! Created by Andrey Debolskiy on 29.11.2024. module pbl_solver use parkinds, only: rf=>kind_rf, im=>kind_im use scm_state_data use pbl_turb_data implicit none public factorize_tridiag public solve_tridiag public fill_tridiag public solve_diffusion public apply_subsidence contains subroutine factorize_tridiag(ktvd, kl, aa, bb, cc, prgna, prgnz) implicit none integer, intent(in) :: ktvd, kl real, intent(in), dimension(kl) :: aa, bb, cc real, intent(out), dimension(kl) :: prgna, prgnz integer :: k prgna(ktvd) = cc(ktvd) / bb(ktvd) do k = ktvd+1, kl prgnz(k) = 1.0e0 / (bb(k) - aa(k) * prgna(k-1)) prgna(k) = cc(k) * prgnz(k) end do end subroutine factorize_tridiag !> reduce tridiagonal system to bidiagonal after matrix factorization !! - bb(k) y(k) + cc(k) y(k+1) = -f(k), k = ktvd !! aa(k) y(k-1) - bb(k) y(k) + cc(k) y(k+1) = -f(k), k = ktvd+1..kl-1 !! aa(k) y(k-1) - bb(k) y(k) = -f(k), k = kl !! assuming cc(kl) = 0.0 !! reduced system is !! y(k) - prgna(k) y(k+1) = prgnb(k), k = ktvd..kl-1 !! y(k) = prgnb(k), k = kl !! then solve via backward substitution subroutine solve_tridiag(ktvd, kl, aa, bb, cc, ff, prgna, prgnz, y) implicit none integer, intent(in) :: ktvd, kl real, intent(in), dimension(kl) :: aa, bb, cc, ff real, intent(in), dimension(kl) :: prgna, prgnz real, intent(inout), dimension(kl) :: y integer :: k real :: prgnb(kl) prgnb(ktvd) = ff(ktvd) / bb(ktvd) do k = ktvd+1, kl prgnb(k) = prgnz(k) * (ff(k) + aa(k) * prgnb(k-1)) end do y(kl) = prgnb(kl) do k = kl-1, ktvd, -1 y(k) = prgna(k) * y(k+1) + prgnb(k) end do end subroutine solve_tridiag subroutine fill_tridiag(aa, bb, cc, rho, kdiff, kbltop, cm2u, grid, dt) use pbl_grid, only: pblgridDataType implicit none real, dimension(*), intent(in):: rho, kdiff real, intent(in):: dt, cm2u integer, intent(in):: kbltop type(pblgridDataType),intent(in):: grid real, dimension(*), intent(inout):: aa, bb, cc real:: dtdz integer:: k !nulify before top boundary aa(1:grid%kmax) = 0.0 bb(1:grid%kmax) = 0.0 cc(1:grid%kmax) = 0.0 !top boundary condition: flux = 0 k = kbltop dtdz = dt / (grid%z_edge(k) - grid%z_edge(k-1) ) aa(k) = 0 cc(k) = (kdiff(k)/rho(k)) * dtdz / (grid%z_cell(k+1) - grid%z_cell(k)) bb(k) = 1.0 + cc(k) do k = kbltop + 1, grid%kmax -1 dtdz = dt / (grid%z_edge(k) - grid%z_edge(k-1) ) aa(k) = (kdiff(k - 1)/rho(k)) * dtdz / (grid%z_cell(k) - grid%z_cell(k-1)) cc(k) = (kdiff(k)/rho(k)) * dtdz /(grid%z_cell(k+1) - grid%z_cell(k)) bb(k) = 1.0 + aa(k) + cc(k) end do !bottom boundary k = grid%kmax dtdz = dt / (grid%z_edge(k) - grid%z_edge(k-1) ) aa(k) = (kdiff(k-1)/rho(k)) * dtdz / (grid%z_cell(k) - grid%z_cell(k-1)) bb(k) = 1.0 + aa(k) - dtdz * cm2u / rho(k) cc(k) = 0.0 end subroutine fill_tridiag subroutine solve_diffusion(bl, bl_old, turb, fluid, grid, dt) use scm_state_data, only : stateBLDataType use pbl_turb_data, only : turbBLDataType use phys_fluid, only: fluidParamsDataType use pbl_grid, only : pblgridDataType implicit none type(stateBLDataType), intent(inout):: bl type(stateBLDataType), intent(in):: bl_old type(turbBLDataType), intent(in):: turb type(fluidParamsDataType), intent(in) :: fluid type(pblgridDataType), intent(in) :: grid real, intent(in):: dt real, save, allocatable:: aa(:), bb(:), cc(:), ff(:) real, allocatable:: prgna(:), prgnz(:) integer k, integer, ktop, kmax kmax = grid%kmax if (.not.(allocated(aa))) then allocate(aa(grid%kmax), source=0.0) end if if (.not.(allocated(bb))) then allocate(bb(grid%kmax), source=0.0) end if if (.not.(allocated(cc))) then allocate(cc(grid%kmax), source=0.0) end if if (.not.(allocated(ff))) then allocate(ff(grid%kmax), source=0.0) end if if (.not.(allocated(prgna))) then allocate(prgna(grid%kmax), source=0.0) end if if (.not.(allocated(prgnz))) then allocate(prgnz(grid%kmax), source=0.0) end if ktop = bl%kpbl !this loop is generally not needed !do k = bl%kpbl-1,1,-1 ! if(bl%vdcuv(k) > 0.e0) then ! ktop = k ! end if !enddo call fill_tridiag(aa, bb, cc, bl%rho, bl%vdctq, ktop, 0.0, grid, dt) call factorize_tridiag(ktop, kmax, aa, bb, cc, prgna, prgnz) do k = ktop,kmax-1 ff(k) = bl%theta(k) end do ff(kmax) = bl%theta(kmax) & + (dt/grid%dze(kmax)) * bl%surf%hs / (bl%rho(kmax)) write(*,*) 'ff'!, ff!, aa,bb,cc call solve_tridiag(ktop, kmax, aa, bb, cc, ff, prgna, prgnz, bl%theta) do k = ktop,kmax-1 ff(k) = bl%qv(k) end do ff(kmax) = bl%qv(kmax) + (dt/grid%dze(kmax)) * bl%surf%es /bl%rho(kmax) call solve_tridiag(ktop, kmax, aa, bb, cc, ff, prgna, prgnz, bl%qv) !velocity call fill_tridiag(aa, bb, cc, bl%rho, bl%vdcuv, ktop, bl%surf%cm2u, grid, dt) call factorize_tridiag(ktop, kmax, aa, bb, cc, prgna, prgnz) do k = ktop,kmax-1 ff(k) = bl%u(k) end do ff(kmax) = bl%u(kmax) call solve_tridiag(ktop, kmax, aa, bb, cc, ff, prgna, prgnz, bl%u) do k = ktop,kmax-1 ff(k) = bl%v(k) end do ff(kmax) = bl%v(kmax) call solve_tridiag(ktop, kmax, aa, bb, cc, ff, prgna, prgnz, bl%v) end subroutine solve_diffusion subroutine apply_subsidence(bl, w_s, fluid, grid, dt) use scm_state_data, only : stateBLDataType use pbl_turb_data, only : turbBLDataType use phys_fluid, only: fluidParamsDataType use pbl_grid, only : pblgridDataType implicit none type(stateBLDataType), intent(inout):: bl type(fluidParamsDataType), intent(in) :: fluid type(pblgridDataType), intent(in) :: grid real, intent(in):: dt real, dimension(*), intent(in):: w_s real, save, allocatable :: subs_u(:), subs_v(:), & subs_theta(:), subs_qv(:) real:: dtdz, rhom, rhop integer k, kmax kmax = grid%kmax if (.not.