diff --git a/srcF/module_z0t_land.f90 b/srcF/module_z0t_land.f90
new file mode 100644
index 0000000000000000000000000000000000000000..ae78742dacbb3b2831189ccaea44320915e122b7
--- /dev/null
+++ b/srcF/module_z0t_land.f90
@@ -0,0 +1,219 @@
+module module_z0t
+    !< @brief surface thermal roughness parameterizations for land
+
+    implicit none
+    
+   
+    public :: get_thermal_roughness_kl
+    public :: get_thermal_roughness_cz
+    public :: get_thermal_roughness_zi
+    public :: get_thermal_roughness_ca
+    public :: get_thermal_roughness_zm
+    public :: get_thermal_roughness_ot
+    public :: get_thermal_roughness_du
+    public :: get_thermal_roughness_mix
+
+
+
+    ! --------------------------------------------------------------------------------
+    real, parameter, private :: kappa = 0.40         !< von Karman constant [n/d]
+    real, parameter, private :: Pr_m = 0.71              !< molecular Prandtl number (air) [n/d]
+    !< Re fully roughness minimum value [n/d]
+    real, parameter ::  Re_rough_min = 16.3
+    !< roughness model coeff. [n/d]
+    !< --- transitional mode
+    !<     B = log(z0_m / z0_t) = B1 * log(B3 * Re) + B2
+    real, parameter :: B1_rough = 5.0 / 6.0
+    real, parameter :: B2_rough = 0.45
+    real, parameter :: B3_rough = kappa * Pr_m
+    !< --- fully rough mode (Re > Re_rough_min)
+    !<     B = B4 * Re^(B2)
+    real, parameter :: B4_rough =(0.14 * (30.0**B2_rough)) * (Pr_m**0.8)
+
+    real, parameter :: B_max_land = 2.0
+    
+
+    contains
+
+    
+     ! thermal roughness definition by Kazakov, Lykosov
+     ! --------------------------------------------------------------------------------
+       subroutine get_thermal_roughness_kl(z0_t, B, &
+            z0_m, Re)
+        ! ----------------------------------------------------------------------------
+        real, intent(out) :: z0_t               !< thermal roughness [m]
+        real, intent(out) :: B                  !< = log(z0_m / z0_t) [n/d]
+
+        real, intent(in) :: z0_m                !< aerodynamic roughness [m]
+        real, intent(in) :: Re                  !< roughness Reynolds number [n/d]
+        ! ----------------------------------------------------------------------------
+
+         !--- define B = log(z0_m / z0_t)
+        if (Re <= Re_rough_min) then
+            B = B1_rough * alog(B3_rough * Re) + B2_rough
+        else
+            ! *: B4 takes into account Re value at z' ~ O(10) z0
+            B = B4_rough * (Re**B2_rough)
+        end if
+         
+            B = min(B, B_max_land)
+       
+       z0_t = z0_m / exp(B)
+
+     end subroutine
+    ! --------------------------------------------------------------------------------  
+        
+    ! thermal roughness definition by Chen, F., Zhang, Y., 2009. 
+    ! --------------------------------------------------------------------------------  
+    subroutine get_thermal_roughness_cz(z0_t, B, &
+            z0_m, Re)
+        ! ----------------------------------------------------------------------------
+        real, intent(out) :: z0_t               !< thermal roughness [m]
+        real, intent(out) :: B                  !< = log(z0_m / z0_t) [n/d]
+
+        real, intent(in) :: z0_m                !< aerodynamic roughness [m]
+        real, intent(in) :: Re                  !< roughness Reynolds number [n/d]
+       
+        
+       
+        B=(kappa*10.0**(-0.4*z0_m/0.07))*(Re**0.45)        !Chen and Zhang
+        
+         ! --- define roughness [thermal]
+        z0_t = z0_m / exp(B)
+
+    end subroutine
+      ! --------------------------------------------------------------------------------
+        ! thermal roughness definition by Zilitinkevich, S., 1995.
+        ! --------------------------------------------------------------------------------
+        subroutine get_thermal_roughness_zi(z0_t, B, &
+            z0_m, Re)
+        ! ----------------------------------------------------------------------------
+        real, intent(out) :: z0_t               !< thermal roughness [m]
+        real, intent(out) :: B                  !< = log(z0_m / z0_t) [n/d]
+
+        real, intent(in) :: z0_m                !< aerodynamic roughness [m]
+        real, intent(in) :: Re                  !< roughness Reynolds number [n/d]
+       
+       
+        
+       
+        B=0.1*kappa*(Re**0.5)         !6-Zilitinkevich
+       
+       
+
+        ! --- define roughness [thermal]
+        z0_t = z0_m / exp(B)
+
+    end subroutine
+    ! --------------------------------------------------------------------------------
+     ! thermal roughness definition by Cahill, A.T., Parlange, M.B., Albertson, J.D., 1997.
