From c9f3ad26bbbd944d38117e0880ee54e5351eb54a Mon Sep 17 00:00:00 2001 From: Lizzzka007 <gashchuk2011@mail.ru> Date: Thu, 17 Oct 2024 16:04:09 +0300 Subject: [PATCH] float built in functions instead of double --- includeCU/sfx-model-compute-subfunc.cuh | 108 ++++++++++++------------ includeCU/sfx-surface.cuh | 16 ++-- srcCU/sfx-esm.cu | 8 +- srcCU/sfx-sheba.cu | 2 +- srcCXX/sfx-esm.cpp | 8 +- srcCXX/sfx-sheba.cpp | 2 +- 6 files changed, 72 insertions(+), 72 deletions(-) diff --git a/includeCU/sfx-model-compute-subfunc.cuh b/includeCU/sfx-model-compute-subfunc.cuh index 7acf034..0b45bf9 100644 --- a/includeCU/sfx-model-compute-subfunc.cuh +++ b/includeCU/sfx-model-compute-subfunc.cuh @@ -9,22 +9,22 @@ FUCNTION_DECLARATION_SPECIFIER void get_convection_lim(T &zeta_lim, T &Rib_lim, { T psi_m, psi_h, f_m, f_h, c; - c = pow(param.Pr_t_inf_inv / param.Pr_t_0_inv, 4); + c = powf(param.Pr_t_inf_inv / param.Pr_t_0_inv, 4); zeta_lim = (2.0 * param.alpha_h - c * param.alpha_m - - sqrt( (c * param.alpha_m)*(c * param.alpha_m) + 4.0 * c * param.alpha_h * (param.alpha_h - param.alpha_m))) / (2.0 * param.alpha_h*param.alpha_h); + sqrtf( (c * param.alpha_m)*(c * param.alpha_m) + 4.0 * c * param.alpha_h * (param.alpha_h - param.alpha_m))) / (2.0 * param.alpha_h*param.alpha_h); - f_m_lim = pow(1.0 - param.alpha_m * zeta_lim, 0.25); - f_h_lim = sqrt(1.0 - param.alpha_h * zeta_lim); + f_m_lim = powf(1.0 - param.alpha_m * zeta_lim, 0.25); + f_h_lim = sqrtf(1.0 - param.alpha_h * zeta_lim); f_m = zeta_lim / h0_m; f_h = zeta_lim / h0_t; if (fabs(B) < 1.0e-10) f_h = f_m; - f_m = pow(1.0 - param.alpha_m * f_m, 0.25); - f_h = sqrt(1.0 - param.alpha_h_fix * f_h); + f_m = powf(1.0 - param.alpha_m * f_m, 0.25); + f_h = sqrtf(1.0 - param.alpha_h_fix * f_h); - psi_m = 2.0 * (atan(f_m_lim) - atan(f_m)) + log((f_m_lim - 1.0) * (f_m + 1.0)/((f_m_lim + 1.0) * (f_m - 1.0))); - psi_h = log((f_h_lim - 1.0) * (f_h + 1.0)/((f_h_lim + 1.0) * (f_h - 1.0))) / param.Pr_t_0_inv; + psi_m = 2.0 * (atanf(f_m_lim) - atanf(f_m)) + logf((f_m_lim - 1.0) * (f_m + 1.0)/((f_m_lim + 1.0) * (f_m - 1.0))); + psi_h = logf((f_h_lim - 1.0) * (f_h + 1.0)/((f_h_lim + 1.0) * (f_h - 1.0))) / param.Pr_t_0_inv; Rib_lim = zeta_lim * psi_h / (psi_m * psi_m); } @@ -36,12 +36,12 @@ FUCNTION_DECLARATION_SPECIFIER void get_psi_stable(T &psi_m, T &psi_h, T &zeta, { T Rib_coeff, psi0_m, psi0_h, phi, c; - psi0_m = log(h0_m); + psi0_m = logf(h0_m); psi0_h = B / psi0_m; Rib_coeff = param.beta_m * Rib; c = (psi0_h + 1.0) / param.Pr_t_0_inv - 2.0 * Rib_coeff; - zeta = psi0_m * (sqrt(c*c + 4.0 * Rib_coeff * (1.0 - Rib_coeff)) - c) / (2.0 * param.beta_m * (1.0 - Rib_coeff)); + zeta = psi0_m * (sqrtf(c*c + 4.0 * Rib_coeff * (1.0 - Rib_coeff)) - c) / (2.0 * param.beta_m * (1.0 - Rib_coeff)); phi = param.beta_m * zeta; @@ -58,8 +58,8 @@ FUCNTION_DECLARATION_SPECIFIER void get_psi_convection(T &psi_m, T &psi_h, T &ze { T zeta0_m, zeta0_h, f0_m, f0_h, p_m, p_h, a_m, a_h, c_lim, f; - p_m = 2.0 * atan(f_m_conv_lim) + log((f_m_conv_lim - 1.0) / (f_m_conv_lim + 1.0)); - p_h = log((f_h_conv_lim - 1.0) / (f_h_conv_lim + 1.0)); + p_m = 2.0 * atanf(f_m_conv_lim) + logf((f_m_conv_lim - 1.0) / (f_m_conv_lim + 1.0)); + p_h = logf((f_h_conv_lim - 1.0) / (f_h_conv_lim + 1.0)); zeta = zeta_conv_lim; @@ -70,13 +70,13 @@ FUCNTION_DECLARATION_SPECIFIER void get_psi_convection(T &psi_m, T &psi_h, T &ze if (fabs(B) < 1.0e-10) zeta0_h = zeta0_m; - f0_m = pow(1.0 - param.alpha_m * zeta0_m, 0.25); - f0_h = sqrt(1.0 - param.alpha_h_fix * zeta0_h); + f0_m = powf(1.0 - param.alpha_m * zeta0_m, 0.25); + f0_h = sqrtf(1.0 - param.alpha_h_fix * zeta0_h); - a_m = -2.0*atan(f0_m) + log((f0_m + 1.0)/(f0_m - 1.0)); - a_h = log((f0_h + 1.0)/(f0_h - 1.0)); + a_m = -2.0*atanf(f0_m) + logf((f0_m + 1.0)/(f0_m - 1.0)); + a_h = logf((f0_h + 1.0)/(f0_h - 1.0)); - c_lim = pow(zeta_conv_lim / zeta, 1.0 / 3.0); + c_lim = powf(zeta_conv_lim / zeta, 1.0 / 3.0); f = 3.0 * (1.0 - c_lim); psi_m = f / f_m_conv_lim + p_m + a_m; @@ -95,8 +95,8 @@ FUCNTION_DECLARATION_SPECIFIER void get_psi_neutral(T &psi_m, T &psi_h, T &zeta, const sfx_param& param) { zeta = 0.0; - psi_m = log(h0_m); - psi_h = log(h0_t) / param.Pr_t_0_inv; + psi_m = logf(h0_m); + psi_h = logf(h0_t) / param.Pr_t_0_inv; if (fabs(B) < 1.0e-10) psi_h = psi_m / param.Pr_t_0_inv; } @@ -109,8 +109,8 @@ FUCNTION_DECLARATION_SPECIFIER void get_psi_semi_convection(T &psi_m, T &psi_h, { T zeta0_m, zeta0_h, f0_m, f0_h, f_m, f_h; - psi_m = log(h0_m); - psi_h = log(h0_t); + psi_m = logf(h0_m); + psi_h = logf(h0_t); if (fabs(B) < 1.0e-10) psi_h = psi_m; @@ -124,17 +124,17 @@ FUCNTION_DECLARATION_SPECIFIER void get_psi_semi_convection(T &psi_m, T &psi_h, if (fabs(B) < 1.0e-10) zeta0_h = zeta0_m; - f_m = pow(1.0 - param.alpha_m * zeta, 0.25e0); - f_h = sqrt(1.0 - param.alpha_h_fix * zeta); + f_m = powf(1.0 - param.alpha_m * zeta, 0.25e0); + f_h = sqrtf(1.0 - param.alpha_h_fix * zeta); - f0_m = pow(1.0 - param.alpha_m * zeta0_m, 0.25e0); - f0_h = sqrt(1.0 - param.alpha_h_fix * zeta0_h); + f0_m = powf(1.0 - param.alpha_m * zeta0_m, 0.25e0); + f0_h = sqrtf(1.0 - param.alpha_h_fix * zeta0_h); f0_m = sfx_math::max(f0_m, T(1.000001e0)); f0_h = sfx_math::max(f0_h, T(1.000001e0)); - psi_m = log((f_m - 1.0e0)*(f0_m + 1.0e0)/((f_m + 1.0e0)*(f0_m - 1.0e0))) + 2.0e0*(atan(f_m) - atan(f0_m)); - psi_h = log((f_h - 1.0e0)*(f0_h + 1.0e0)/((f_h + 1.0e0)*(f0_h - 1.0e0))) / param.Pr_t_0_inv; + psi_m = logf((f_m - 1.0e0)*(f0_m + 1.0e0)/((f_m + 1.0e0)*(f0_m - 1.0e0))) + 2.0e0*(atanf(f_m) - atanf(f0_m)); + psi_h = logf((f_h - 1.0e0)*(f0_h + 1.0e0)/((f_h + 1.0e0)*(f0_h - 1.0e0))) / param.Pr_t_0_inv; if (i == maxiters_convection + 1) break; @@ -153,23 +153,23 @@ FUCNTION_DECLARATION_SPECIFIER void get_psi(T &psi_m, T &psi_h, if (zeta >= 0.0) { - q_m = pow((1.0 - param.b_m) / param.b_m, 1.0 / 3.0); - q_h = sqrt(param.c_h * param.c_h - 4.0); + q_m = powf((1.0 - param.b_m) / param.b_m, 1.0 / 3.0); + q_h = sqrtf(param.c_h * param.c_h - 4.0); - x_m = pow(1.0 + zeta, 1.0 / 3.0); + x_m = powf(1.0 + zeta, 1.0 / 3.0); x_h = zeta; - psi_m = -3.0 * (param.a_m / param.b_m) * (x_m - 1.0) + 0.5 * (param.a_m / param.b_m) * q_m * (2.0 * log((x_m + q_m) / (1.0 + q_m)) - log((x_m * x_m - x_m * q_m + q_m * q_m) / (1.0 - q_m + q_m * q_m)) + 2.0 * sqrt(3.0) * (atan((2.0 * x_m - q_m) / (sqrt(3.0) * q_m)) - atan((2.0 - q_m) / (sqrt(3.0) * q_m)))); + psi_m = -3.0 * (param.a_m / param.b_m) * (x_m - 1.0) + 0.5 * (param.a_m / param.b_m) * q_m * (2.0 * logf((x_m + q_m) / (1.0 + q_m)) - logf((x_m * x_m - x_m * q_m + q_m * q_m) / (1.0 - q_m + q_m * q_m)) + 2.0 * sqrtf(3.0) * (atanf((2.0 * x_m - q_m) / (sqrtf(3.0) * q_m)) - atanf((2.0 - q_m) / (sqrtf(3.0) * q_m)))); - psi_h = -0.5 * param.b_h * log(1.0 + param.c_h * x_h + x_h * x_h) + ((-param.a_h / q_h) + ((param.b_h * param.c_h) / (2.0 * q_h))) * (log((2.0 * x_h + param.c_h - q_h) / (2.0 * x_h + param.c_h + q_h)) - log((param.c_h - q_h) / (param.c_h + q_h))); + psi_h = -0.5 * param.b_h * logf(1.0 + param.c_h * x_h + x_h * x_h) + ((-param.a_h / q_h) + ((param.b_h * param.c_h) / (2.0 * q_h))) * (logf((2.0 * x_h + param.c_h - q_h) / (2.0 * x_h + param.c_h + q_h)) - logf((param.c_h - q_h) / (param.c_h + q_h))); } else { - x_m = pow(1.0 - param.alpha_m * zeta, 0.25); - x_h = pow(1.0 - param.alpha_h * zeta, 0.25); + x_m = powf(1.0 - param.alpha_m * zeta, 0.25); + x_h = powf(1.0 - param.alpha_h * zeta, 0.25); - psi_m = (4.0 * atan(1.0) / 2.0) + 2.0 * log(0.5 * (1.0 + x_m)) + log(0.5 * (1.0 + x_m * x_m)) - 2.0 * atan(x_m); - psi_h = 2.0 * log(0.5 * (1.0 + x_h * x_h)); + psi_m = (4.0 * atanf(1.0) / 2.0) + 2.0 * logf(0.5 * (1.0 + x_m)) + logf(0.5 * (1.0 + x_m * x_m)) - 2.0 * atanf(x_m); + psi_h = 2.0 * logf(0.5 * (1.0 + x_h * x_h)); } } @@ -183,28 +183,28 @@ FUCNTION_DECLARATION_SPECIFIER void get_psi_mh(T &psi_m, T &psi_h, if (zeta_m >= 0.0) { - q_m = pow((1.0 - param.b_m) / param.b_m, 1.0 / 3.0); - x_m = pow(1.0 + zeta_m, 1.0 / 3.0); + q_m = powf((1.0 - param.b_m) / param.b_m, 1.0 / 3.0); + x_m = powf(1.0 + zeta_m, 1.0 / 3.0); - psi_m = -3.0 * (param.a_m / param.b_m) * (x_m - 1.0) + 0.5 * (param.a_m / param.b_m) * q_m * (2.0 * log((x_m + q_m) / (1.0 + q_m)) - log((x_m * x_m - x_m * q_m + q_m * q_m) / (1.0 - q_m + q_m * q_m)) + 2.0 * sqrt(3.0) * (atan((2.0 * x_m - q_m) / (sqrt(3.0) * q_m)) - atan((2.0 - q_m) / (sqrt(3.0) * q_m)))); + psi_m = -3.0 * (param.a_m / param.b_m) * (x_m - 1.0) + 0.5 * (param.a_m / param.b_m) * q_m * (2.0 * logf((x_m + q_m) / (1.0 + q_m)) - logf((x_m * x_m - x_m * q_m + q_m * q_m) / (1.0 - q_m + q_m * q_m)) + 2.0 * sqrtf(3.0) * (atanf((2.0 * x_m - q_m) / (sqrtf(3.0) * q_m)) - atanf((2.0 - q_m) / (sqrtf(3.0) * q_m)))); } else { - x_m = pow(1.0 - param.alpha_m * zeta_m, 0.25); - psi_m = (4.0 * atan(1.0) / 2.0) + 2.0 * log(0.5 * (1.0 + x_m)) + log(0.5 * (1.0 + x_m * x_m)) - 2.0 * atan(x_m); + x_m = powf(1.0 - param.alpha_m * zeta_m, 0.25); + psi_m = (4.0 * atanf(1.0) / 2.0) + 2.0 * logf(0.5 * (1.0 + x_m)) + logf(0.5 * (1.0 + x_m * x_m)) - 2.0 * atanf(x_m); } if (zeta_h >= 0.0) { - q_h = sqrt(param.c_h * param.c_h - 4.0); + q_h = sqrtf(param.c_h * param.c_h - 4.0); x_h = zeta_h; - psi_h = -0.5 * param.b_h * log(1.0 + param.c_h * x_h + x_h * x_h) + ((-param.a_h / q_h) + ((param.b_h * param.c_h) / (2.0 * q_h))) * (log((2.0 * x_h + param.c_h - q_h) / (2.0 * x_h + param.c_h + q_h)) - log((param.c_h - q_h) / (param.c_h + q_h))); + psi_h = -0.5 * param.b_h * logf(1.0 + param.c_h * x_h + x_h * x_h) + ((-param.a_h / q_h) + ((param.b_h * param.c_h) / (2.0 * q_h))) * (logf((2.0 * x_h + param.c_h - q_h) / (2.0 * x_h + param.c_h + q_h)) - logf((param.c_h - q_h) / (param.c_h + q_h))); } else { - x_h = pow(1.0 - param.alpha_h * zeta_h, 0.25); - psi_h = 2.0 * log(0.5 * (1.0 + x_h * x_h)); + x_h = powf(1.0 - param.alpha_h * zeta_h, 0.25); + psi_h = 2.0 * logf(0.5 * (1.0 + x_h * x_h)); } } @@ -220,9 +220,9 @@ FUCNTION_DECLARATION_SPECIFIER void get_dynamic_scales(T &Udyn, T &Tdyn, T &Qdyn const T gamma = T(0.61); T psi_m, psi_h, psi0_m, psi0_h, Linv; - Udyn = param.kappa * U / log(z / z0_m); - Tdyn = param.kappa * dT * param.Pr_t_0_inv / log(z / z0_t); - Qdyn = param.kappa * dQ * param.Pr_t_0_inv / log(z / z0_t); + Udyn = param.kappa * U / logf(z / z0_m); + Tdyn = param.kappa * dT * param.Pr_t_0_inv / logf(z / z0_t); + Qdyn = param.kappa * dQ * param.Pr_t_0_inv / logf(z / z0_t); zeta = 0.0; // --- no wind @@ -242,9 +242,9 @@ FUCNTION_DECLARATION_SPECIFIER void get_dynamic_scales(T &Udyn, T &Tdyn, T &Qdyn get_psi_mh(psi0_m, psi0_h, z0_m * Linv, z0_t * Linv, param); - Udyn = param.kappa * U / (log(z / z0_m) - (psi_m - psi0_m)); - Tdyn = param.kappa * dT * param.Pr_t_0_inv / (log(z / z0_t) - (psi_h - psi0_h)); - Qdyn = param.kappa * dQ * param.Pr_t_0_inv / (log(z / z0_t) - (psi_h - psi0_h)); + Udyn = param.kappa * U / (logf(z / z0_m) - (psi_m - psi0_m)); + Tdyn = param.kappa * dT * param.Pr_t_0_inv / (logf(z / z0_t) - (psi_h - psi0_h)); + Qdyn = param.kappa * dQ * param.Pr_t_0_inv / (logf(z / z0_t) - (psi_h - psi0_h)); if (Udyn < 1e-5) break; @@ -261,12 +261,12 @@ FUCNTION_DECLARATION_SPECIFIER void get_phi(T &phi_m, T &phi_h, { if (zeta >= 0.0) { - phi_m = 1.0 + (param.a_m * zeta * pow(1.0 + zeta, 1.0 / 3.0) ) / (1.0 + param.b_m * zeta); + phi_m = 1.0 + (param.a_m * zeta * powf(1.0 + zeta, 1.0 / 3.0) ) / (1.0 + param.b_m * zeta); phi_h = 1.0 + (param.a_h * zeta + param.b_h * zeta * zeta) / (1.0 + param.c_h * zeta + zeta * zeta); } else { - phi_m = pow(1.0 - param.alpha_m * zeta, -0.25); - phi_h = pow(1.0 - param.alpha_h * zeta, -0.5); + phi_m = powf(1.0 - param.alpha_m * zeta, -0.25); + phi_h = powf(1.0 - param.alpha_h * zeta, -0.5); } } diff --git a/includeCU/sfx-surface.cuh b/includeCU/sfx-surface.cuh index 85908c1..c4a14c1 100644 --- a/includeCU/sfx-surface.cuh +++ b/includeCU/sfx-surface.cuh @@ -8,9 +8,9 @@ FUCNTION_DECLARATION_SPECIFIER void get_thermal_roughness(T &z0_t, T &B, const struct sfx_surface_param& param, const int surface_type) { - // --- define B = log(z0_m / z0_t) - B = (Re <= param.Re_rough_min) ? param.B1_rough * log(param.B3_rough * Re) + param.B2_rough : - param.B4_rough * (pow(Re, param.B2_rough)); + // --- define B = logf(z0_m / z0_t) + B = (Re <= param.Re_rough_min) ? param.B1_rough * logf(param.B3_rough * Re) + param.B2_rough : + param.B4_rough * (powf(Re, param.B2_rough)); // --- apply max restriction based on surface type if (surface_type == param.surface_ocean) B = sfx_math::min(B, param.B_max_ocean); @@ -32,22 +32,22 @@ FUCNTION_DECLARATION_SPECIFIER void get_charnock_roughness(T &z0_m, T &u_dyn0, Uc = U; a = 0.0; b = 25.0; - c_min = log(surface_param.h_charnock) / surface_param.kappa; + c_min = logf(surface_param.h_charnock) / surface_param.kappa; for (int i = 0; i < maxiters; i++) { - f = surface_param.c1_charnock - 2.0 * log(Uc); + f = surface_param.c1_charnock - 2.0 * logf(Uc); for (int j = 0; j < maxiters; j++) { - c = (f + 2.0 * log(b)) / surface_param.kappa; + c = (f + 2.0 * logf(b)) / surface_param.kappa; if (U <= 8.0e0) - a = log(1.0 + surface_param.c2_charnock * ( pow(b / Uc, 3) ) ) / surface_param.kappa; + a = logf(1.0 + surface_param.c2_charnock * ( powf(b / Uc, 3) ) ) / surface_param.kappa; c = sfx_math::max(c - a, c_min); b = c; } z0_m = surface_param.h_charnock * exp(-c * surface_param.kappa); z0_m = sfx_math::max(z0_m, T(0.000015e0)); - Uc = U * log(surface_param.h_charnock / z0_m) / log(h / z0_m); + Uc = U * logf(surface_param.h_charnock / z0_m) / logf(h / z0_m); } u_dyn0 = Uc / c; diff --git a/srcCU/sfx-esm.cu b/srcCU/sfx-esm.cu index 993db40..67444d7 100644 --- a/srcCU/sfx-esm.cu +++ b/srcCU/sfx-esm.cu @@ -52,7 +52,7 @@ __global__ void sfx_kernel::compute_flux(sfxDataVecTypeC sfx, if (surface_type == surface.surface_land) { h0_m = h / z0_m; - u_dyn0 = U * model.kappa / log(h0_m); + u_dyn0 = U * model.kappa / logf(h0_m); } Re = u_dyn0 * z0_m / phys.nu_air; @@ -79,7 +79,7 @@ __global__ void sfx_kernel::compute_flux(sfxDataVecTypeC sfx, { get_psi_convection(psi_m, psi_h, zeta, Rib, h0_m, h0_t, B, zeta_conv_lim, f_m_conv_lim, f_h_conv_lim, model, numerics.maxiters_convection); - fval = pow(zeta_conv_lim / zeta, 1.0/3.0); + fval = powf(zeta_conv_lim / zeta, 1.0/3.0); phi_m = fval / f_m_conv_lim; phi_h = fval / (model.Pr_t_0_inv * f_h_conv_lim); } @@ -94,8 +94,8 @@ __global__ void sfx_kernel::compute_flux(sfxDataVecTypeC