module obl_legacy implicit none !!! OCEVERMIX LEGACY PARAMETERS real, parameter :: lu_min = 0.5 ! legacy_rit_top real, parameter :: coriolis_rit_top_min = 2.5e-05 ! legacy_rit real, parameter :: rit_max = 1E+05 real, parameter :: s2_add = 0.0025 ! legacy_kh_unstable real, parameter :: kh_ttmx = 10.0 real, parameter :: kh_ttmn = 5.0 real, parameter :: kh_unstmx = 500.0 real, parameter :: kh_unstmn = 500.0 !50 ! legacy_undimdepth & legacy_str real, parameter :: hm_ice_max = 0.7 real, parameter :: hhq_add = 1.0e-30 real, parameter :: kh_strmin1 = 0.5 real, parameter :: kh_strmax1 = 2.0 real, parameter :: kh_strmin2 = 2.0 real, parameter :: kh_strmax2 = 10.0 real, parameter :: kh_hmmin1 = 300.0 real, parameter :: kh_hmmax1 = 3000.0 real, parameter :: kh_hmmin2 = 3000.0 real, parameter :: kh_hmmax2 = 10000.0 real, parameter :: kh_dimdepth = 1000.0 real, parameter :: km_strmin1 = 0.4 real, parameter :: km_strmax1 = 1.0 real, parameter :: km_strmin2 = 1.0 real, parameter :: km_strmax2 = 8.0 real, parameter :: km_hmmin1 = 300.0 real, parameter :: km_hmmax1 = 3000.0 real, parameter :: km_hmmin2 = 3000.0 real, parameter :: km_hmmax2 = 10000.0 real, parameter :: km_dimdepth = 1000.0 !1000.0 ! legacy_kh_b real, parameter :: kh_amnazmin = 1.0 real, parameter :: kh_amnazmax = 20.0 real, parameter :: kh_zzmin = 100000.0 real, parameter :: kh_zzmax = 150000.0 ! legacy_km_b real, parameter :: km_unstable = 500.0 !!! OCEVERMIX PARAMETERS VISIBILITY public :: lu_min, km_unstable private :: coriolis_rit_top_min, rit_max, s2_add, kh_ttmx, kh_ttmn, kh_unstmx, kh_unstmn private :: hm_ice_max, hhq_add, kh_strmin1, kh_strmax1, kh_strmin2, kh_strmax2 private :: kh_hmmin1, kh_hmmax1, kh_hmmin2, kh_hmmax2, kh_dimdepth private :: km_strmin1, km_strmax1, km_strmin2, km_strmax2 private :: km_hmmin1, km_hmmax1, km_hmmin2, km_hmmax2, km_dimdepth private :: kh_amnazmin, kh_amnazmax, kh_zzmin, kh_zzmax contains subroutine legacy_rit(n2, s2, border_shift, lu, rit) real, intent(in) :: n2(:,:,:) real, intent(in) :: s2(:,:,:) real, intent(in) :: lu(:,:) integer, intent(in) :: border_shift real, intent(inout) :: rit(:,:,:) ! Local variables integer :: i, j, k ! Loop indices integer :: nx, ny, nz ! Array sizes ! Parameters: rit_max, s2_add, lu_min nx = size(rit, 1) ny = size(rit, 2) nz = size(rit, 3) do k = 1, nz do j = 1 + border_shift, ny - border_shift do i = 1 + border_shift, nx - border_shift if (lu(i,j) > lu_min) then rit(i,j,k) = n2(i,j,k) / (s2(i,j,k) + s2_add) rit(i,j,k) = min(rit(i,j,k), rit_max) end if end do end do end do end subroutine legacy_rit subroutine legacy_rit_top(rlh, tau_u, tau_v, border_shift, lu, rit_top) real, intent(in) :: rlh(:,:) real, intent(in) :: tau_u(:,:), tau_v(:,:) real, intent(in) :: lu(:,:) integer, intent(in) :: border_shift real, intent(inout) :: rit_top(:,:) ! Local variables real :: rlt, coriolis, u_star ! Auxiliary variables integer :: i, j ! Loop indices integer :: nx, ny ! Array sizes ! Parameters: coriolis_rit_top_min, lu_min nx = size(rit_top, 1) ny = size(rit_top, 2) do j = 1 + border_shift, ny - border_shift do i = 1 + border_shift, nx - border_shift if (lu(i,j) > lu_min) then rlt = (rlh(i,j) + rlh(i-1,j) + rlh(i,j-1) + rlh(i-1,j-1)) / 4.0 coriolis = max(abs(rlt), coriolis_rit_top_min) ! freezing in 10N,S u_star = sqrt(sqrt(tau_u(i,j)**2 + tau_v(i,j)**2)) rit_top(i,j) = 0.5 * u_star / coriolis end if end do end do end subroutine legacy_rit_top subroutine legacy_neutral_mld(rlh, tau_u, tau_v, border_shift, lu, neutral_mld, u_star) real, intent(in) :: rlh(:,:) real, intent(in) :: tau_u(:,:), tau_v(:,:) real, intent(in) :: lu(:,:) integer, intent(in) :: border_shift real, intent(inout) :: neutral_mld(:,:) real, intent(out) :: u_star(:,:) ! Local variables real :: rlt, coriolis ! Auxiliary variables integer :: i, j ! Loop indices integer :: nx, ny ! Array sizes ! Parameters: coriolis_rit_top_min, lu_min nx = size(neutral_mld, 1) ny = size(neutral_mld, 2) do j = 1 + border_shift, ny - border_shift do i = 1 + border_shift, nx - border_shift if (lu(i,j) > lu_min) then rlt = (rlh(i,j) + rlh(i-1,j) + rlh(i,j-1) + rlh(i-1,j-1)) / 4.0 coriolis = max(abs(rlt), coriolis_rit_top_min) ! freezing in 10N,S u_star(:,:) = sqrt(sqrt(tau_u(i,j)**2 + tau_v(i,j)**2)) neutral_mld(i,j) = 0.25 * u_star(i,j) / coriolis end if end do end do end subroutine legacy_neutral_mld subroutine legacy_u2(uu, dy, dyh, hhu, hhq, border_shift, lu, u2) real, intent(in) :: uu(:,:,:) real, intent(in) :: dy(:,:) real, intent(in) :: dyh(:,:) real, intent(in) :: hhu(:,:) real, intent(in) :: hhq(:,:) real, intent(in) :: lu(:,:) integer, intent(in) :: border_shift real, intent(inout) :: u2(:,:,:) ! Local variables integer :: i, j, k ! Loop indices integer :: nx, ny, nz ! Array sizes nx = size(uu, 1) ny = size(uu, 2) nz = size(uu, 3) do k = 1, nz do j = 1 + border_shift, ny - border_shift do i = 1 + border_shift, nx - border_shift if (lu(i,j) > lu_min) then u2(i,j,k) = lu(i,j) * 0.5 / dy(i,j) * & (uu(i-1,j,k) * hhu(i-1,j) * dyh(i-1,j) + & uu(i,j,k) * hhu(i,j) * dyh(i,j)) / hhq(i,j) end if end do end do end do end subroutine legacy_u2 subroutine legacy_v2(vv, dx, dxh, hhv, hhq, border_shift, lu, v2) real, intent(in) :: vv(:,:,:) real, intent(in) :: dx(:,:) real, intent(in) :: dxh(:,:) real, intent(in) :: hhv(:,:) real, intent(in) :: hhq(:,:) real, intent(in) :: lu(:,:) integer, intent(in) :: border_shift real, intent(inout) :: v2(:,:,:) ! Local variables integer :: i, j, k ! Loop indices integer :: nx, ny, nz ! Array sizes nx = size(vv, 1) ny = size(vv, 2) nz = size(vv, 3) do k = 1, nz do j = 1 + border_shift, ny - border_shift do i = 1 + border_shift, nx - border_shift if (lu(i,j) > lu_min) then v2(i,j,k) = lu(i,j) * 0.5 / dx(i,j) * & (vv(i,j-1,k) * hhv(i,j-1) * dxh(i,j-1) + & vv(i,j,k) * hhv(i,j) * dxh(i,j)) / hhq(i,j) end if end do end do end do end subroutine legacy_v2 subroutine legacy_s2(u2, v2, lu, s2) real, intent(in) :: u2(:,:,:) real, intent(in) :: v2(:,:,:) real, intent(in) :: lu(:,:) real, intent(inout) :: s2(:,:,:) ! Local variables integer :: i, j, k ! Loop indices integer :: nx, ny, nz ! Array sizes nx = size(s2, 1) ny = size(s2, 2) nz = size(s2, 3) do k = 1, nz do j = 1, ny do i = 1, nx if (lu(i,j) > lu_min) then s2(i,j,k) = (u2(i,j,k+1) - u2(i,j,k))**2 + (v2(i,j,k+1) - v2(i,j,k))**2 end if end do end do end do end subroutine legacy_s2 subroutine legacy_n2(den, hhq, zw, g, lu, n2) real, intent(in) :: den(:,:,:) real, intent(in) :: hhq(:,:) real, intent(in) :: lu(:,:) real, intent(in) :: zw(:) real, intent(in) :: g real, intent(inout) :: n2(:,:,:) ! Local variables integer :: i, j, k ! Loop indices integer :: nx, ny, nz ! Array sizes nx = size(n2, 1) ny = size(n2, 2) nz = size(n2, 3) do k = 1, nz do j = 