+     ! It is better to use for dynamic surfaces such as sand
+    ! --------------------------------------------------------------------------------
+        subroutine get_thermal_roughness_ca(z0_t, B, &
+            z0_m, Re)
+    ! ----------------------------------------------------------------------------
+        real, intent(out) :: z0_t               !< thermal roughness [m]
+        real, intent(out) :: B                  !< = log(z0_m / z0_t) [n/d]
+
+        real, intent(in) :: z0_m                !< aerodynamic roughness [m]
+        real, intent(in) :: Re                  !< roughness Reynolds number [n/d]
+       
+       
+        
+        
+        B=2.46*(Re**0.25)-3.8         !4-Cahill et al. 
+       
+        ! --- define roughness [thermal]
+        z0_t = z0_m / exp(B)
+
+    end subroutine
+    ! --------------------------------------------------------------------------------
+     ! thermal roughness definition by Owen P. R., Thomson W. R., 1963. 
+    ! --------------------------------------------------------------------------------
+        subroutine get_thermal_roughness_ot(z0_t, B, &
+            z0_m, Re)
+    ! ----------------------------------------------------------------------------
+        real, intent(out) :: z0_t               !< thermal roughness [m]
+        real, intent(out) :: B                  !< = log(z0_m / z0_t) [n/d]
+
+        real, intent(in) :: z0_m                !< aerodynamic roughness [m]
+        real, intent(in) :: Re                  !< roughness Reynolds number [n/d]
+    
+        
+        
+        B=kappa*(Re**0.45)         !Owen P. R., Thomson W. R. 
+       
+        ! --- define roughness [thermal]
+        z0_t = z0_m / exp(B)
+
+    end subroutine
+    ! --------------------------------------------------------------------------------
+    ! thermal roughness definition by Duynkerke P. G., 1992. 
+    !It is better to use for surfaces wiht forest
+    ! --------------------------------------------------------------------------------
+        subroutine get_thermal_roughness_du(z0_t, B, &
+            z0_m, u_dyn, LAI)
+    ! ----------------------------------------------------------------------------
+        real, intent(out) :: z0_t               !< thermal roughness [m]
+        real, intent(out) :: B                  !< = log(z0_m / z0_t) [n/d]
+
+        real, intent(in) :: z0_m                !< aerodynamic roughness [m]
+        real, intent(in) :: u_dyn              !< dynamic velocity [m/s]
+        real, intent(in) :: LAI                 !< leaf-area index
+       
+       
+        
+        
+        B=(13*u_dyn**0.4)/LAI+0.85         !Duynkerke P. G., 1992. 
+       
+        ! --- define roughness [thermal]
+        z0_t = z0_m / exp(B)
+
+    end subroutine
+    ! --------------------------------------------------------------------------------
+    ! thermal roughness definition z0_t = C*z0_m  
+    ! --------------------------------------------------------------------------------
+        subroutine get_thermal_roughness_zm(z0_t, B, &
+            z0_m, Czm)
+    ! ----------------------------------------------------------------------------
+        real, intent(out) :: z0_t               !< thermal roughness [m]
+        real, intent(out) :: B                  !< = log(z0_m / z0_t) [n/d]
+
+        real, intent(in) :: z0_m                !< aerodynamic roughness [m]
+        real, intent(in) :: Czm                 !< proportionality coefficient
+        
+       
+
+        z0_t =Czm*z0_m
+        B=log(z0_m / z0_t)
+    end subroutine
+    ! --------------------------------------------------------------------------------
+    ! thermal roughness definition by  Chen and Zhang  and Zilitinkevich
+    ! --------------------------------------------------------------------------------
+        subroutine get_thermal_roughness_mix(z0_t, B, &
+            z0_m, u_dyn, Re)
+    ! ----------------------------------------------------------------------------
+        real, intent(out) :: z0_t               !< thermal roughness [m]
+        real, intent(out) :: B                  !< = log(z0_m / z0_t) [n/d]
+
+        real, intent(in) :: z0_m                !< aerodynamic roughness [m]
+        real, intent(in) :: u_dyn              !< dynamic velocity [m/s]
+        real, intent(in) :: Re                  !< roughness Reynolds number [n/d]
+    
+       
+        real, parameter :: u_dyn_th=0.17         !< dynamic velocity treshhold [m/s]
+        
+        if (u_dyn <= u_dyn_th) then
+          B=0.1*kappa*(Re**0.5)  !Zilitinkevich
+        else
+            B=(kappa*10.0**(-0.4*z0_m/0.07))*(Re**0.45) !Chen and Zhang
+        end if
+       
+       
+        ! --- define roughness [thermal]
+        z0_t = z0_m / exp(B)
+
+    end subroutine
+
+
+end module module_z0t