#include <cuda.h> #include <cuda_runtime_api.h> #include "sfx-esm.h" #include "sfx-model-compute-subfunc.cuh" #include "sfx-surface.cuh" #include "sfx-memory-processing.cuh" namespace sfx_kernel { template<typename T> __global__ void compute_flux(sfxDataVecTypeC sfx, meteoDataVecTypeC meteo, const sfx_esm_param_C model, const sfx_surface_param surface, const sfx_esm_numericsType_C numerics, const sfx_phys_constants phys, const int grid_size); } template<typename T> __global__ void sfx_kernel::compute_flux(sfxDataVecTypeC sfx, meteoDataVecTypeC meteo, const sfx_esm_param_C model, const sfx_surface_param surface, const sfx_esm_numericsType_C numerics, const sfx_phys_constants phys, const int grid_size) { const int index = blockIdx.x * blockDim.x + threadIdx.x; T h, U, dT, Tsemi, dQ, z0_m; T Re, z0_t, B, h0_m, h0_t, u_dyn0, zeta, Rib, zeta_conv_lim, Rib_conv_lim, f_m_conv_lim, f_h_conv_lim, psi_m, psi_h, phi_m, phi_h, Km, Pr_t_inv, Cm, Ct; int surface_type; T fval; if(index < grid_size) { U = meteo.U[index]; Tsemi = meteo.Tsemi[index]; dT = meteo.dT[index]; dQ = meteo.dQ[index]; h = meteo.h[index]; z0_m = meteo.z0_m[index]; surface_type = z0_m < 0.0 ? surface.surface_ocean : surface.surface_land; if (surface_type == surface.surface_ocean) { get_charnock_roughness(z0_m, u_dyn0, U, h, surface, numerics.maxiters_charnock); h0_m = h / z0_m; } if (surface_type == surface.surface_land) { h0_m = h / z0_m; u_dyn0 = U * model.kappa / logf(h0_m); } Re = u_dyn0 * z0_m / phys.nu_air; get_thermal_roughness(z0_t, B, z0_m, Re, surface, surface_type); h0_t = h / z0_t; Rib = (phys.g / Tsemi) * h * (dT + 0.61e0 * Tsemi * dQ) / (U*U); get_convection_lim(zeta_conv_lim, Rib_conv_lim, f_m_conv_lim, f_h_conv_lim, h0_m, h0_t, B, model); if (Rib > 0.0) { Rib = sfx_math::min(Rib, model.Rib_max); get_psi_stable(psi_m, psi_h, zeta, Rib, h0_m, h0_t, B, model); fval = model.beta_m * zeta; phi_m = 1.0 + fval; phi_h = 1.0/model.Pr_t_0_inv + fval; } else if (Rib < Rib_conv_lim) { get_psi_convection(psi_m, psi_h, zeta, Rib, h0_m, h0_t, B, zeta_conv_lim, f_m_conv_lim, f_h_conv_lim, model, numerics.maxiters_convection); fval = powf(zeta_conv_lim / zeta, 1.0/3.0); phi_m = fval / f_m_conv_lim; phi_h = fval / (model.Pr_t_0_inv * f_h_conv_lim); } else if (Rib > -0.001) { get_psi_neutral(psi_m, psi_h, zeta, h0_m, h0_t, B, model); phi_m = 1.0; phi_h = 1.0 / model.Pr_t_0_inv; } else { get_psi_semi_convection(psi_m, psi_h, zeta, Rib, h0_m, h0_t, B, model, numerics.maxiters_convection); phi_m = powf(1.0 - model.alpha_m * zeta, -0.25); phi_h = 1.0 / (model.Pr_t_0_inv * sqrtf(1.0 - model.alpha_h_fix * zeta)); } Cm = model.kappa / psi_m; Ct = model.kappa / psi_h; Km = model.kappa * Cm * U * h / phi_m; Pr_t_inv = phi_m / phi_h; sfx.zeta[index] = zeta; sfx.Rib[index] = Rib; sfx.Re[index] = Re; sfx.B[index] = B; sfx.z0_m[index] = z0_m; sfx.z0_t[index] = z0_t; sfx.Rib_conv_lim[index] = Rib_conv_lim; sfx.Cm[index] = Cm; sfx.Ct[index] = Ct; sfx.Km[index] = Km; sfx.Pr_t_inv[index] = Pr_t_inv; } } template<typename T, MemType memIn, MemType memOut > void FluxEsm<T, memIn, memOut, MemType::GPU>::compute_flux() { const int BlockCount = int(ceil(float(grid_size) / 1024.0)); dim3 cuBlock = dim3(1024, 1, 1); dim3 cuGrid = dim3(BlockCount, 1, 1); sfx_kernel::compute_flux<T><<<cuGrid, cuBlock>>>(sfx, meteo, model, surface, numerics, phys, grid_size); if(MemType::GPU != memOut) { const size_t new_size = grid_size * sizeof(T); memproc::memcopy<memOut, MemType::GPU>((void*&)res_sfx->zeta, (void*&)sfx.zeta, new_size); memproc::memcopy<memOut, MemType::GPU>((void*&)res_sfx->Rib, (void*&)sfx.Rib, new_size); memproc::memcopy<memOut, MemType::GPU>((void*&)res_sfx->Re, (void*&)sfx.Re, new_size); memproc::memcopy<memOut, MemType::GPU>((void*&)res_sfx->B, (void*&)sfx.B, new_size); memproc::memcopy<memOut, MemType::GPU>((void*&)res_sfx->z0_m, (void*&)sfx.z0_m, new_size); memproc::memcopy<memOut, MemType::GPU>((void*&)res_sfx->z0_t, (void*&)sfx.z0_t, new_size); memproc::memcopy<memOut, MemType::GPU>((void*&)res_sfx->Rib_conv_lim, (void*&)sfx.Rib_conv_lim, new_size); memproc::memcopy<memOut, MemType::GPU>((void*&)res_sfx->Cm, (void*&)sfx.Cm, new_size); memproc::memcopy<memOut, MemType::GPU>((void*&)res_sfx->Ct, (void*&)sfx.Ct, new_size); memproc::memcopy<memOut, MemType::GPU>((void*&)res_sfx->Km, (void*&)sfx.Km, new_size); memproc::memcopy<memOut, MemType::GPU>((void*&)res_sfx->Pr_t_inv, (void*&)sfx.Pr_t_inv, new_size); } } template class FluxEsmBase<float, MemType::GPU, MemType::GPU, MemType::GPU>; template class FluxEsmBase<float, MemType::GPU, MemType::GPU, MemType::CPU>; template class FluxEsmBase<float, MemType::GPU, MemType::CPU, MemType::GPU>; template class FluxEsmBase<float, MemType::CPU, MemType::GPU, MemType::GPU>; template class FluxEsmBase<float, MemType::CPU, MemType::CPU, MemType::GPU>; template class FluxEsmBase<float, MemType::CPU, MemType::GPU, MemType::CPU>; template class FluxEsmBase<float, MemType::GPU, MemType::CPU, MemType::CPU>; template class FluxEsm<float, MemType::GPU, MemType::GPU, MemType::GPU>; template class FluxEsm<float, MemType::GPU, MemType::GPU, MemType::CPU>; template class FluxEsm<float, MemType::GPU, MemType::CPU, MemType::GPU>; template class FluxEsm<float, MemType::CPU, MemType::GPU, MemType::GPU>; template class FluxEsm<float, MemType::CPU, MemType::CPU, MemType::GPU>; template class FluxEsm<float, MemType::CPU, MemType::GPU, MemType::CPU>; template class FluxEsm<float, MemType::GPU, MemType::CPU, MemType::CPU>;