diff --git a/srcF/module_z0t_land.f90 b/srcF/module_z0t_land.f90 new file mode 100644 index 0000000000000000000000000000000000000000..ae78742dacbb3b2831189ccaea44320915e122b7 --- /dev/null +++ b/srcF/module_z0t_land.f90 @@ -0,0 +1,219 @@ +module module_z0t + !< @brief surface thermal roughness parameterizations for land + + implicit none + + + public :: get_thermal_roughness_kl + public :: get_thermal_roughness_cz + public :: get_thermal_roughness_zi + public :: get_thermal_roughness_ca + public :: get_thermal_roughness_zm + public :: get_thermal_roughness_ot + public :: get_thermal_roughness_du + public :: get_thermal_roughness_mix + + + + ! -------------------------------------------------------------------------------- + real, parameter, private :: kappa = 0.40 !< von Karman constant [n/d] + real, parameter, private :: Pr_m = 0.71 !< molecular Prandtl number (air) [n/d] + !< Re fully roughness minimum value [n/d] + real, parameter :: Re_rough_min = 16.3 + !< roughness model coeff. [n/d] + !< --- transitional mode + !< B = log(z0_m / z0_t) = B1 * log(B3 * Re) + B2 + real, parameter :: B1_rough = 5.0 / 6.0 + real, parameter :: B2_rough = 0.45 + real, parameter :: B3_rough = kappa * Pr_m + !< --- fully rough mode (Re > Re_rough_min) + !< B = B4 * Re^(B2) + real, parameter :: B4_rough =(0.14 * (30.0**B2_rough)) * (Pr_m**0.8) + + real, parameter :: B_max_land = 2.0 + + + contains + + + ! thermal roughness definition by Kazakov, Lykosov + ! -------------------------------------------------------------------------------- + subroutine get_thermal_roughness_kl(z0_t, B, & + z0_m, Re) + ! ---------------------------------------------------------------------------- + real, intent(out) :: z0_t !< thermal roughness [m] + real, intent(out) :: B !< = log(z0_m / z0_t) [n/d] + + real, intent(in) :: z0_m !< aerodynamic roughness [m] + real, intent(in) :: Re !< roughness Reynolds number [n/d] + ! ---------------------------------------------------------------------------- + + !--- define B = log(z0_m / z0_t) + if (Re <= Re_rough_min) then + B = B1_rough * alog(B3_rough * Re) + B2_rough + else + ! *: B4 takes into account Re value at z' ~ O(10) z0 + B = B4_rough * (Re**B2_rough) + end if + + B = min(B, B_max_land) + + z0_t = z0_m / exp(B) + + end subroutine + ! -------------------------------------------------------------------------------- + + ! thermal roughness definition by Chen, F., Zhang, Y., 2009. + ! -------------------------------------------------------------------------------- + subroutine get_thermal_roughness_cz(z0_t, B, & + z0_m, Re) + ! ---------------------------------------------------------------------------- + real, intent(out) :: z0_t !< thermal roughness [m] + real, intent(out) :: B !< = log(z0_m / z0_t) [n/d] + + real, intent(in) :: z0_m !< aerodynamic roughness [m] + real, intent(in) :: Re !< roughness Reynolds number [n/d] + + + + B=(kappa*10.0**(-0.4*z0_m/0.07))*(Re**0.45) !Chen and Zhang + + ! --- define roughness [thermal] + z0_t = z0_m / exp(B) + + end subroutine + ! -------------------------------------------------------------------------------- + ! thermal roughness definition by Zilitinkevich, S., 1995. + ! -------------------------------------------------------------------------------- + subroutine get_thermal_roughness_zi(z0_t, B, & + z0_m, Re) + ! ---------------------------------------------------------------------------- + real, intent(out) :: z0_t !< thermal roughness [m] + real, intent(out) :: B !< = log(z0_m / z0_t) [n/d] + + real, intent(in) :: z0_m !< aerodynamic roughness [m] + real, intent(in) :: Re !