi_neutral(psi_m, psi_h, zeta, h0_m, h0_t, B, Pr_t_0_inv); phi_m = 1.0; phi_h = 1.0 / Pr_t_0_inv; } else { get_psi_semi_convection(psi_m, psi_h, zeta, Rib, h0_m, h0_t, B, Pr_t_0_inv, alpha_m, alpha_h_fix, maxiters_convection); phi_m = pow(1.0 - alpha_m * zeta, -0.25); phi_h = 1.0 / (Pr_t_0_inv * sqrt(1.0 - alpha_h_fix * zeta)); } Cm = kappa / psi_m; Ct = kappa / psi_h; Km = kappa * Cm * U * h / phi_m; Pr_t_inv = phi_m / phi_h; zeta_[index] = zeta; Rib_[index] = Rib; Re_[index] = Re; B_[index] = B; z0_m_[index] = z0_m; z0_t_[index] = z0_t; Rib_conv_lim_[index] = Rib_conv_lim; Cm_[index] = Cm; Ct_[index] = Ct; Km_[index] = Km; Pr_t_inv_[index] = Pr_t_inv; } } template __global__ void kernel_compute_flux_esm_gpu(float *zeta_, float *Rib_, float *Re_, float *B_, float *z0_m_, float *z0_t_, float *Rib_conv_lim_, float *Cm_, float *Ct_, float *Km_, float *Pr_t_inv_, const float *U, const float *dt, const float *T_semi, const float *dq, const float *H, const float *in_z0_m, const float kappa, const float Pr_t_0_inv, const float Pr_t_inf_inv, const float alpha_m, const float alpha_h, const float alpha_h_fix, const float beta_m, const float beta_h, const float Rib_max, const float Re_rough_min, const float B1_rough, const float B2_rough, const float B_max_land, const float B_max_ocean, const float B_max_lake, const float gamma_c, const float Re_visc_min, const float Pr_m, const float nu_air, const float g, const int maxiters_charnock, const int maxiters_convection, const int grid_size); template __global__ void kernel_compute_flux_esm_gpu(double *zeta_, double *Rib_, double *Re_, double *B_, double *z0_m_, double *z0_t_, double *Rib_conv_lim_, double *Cm_, double *Ct_, double *Km_, double *Pr_t_inv_, const double *U, const double *dt, const double *T_semi, const double *dq, const double *H, const double *in_z0_m, const double kappa, const double Pr_t_0_inv, const double Pr_t_inf_inv, const double alpha_m, const double alpha_h, const double alpha_h_fix, const double beta_m, const double beta_h, const double Rib_max, const double Re_rough_min, const double B1_rough, const double B2_rough, const double B_max_land, const double B_max_ocean, const double B_max_lake, const double gamma_c, const double Re_visc_min, const double Pr_m, const double nu_air, const double g, const int maxiters_charnock, const int maxiters_convection, const int grid_size); template<typename T> void compute_flux_esm_gpu(T *zeta_, T *Rib_, T *Re_, T *B_, T *z0_m_, T *z0_t_, T *Rib_conv_lim_, T *Cm_, T *Ct_, T *Km_, T *Pr_t_inv_, const T *U_, const T *dT_, const T *Tsemi_, const T *dQ_, const T *h_, const T *in_z0_m_, const T kappa, const T Pr_t_0_inv, const T Pr_t_inf_inv, const T alpha_m, const T alpha_h, const T alpha_h_fix, const T beta_m, const T beta_h, const T Rib_max, const T Re_rough_min, const T B1_rough, const T B2_rough, const T B_max_land, const T B_max_ocean, const T B_max_lake, const T gamma_c, const T Re_visc_min, const T Pr_m, const T nu_air, const T g, const int maxiters_charnock, const int maxiters_convection, const int grid_size) { const int BlockCount = int(ceil(float(grid_size) / 1024.0)); dim3 cuBlock = dim3(1024, 1, 1); dim3 cuGrid = dim3(BlockCount, 1, 1); kernel_compute_flux_esm_gpu<<<cuGrid, cuBlock>>>(zeta_, Rib_, Re_, B_, z0_m_, z0_t_, Rib_conv_lim_, Cm_, Ct_, Km_, Pr_t_inv_, U_, dT_, Tsemi_, dQ_, h_, in_z0_m_, kappa, Pr_t_0_inv, Pr_t_inf_inv, alpha_m, alpha_h, alpha_h_fix, beta_m, beta_h, Rib_max, Re_rough_min, B1_rough, B2_rough, B_max_land, B_max_ocean, B_max_lake, gamma_c, Re_visc_min, Pr_m, nu_air, g, maxiters_charnock, maxiters_convection, grid_size); gpuErrchk( cudaPeekAtLastError() ); } template void compute_flux_esm_gpu(float *zeta_, float *Rib_, float *Re_, float *B_, float *z0_m_, float *z0_t_, float *Rib_conv_lim_, float *Cm_, float *Ct_, float *Km_, float *Pr_t_inv_, const float *U, const float *dt, const float *T_semi, const float *dq, const float *H, const float *in_z0_m, const float kappa, const float Pr_t_0_inv, const float Pr_t_inf_inv, const float alpha_m, const float alpha_h, const float alpha_h_fix, const float beta_m, const float beta_h, const float Rib_max, const float Re_rough_min, const float B1_rough, const float B2_rough, const float B_max_land, const float B_max_ocean, const float B_max_lake, const float gamma_c, const float Re_visc_min, const float Pr_m, const float nu_air, const float g, const int maxiters_charnock, const int maxiters_convection, const int grid_size); template void compute_flux_esm_gpu(double *zeta_, double *Rib_, double *Re_, double *B_, double *z0_m_, double *z0_t_, double *Rib_conv_lim_, double *Cm_, double *Ct_, double *Km_, double *Pr_t_inv_, const double *U, const double *dt, const double *T_semi, const double *dq, const double *H, const double *in_z0_m, const double kappa, const double Pr_t_0_inv, const double Pr_t_inf_inv, const double alpha_m, const double alpha_h, const double alpha_h_fix, const double beta_m, const double beta_h, const double Rib_max, const double Re_rough_min, const double B1_rough, const double B2_rough, const double B_max_land, const double B_max_ocean, const double B_max_lake, const double gamma_c, const double Re_visc_min, const double Pr_m, const double nu_air, const double g, const int maxiters_charnock, const int maxiters_convection, const int grid_size);