(allocated(subs_u))) then allocate(subs_u(grid%kmax), source=0.0) end if if (.not.(allocated(subs_v))) then allocate(subs_v(grid%kmax), source=0.0) end if if (.not.(allocated(subs_theta))) then allocate(subs_theta(grid%kmax), source=0.0) end if if (.not.(allocated(subs_qv))) then allocate(subs_qv(grid%kmax), source=0.0) end if ! central differences do k = kmax-1, 2, -1 rhop = 0.5*(bl%rho(k) + bl%rho(k+1)) rhom = 0.5*(bl%rho(k) + bl%rho(k-1)) subs_u(k) = (0.5/bl%rho(k)) & * (rhop * w_s(k) * (bl%u(k)-bl%u(k+1)) & /(grid%z_cell(k)-grid%z_cell(k+1)) & + & rhom * w_s(k-1) * (bl%u(k)-bl%u(k-1)) & /(grid%z_cell(k)-grid%z_cell(k-1))) subs_v(k) = (0.5/bl%rho(k)) & * (rhop * w_s(k) * (bl%v(k)-bl%v(k+1)) & /(grid%z_cell(k)-grid%z_cell(k+1)) & + & rhom * w_s(k-1) * (bl%v(k)-bl%v(k-1)) & /(grid%z_cell(k)-grid%z_cell(k-1))) subs_theta(k) = (0.5/bl%rho(k)) & * (rhop * w_s(k) * (bl%theta(k)-bl%theta(k+1)) & /(grid%z_cell(k)-grid%z_cell(k+1)) & + & rhom * w_s(k-1) * (bl%theta(k)-bl%theta(k-1)) & /(grid%z_cell(k)-grid%z_cell(k-1))) subs_qv(k) = (0.5/bl%rho(k)) & * (rhop * w_s(k) * (bl%qv(k)-bl%qv(k+1)) & /(grid%z_cell(k)-grid%z_cell(k+1)) & + & rhom * w_s(k-1) * (bl%qv(k)-bl%qv(k-1)) & /(grid%z_cell(k)-grid%z_cell(k-1))) end do ! bottom boundary write(*,*) 'ws', grid%z_cell(kmax), grid%z_cell(kmax-1), w_s(kmax) k = kmax subs_u(k) = w_s(k-1) * (bl%u(k)-bl%u(k-1)) & /(grid%z_cell(k)-grid%z_cell(k-1)) subs_v(k) = w_s(k-1) * (bl%v(k)-bl%v(k-1)) & /(grid%z_cell(k)-grid%z_cell(k-1)) subs_theta(k) = w_s(k-1) * (bl%theta(k)-bl%theta(k-1)) & /(grid%z_cell(k)-grid%z_cell(k-1)) subs_qv(k) = w_s(k-1) * (bl%qv(k)-bl%qv(k-1)) & /(grid%z_cell(k)-grid%z_cell(k-1)) ! top boundary k = 1 subs_u(k) = w_s(k+1) * (bl%u(k)-bl%u(k+1)) & /(grid%z_cell(k)-grid%z_cell(k+1)) subs_v(k) = w_s(k+1) * (bl%v(k)-bl%v(k+1)) & /(grid%z_cell(k)-grid%z_cell(k+1)) subs_theta(k) = w_s(k+1) * (bl%theta(k)-bl%theta(k+1)) & /(grid%z_cell(k)-grid%z_cell(k+1)) subs_qv(k) = w_s(k+1) * (bl%qv(k)-bl%qv(k+1)) & /(grid%z_cell(k)-grid%z_cell(k+1)) !apply do k=kmax, 1, -1 bl%u(k) = bl%u(k) - subs_u(k) * dt bl%v(k) = bl%v(k) - subs_v(k) * dt bl%theta(k) = bl%theta(k) - subs_theta(k) * dt bl%qv(k) = bl%qv(k) - subs_qv(k) * dt end do end subroutine apply_subsidence end module pbl_solver