< roughness Reynolds number [n/d] + + + + + B=0.1*kappa*(Re**0.5) !6-Zilitinkevich + + + + ! --- define roughness [thermal] + z0_t = z0_m / exp(B) + + end subroutine + ! -------------------------------------------------------------------------------- + ! thermal roughness definition by Cahill, A.T., Parlange, M.B., Albertson, J.D., 1997. + ! It is better to use for dynamic surfaces such as sand + ! -------------------------------------------------------------------------------- + subroutine get_thermal_roughness_ca(z0_t, B, & + z0_m, Re) + ! ---------------------------------------------------------------------------- + real, intent(out) :: z0_t !< thermal roughness [m] + real, intent(out) :: B !< = log(z0_m / z0_t) [n/d] + + real, intent(in) :: z0_m !< aerodynamic roughness [m] + real, intent(in) :: Re !< roughness Reynolds number [n/d] + + + + + B=2.46*(Re**0.25)-3.8 !4-Cahill et al. + + ! --- define roughness [thermal] + z0_t = z0_m / exp(B) + + end subroutine + ! -------------------------------------------------------------------------------- + ! thermal roughness definition by Owen P. R., Thomson W. R., 1963. + ! -------------------------------------------------------------------------------- + subroutine get_thermal_roughness_ot(z0_t, B, & + z0_m, Re) + ! ---------------------------------------------------------------------------- + real, intent(out) :: z0_t !< thermal roughness [m] + real, intent(out) :: B !< = log(z0_m / z0_t) [n/d] + + real, intent(in) :: z0_m !< aerodynamic roughness [m] + real, intent(in) :: Re !< roughness Reynolds number [n/d] + + + + B=kappa*(Re**0.45) !Owen P. R., Thomson W. R. + + ! --- define roughness [thermal] + z0_t = z0_m / exp(B) + + end subroutine + ! -------------------------------------------------------------------------------- + ! thermal roughness definition by Duynkerke P. G., 1992. + !It is better to use for surfaces wiht forest + ! -------------------------------------------------------------------------------- + subroutine get_thermal_roughness_du(z0_t, B, & + z0_m, u_dyn, LAI) + ! ---------------------------------------------------------------------------- + real, intent(out) :: z0_t !< thermal roughness [m] + real, intent(out) :: B !< = log(z0_m / z0_t) [n/d] + + real, intent(in) :: z0_m !< aerodynamic roughness [m] + real, intent(in) :: u_dyn !< dynamic velocity [m/s] + real, intent(in) :: LAI !< leaf-area index + + + + + B=(13*u_dyn**0.4)/LAI+0.85 !Duynkerke P. G., 1992. + + ! --- define roughness [thermal] + z0_t = z0_m / exp(B) + + end subroutine + ! -------------------------------------------------------------------------------- + ! thermal roughness definition z0_t = C*z0_m + ! -------------------------------------------------------------------------------- + subroutine get_thermal_roughness_zm(z0_t, B, & + z0_m, Czm) + ! ---------------------------------------------------------------------------- + real, intent(out) :: z0_t !< thermal roughness [m] + real, intent(out) :: B !< = log(z0_m / z0_t) [n/d] + + real, intent(in) :: z0_m !< aerodynamic roughness [m] + real, intent(in) :: Czm !< proportionality coefficient + + + + z0_t =Czm*z0_m + B=log(z0_m / z0_t) + end subroutine + ! -------------------------------------------------------------------------------- + ! thermal roughness definition by Chen and Zhang and Zilitinkevich + ! -------------------------------------------------------------------------------- + subroutine get_thermal_roughness_mix(z0_t, B, & + z0_m, u_dyn, Re) + ! ---------------------------------------------------------------------------- + real, intent(out) :: z0_t !< thermal roughness [m] + real, intent(out) :: B !< = log(z0_m / z0_t) [n/d] + + real, intent(in) :: z0_m !< aerodynamic roughness [m] + real, intent(in) :: u_dyn !< dynamic velocity [m/s] + real, intent(in) :: Re !< roughness Reynolds number [n/d] + + + real, parameter :: u_dyn_th=0.17 !< dynamic velocity treshhold [m/s] + + if (u_dyn <= u_dyn_th) then + B=0.1*kappa*(Re**0.5) !Zilitinkevich + else + B=(kappa*10.0**(-0.4*z0_m/0.07))*(Re**0.45) !Chen and Zhang + end if + + + ! --- define roughness [thermal] + z0_t = z0_m / exp(B) + + end subroutine + + +end module module_z0t