! Created by Andrey Debolskiy on 29.11.2024. module pbl_solver use parkinds, only: rf=>kind_rf, im=>kind_im use scm_state_data use pbl_turb_data implicit none public factorize_tridiag public solve_tridiag public fill_tridiag public solve_diffusion contains subroutine factorize_tridiag(ktvd, kl, aa, bb, cc, prgna, prgnz) implicit none integer, intent(in) :: ktvd, kl real, intent(in), dimension(kl) :: aa, bb, cc real, intent(out), dimension(kl) :: prgna, prgnz integer :: k prgna(ktvd) = cc(ktvd) / bb(ktvd) do k = ktvd+1, kl prgnz(k) = 1.0e0 / (bb(k) - aa(k) * prgna(k-1)) prgna(k) = cc(k) * prgnz(k) end do end subroutine factorize_tridiag !> reduce tridiagonal system to bidiagonal after matrix factorization !! - bb(k) y(k) + cc(k) y(k+1) = -f(k), k = ktvd !! aa(k) y(k-1) - bb(k) y(k) + cc(k) y(k+1) = -f(k), k = ktvd+1..kl-1 !! aa(k) y(k-1) - bb(k) y(k) = -f(k), k = kl !! assuming cc(kl) = 0.0 !! reduced system is !! y(k) - prgna(k) y(k+1) = prgnb(k), k = ktvd..kl-1 !! y(k) = prgnb(k), k = kl !! then solve via backward substitution subroutine solve_tridiag(ktvd, kl, aa, bb, cc, ff, prgna, prgnz, y) implicit none integer, intent(in) :: ktvd, kl real, intent(in), dimension(kl) :: aa, bb, cc, ff real, intent(in), dimension(kl) :: prgna, prgnz real, intent(inout), dimension(kl) :: y integer :: k real :: prgnb(kl) write(*,*) 'here_diff3.1', bb(ktvd) prgnb(ktvd) = ff(ktvd) / bb(ktvd) write(*,*) 'here_diff3.1' do k = ktvd+1, kl write(*,*) k, ktvd, prgnz(k), ff(k) prgnb(k) = prgnz(k) * (ff(k) + aa(k) * prgnb(k-1)) end do write(*,*) 'here_diff3' y(kl) = prgnb(kl) do k = kl-1, ktvd, -1 y(k) = prgna(k) * y(k+1) + prgnb(k) end do end subroutine solve_tridiag subroutine fill_tridiag(aa, bb, cc, rho, kdiff, kbltop, cm2u, grid, dt) use pbl_grid, only: pblgridDataType implicit none real, dimension(*), intent(in):: rho, kdiff real, intent(in):: dt, cm2u integer, intent(in):: kbltop type(pblgridDataType),intent(in):: grid real, dimension(*), intent(inout):: aa, bb, cc real:: dtdz integer:: k !nulify before top boundary aa(1:kbltop-1) = 0.0 bb(1:kbltop-1) = 0.0 cc(1:kbltop-1) = 0.0 !top boundary condition: flux = 0 write(*,*) 'here_diff1.25', kbltop k = kbltop dtdz = dt / (grid%dzc(k)) aa(k) = 0 cc(k) = (kdiff(k)/rho(k)) * dtdz / grid%dze(k) write(*,*) 'here_diff1.5', kdiff(k), kbltop write(*,*) 'KTVDM', k, aa(k), bb(k), cc(k), rho(k) do k = kbltop + 1, grid%kmax -1 dtdz = dt / (grid%dzc(k)) aa(k) = (kdiff(k - 1)/rho(k)) * dtdz / grid%dze(k-1) cc(k) = (kdiff(k)/rho(k)) * dtdz / grid%dze(k) bb(k) = 1.0 + aa(k) + cc(k) write(*,*) 'fill', k, aa(k), bb(k), cc(k), kdiff(k) end do write(*,*) 'here_diff1.75' !bottom boundary k = grid%kmax dtdz = dt / (grid%dzc(k)) aa(k) = (kdiff(k-1)/rho(k)) * dtdz / grid%dze(k-1) bb(k) = 1.0 + aa(k) + dtdz * cm2u / rho(k) cc(k) = 0.0 end subroutine fill_tridiag subroutine solve_diffusion(bl, bl_old, turb, fluid, grid, dt) use scm_state_data, only : stateBLDataType use pbl_turb_data, only : turbBLDataType use phys_fluid, only: fluidParamsDataType use pbl_grid, only : pblgridDataType implicit none type(stateBLDataType), intent(inout):: bl type(stateBLDataType), intent(in):: bl_old type(turbBLDataType), intent(in):: turb type(fluidParamsDataType), intent(in) :: fluid type(pblgridDataType), intent(in) :: grid real, intent(in):: dt real, allocatable:: aa(:), bb(:), cc(:), ff(:) real, allocatable:: prgna(:), prgnz(:) integer k, integer, ktop, kmax kmax = grid%kmax write(*,*) 'here_diff' if (.not.(allocated(aa))) then allocate(aa(grid%kmax), source=0.0) end if if (.not.(allocated(bb))) then allocate(bb(grid%kmax), source=0.0) end if if (.not.(allocated(cc))) then allocate(cc(grid%kmax), source=0.0) end if if (.not.(allocated(ff))) then allocate(ff(grid%kmax), source=0.0) end if if (.not.(allocated(prgna))) then allocate(prgna(grid%kmax), source=0.0) end if if (.not.(allocated(prgnz))) then allocate(prgnz(grid%kmax), source=0.0) end if write(*,*) 'here_diff1', bl%kpbl ktop = bl%kpbl do k = bl%kpbl-1,1,-1 if(bl%vdcuv(k) > 0.e0) then ktop = k end if enddo ! fill for temperature and specific humidity call fill_tridiag(aa, bb, cc, bl%rho, bl%vdctq, ktop, 0.0, grid, dt) write(*,*) 'here_diff2' call factorize_tridiag(ktop, kmax, aa, bb, cc, prgna, prgnz) do k = ktop,kmax-1 ff(k) = bl%theta(k) write(*,*) '2', k, aa(k), bb(k), cc(k), ff(k), grid%dze(k) end do ff(kmax) = bl%theta(kmax) + (dt/kmax) * bl%surf%hs /bl%rho(kmax) write(*,*) 'here_diff3' call solve_tridiag(ktop, kmax, aa, bb, cc, ff, prgna, prgnz, bl%theta) write(*,*) 'here_diff4' do k = ktop,kmax-1 ff(k) = bl%qv(k) end do ff(kmax) = bl%qv(kmax) + (dt/kmax) * bl%surf%es /bl%rho(kmax) call solve_tridiag(ktop, kmax, aa, bb, cc, ff, prgna, prgnz, bl%qv) write(*,*) 'here_diff4' !velocity call fill_tridiag(aa, bb, cc, bl%rho, bl%vdcuv, ktop, bl%surf%cm2u, grid, dt) call factorize_tridiag(ktop, kmax, aa, bb, cc, prgna, prgnz) do k = ktop,kmax-1 ff(k) = bl%u(k) end do ff(kmax) = bl%u(kmax) call solve_tridiag(ktop, kmax, aa, bb, cc, ff, prgna, prgnz, bl%u) do k = ktop,kmax-1 ff(k) = bl%v(k) end do ff(kmax) = bl%v(kmax) call solve_tridiag(ktop, kmax, aa, bb, cc, ff, prgna, prgnz, bl%v) end subroutine solve_diffusion end module pbl_solver