sfx, { get_psi_semi_convection(psi_m, psi_h, zeta, Rib, h0_m, h0_t, B, model, numerics.maxiters_convection); - phi_m = pow(1.0 - model.alpha_m * zeta, -0.25); - phi_h = 1.0 / (model.Pr_t_0_inv * sqrt(1.0 - model.alpha_h_fix * zeta)); + phi_m = powf(1.0 - model.alpha_m * zeta, -0.25); + phi_h = 1.0 / (model.Pr_t_0_inv * sqrtf(1.0 - model.alpha_h_fix * zeta)); } Cm = model.kappa / psi_m; diff --git a/srcCU/sfx-sheba.cu b/srcCU/sfx-sheba.cu index b4dd14b..cb00722 100644 --- a/srcCU/sfx-sheba.cu +++ b/srcCU/sfx-sheba.cu @@ -53,7 +53,7 @@ __global__ void sfx_kernel::compute_flux(sfxDataVecTypeC sfx, if (surface_type == surface.surface_land) { h0_m = h / z0_m; - u_dyn0 = U * model.kappa / log(h0_m); + u_dyn0 = U * model.kappa / logf(h0_m); } Re = u_dyn0 * z0_m / phys.nu_air; diff --git a/srcCXX/sfx-esm.cpp b/srcCXX/sfx-esm.cpp index bbbcd21..5635c05 100644 --- a/srcCXX/sfx-esm.cpp +++ b/srcCXX/sfx-esm.cpp @@ -55,7 +55,7 @@ void FluxEsm<T, memIn, memOut, MemType::CPU>::compute_flux() if (surface_type == surface.surface_land) { h0_m = h / z0_m; - u_dyn0 = U * model.kappa / log(h0_m); + u_dyn0 = U * model.kappa / logf(h0_m); } Re = u_dyn0 * z0_m / phys.nu_air; @@ -82,7 +82,7 @@ void FluxEsm<T, memIn, memOut, MemType::CPU>::compute_flux() { get_psi_convection(psi_m, psi_h, zeta, Rib, h0_m, h0_t, B, zeta_conv_lim, f_m_conv_lim, f_h_conv_lim, model, numerics.maxiters_convection); - fval = pow(zeta_conv_lim / zeta, 1.0/3.0); + fval = powf(zeta_conv_lim / zeta, 1.0/3.0); phi_m = fval / f_m_conv_lim; phi_h = fval / (model.Pr_t_0_inv * f_h_conv_lim); } @@ -97,8 +97,8 @@ void FluxEsm<T, memIn, memOut, MemType::CPU>::compute_flux() { get_psi_semi_convection(psi_m, psi_h, zeta, Rib, h0_m, h0_t, B, model, numerics.maxiters_convection); - phi_m = pow(1.0 - model.alpha_m * zeta, -0.25); - phi_h = 1.0 / (model.Pr_t_0_inv * sqrt(1.0 - model.alpha_h_fix * zeta)); + phi_m = powf(1.0 - model.alpha_m * zeta, -0.25); + phi_h = 1.0 / (model.Pr_t_0_inv * sqrtf(1.0 - model.alpha_h_fix * zeta)); } Cm = model.kappa / psi_m; diff --git a/srcCXX/sfx-sheba.cpp b/srcCXX/sfx-sheba.cpp index 7d56565..7901bfd 100644 --- a/srcCXX/sfx-sheba.cpp +++ b/srcCXX/sfx-sheba.cpp @@ -56,7 +56,7 @@ void FluxSheba<T, memIn, memOut, MemType::CPU>::compute_flux() if (surface_type == surface.surface_land) { h0_m = h / z0_m; - u_dyn0 = U * model.kappa / log(h0_m); + u_dyn0 = U * model.kappa / logf(h0_m); } Re = u_dyn0 * z0_m / phys.nu_air; -- GitLab