1, ny do i = 1, nx if (lu(i,j) > lu_min) then n2(i,j,k) = g * (den(i,j,k+1) - den(i,j,k)) / 2.0 * & (zw(k+2) - zw(k)) / hhq(i,j) end if end do end do end do end subroutine legacy_n2 subroutine legacy_km_b(zw, unstable, undimdepth, km_b0, km_b) real, intent(in) :: zw(:) real, intent(in) :: unstable real, intent(in) :: undimdepth real, intent(in) :: km_b0 real, intent(inout) :: km_b(:) ! Local variables integer :: k ! Loop indices integer :: nz ! Array sizes nz = size(km_b) - 1 do k = 2, nz ! if (zw(k) <= undimdepth) then ! km_b(k) = unstable ! else ! km_b(k) = km_b0 ! end if km_b(k) = km_b0 end do end subroutine legacy_km_b subroutine legacy_km(rit, km_0, km_b, km) real, intent(in) :: rit(:) real, intent(in) :: km_0 real, intent(in) :: km_b(:) real, intent(inout) :: km(:) ! Local variables integer :: k ! Loop indices integer :: nz ! Array sizes nz = size(rit) do k = 2, nz if (rit(k) > 0.0) then km(k) = km_0 / (1.0 + 5.0 * rit(k))**2 + km_b(k) else km(k) = km_0 + km_b(k) end if end do end subroutine legacy_km subroutine legacy_kh(rit, kh_0, kh_b, unstable, kh) real, intent(in) :: rit(:) real, intent(in) :: kh_0 real, intent(in) :: unstable real, intent(in) :: kh_b(:) real, intent(inout) :: kh(:) ! Local variables integer :: k ! Loop indices integer :: nz ! Array sizes nz = size(rit) do k = 2, nz if (rit(k) >= 0.0) then kh(k) = kh_0 / (1.0 + 5.0 * rit(k)) + kh_b(k) else kh(k) = unstable end if end do ! For unstable stratification ! do k = 2, nz ! if (rit(k) < 0.0) then ! Mixing is decreased in vicinity of equator in unstable situation ! kh(k) = unstable * (1.0 - 0.7 * (rn / rm) ** 10) ! kh(k) = unstable ! kh(k + 1) = unstable ! ! Convective diffusion as dZ * dZ * Vajsjala-Brenta frequency ! kh(k) = az0 * hhq * hzt(k) * & ! sqrt(abs(den(k) - den(k - 1)) * & ! g * hhq * hzt(k)) + & ! 0.3 * hhq**2 * hzt(k-1) * & ! hzt(k) / (12.0 * 3600.0) ! end if ! end do end subroutine legacy_kh subroutine legacy_kh_b(zw, hhq, unstable, undimdepth, kh_b0, kh_b) real, intent(in) :: zw(:) real, intent(in) :: hhq real, intent(in) :: unstable real, intent(in) :: undimdepth real, intent(in) :: kh_b0 real, intent(inout) :: kh_b(:) ! Local variables real :: amnaz, zz integer :: k ! Loop indices integer :: nz ! Array sizes ! Parameters: kh_amnazmin, kh_amnazmax, kh_zzmin, kh_zzmax nz = size(kh_b) - 1 do k = 2, nz if (zw(k) <= undimdepth) then kh_b = unstable ! Addition mixing in upper layer for T & S else ! BACKGROUND COEFFICIENT DEPENDS ON DEPTH zz = zw(k) * hhq if (zz <= kh_zzmin) then amnaz = kh_amnazmin else if (zz >= kh_zzmax) then amnaz = kh_amnazmax else amnaz = kh_amnazmin + (kh_amnazmax - kh_amnazmin) * & (zz - kh_zzmin) / (kh_zzmax - kh_zzmin) end if kh_b(k) = kh_b0 * amnaz end if end do end subroutine legacy_kh_b subroutine legacy_undimdepth(mode, str, hhq, aice0, undimdepth) character(len=2) :: mode real, intent(in) :: str real, intent(in) :: hhq real, intent(in) :: aice0 real, intent(inout) :: undimdepth ! Local variables real :: strmin1, strmax1, strmin2, strmax2 real :: hmmin1, hmmax1, hmmin2, hmmax2 real :: dimdepth real :: hm ! Parameters: kh_strmin1, kh_strmax1, kh_strmin2, kh_strmax2 ! kh_hmmin1, kh_hmmax1, kh_hmmin2, kh_hmmax2 ! kh_dimdepth ! km_strmin1, km_strmax1, km_strmin2, km_strmax2 ! km_hmmin1, km_hmmax1, km_hmmin2, km_hmmax2 ! km_dimdepth if (mode == "kh") then strmin1 = kh_strmin1 strmax1 = kh_strmax1 strmin2 = kh_strmin2 strmax2 = kh_strmax2 hmmin1 = kh_hmmin1 hmmax1 = kh_hmmax1 hmmin2 = kh_hmmin2 hmmax2 = kh_hmmax2 dimdepth = kh_dimdepth else if (mode == "km") then strmin1 = km_strmin1 strmax1 = km_strmax1 strmin2 = km_strmin2 strmax2 = km_strmax2 hmmin1 = km_hmmin1 hmmax1 = km_hmmax1 hmmin2 = km_hmmin2 hmmax2 = km_hmmax2 dimdepth = km_dimdepth else stop "legacy_undimdepth: ERROR: mode must be 'kh' or 'km'" end if if (str <= strmax1) then hm = hmmin1 + (hmmax1 - hmmin1) * (str - strmin1) / (strmax1 - strmin1) else hm = hmmin2 + (hmmax2 - hmmin2) * (str - strmin2) / (strmax2 - strmin2) end if if (aice0 < hm_ice_max) then hm = dimdepth end if undimdepth = amax1(dimdepth, hm) / (hhq + hhq_add) end subroutine legacy_undimdepth subroutine legacy_str(mode, taux, tauy, rh0, str) character(len=2) :: mode real, intent(in) :: taux, tauy real, intent(in) :: rh0 real, intent(inout) :: str ! Local variables real :: strmin, strmax ! Parameters: kh_strmin1, kh_strmax2, km_strmin1, km_strmax2 if (mode == "kh") then strmin = kh_strmin1 strmax = kh_strmax2 else if (mode == "km") then strmin = km_strmin1 strmax = km_strmax2 else stop "legacy_str: ERROR: mode must be 'kh' or 'km'" end if str = rh0 * sqrt(taux**2 + tauy**2) str = amax1(str, strmin) ! TODO: check is amax1, amin1 is not outdated str = amin1(str, strmax) end subroutine legacy_str subroutine legacy_kh_unstable(tt, unstable) real, intent(in) :: tt real, intent(inout) :: unstable ! Parameters: kh_ttmx, kh_ttmn, kh_unstmx, kh_unstmn if (tt > kh_ttmx) then unstable = kh_unstmx else if (tt < kh_ttmn) then unstable = kh_unstmn else unstable = kh_unstmn + (kh_unstmx - kh_unstmn) * & (tt - kh_ttmn) / (kh_ttmx - kh_ttmn) end if end subroutine legacy_kh_unstable !> Computes the sea water density deviation from 1.02 [g/cm³]. !! !! This function calculates the potential density deviation !! of seawater as a function of potential temperature (**t** in °C), !! salinity (**s** in parts per thousand), and pressure (**p** in MPa). !! real, parameter :: prestompa = 1.0e-7 ! conversion factor for pressure [1MPa=1E-7din/cm**2] <init: Inc/0DENP.INC; using in: occont.f: ocforcing> !! !! **References:** !! The calculation based on Bryden et al. (1999): "A new approximation of !! the equation of state for seawater, suitable for numerical ocean models." !! https://doi.org/10.1029/1998JC900059 !! !! **Valid ranges:** !! - Temperature: -2 < t < 40 °C !! - Salinity: 0 < s < 42 ppt !! - Pressure: 0 < p < 100 MPa !! !! **Input Variables:** !! @param[in] t Potential temperature in degrees Celsius. !! @param[in] s Salinity in parts per thousand (ppt). !! @param[in] p Pressure in megapascals (MPa). !! **Return Value:** !! @return Potential density deviation from 1.02 [g/cm³]. elemental real function legacy_denp(t, s, p) result(denp) real, intent(in) :: t, s, p denp = -2.00920601e-02 + & ( 5.07043e-04 * p - 5.43283e-07 * p * p) + & ( 5.10768e-05 - 3.69119e-06 * p + 6.54837e-09 * p * p) * t + & ( 8.05999e-04 - 9.34012e-07 * p + 1.38777e-09 * p * p) * s + & (-7.40849e-06 + 5.33243e-08 * p - 1.01563e-10 * p * p) * t * t + & (-3.01036e-06 + 1.75145e-08 * p - 2.34892e-11 * p * p) * t * s + & ( 3.32267e-08 - 3.25887e-10 * p + 4.98612e-13 * p * p) * t * t * t + & ( 3.21931e-08 - 1.65849e-10 * p + 2.17612e-13 * p * p) * t * t * s end function legacy_denp end module obl_legacy