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Chapter 1

The thermo- and hydrodynamics of the
model

1.1 Basics of 1D equations in the water column

Here we present a general 1D modelling framework used in the LAKE model. We start with the
general transport Reynolds-averaged equation for the quantity f , that might be one of velocity
components, temperature, turbulent kinetic energy (TKE) and other scalars:

∂f

∂t
= −∂uif

∂xi
− ∂Fi
∂xi

+Rf , (1.1)

assuming mass conservation equation for incompressible fluid:

∂ui
∂xi

= 0, (1.2)

where ui is the velocity component along xi Cartesian axis (x3 = z being an axis pointing along
gravity, x1 = x, x2 = y), Fi is the sum of non-advective fluxes of a property f along xi, and
Rf standing for the sum of sources and sinks of f . Now, introduce the averaging procedure as:

f =

∫
A(z)

fdxdy

A(z)
, (1.3)

with A(z) denoting the horizontal cross-section of a lake. After applying this operator to
(1.1) and making use of appropriate simplifications we get (for rigorous derivation we refer to
Appendix A):

∂Af

∂t
= −

∫
ΓA(z)

f(uh · n)dl − ∂Awf

∂z
−

− ∂AFnz
∂z

− ∂AF ∗tz
∂z

+
dA

dz
[Fnz,b(z) + Ftz,b(z)] + ARf , (1.4)

where, uh = (u, v) = (u1, u2), w = u3, n – outer unit normal to the boundary of A(z),
F ∗tz = Ftz + w′f ′ – effective horizontally averaged turbulent flux with Ftz standing for small-
scale (subfilter-scale) flux and w′, f ′ are deviations of respective variables from horizontal mean;
Fnz is a non-turbulent flux of variable f , e.g. radiative flux for temperature and bubble flux for
dissolved gases, subscript ”b” denotes values of variables at the sloping bottom as functions of
z. Horizontal averaging of continuity equation leads to:

∂Aw

∂z
= −

∫
ΓA(z)

(uh · n)dl. (1.5)

1
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1.1.1 Horizontal averaging

1.1.2 The normalized vertical coordinate

1.2 Thermodynamics of water column

1.3 Dynamics of water column

1.3.1 Governing equations

1.3.2 Parameterization of mean surface level gradient

In order to calculate the mean gradients of the surface level ∂hs/∂x, ∂hs/∂y, we use the
following parameterization, based on that originally proposed by U.Svensson (Svensson, 1978).

First, for simplicity we assume the lake’s body horizontal cross-section to be an ellipse at
all levels. Then, we define South-North (S-N) and West-East (W-E) vertical cross-sections of
the lake’s body, drawn through the ellipse center (given that the ellipses’ centers at all levels
fall onto the same vertical line, ref! to figure). Now, we denote the horizontal width of the S-N
cross-section as LS−N(z), and define LW−E(z) analogously. The mass flux through the W-E
section increases the lake surface level in the Northern half of a lake, and decreases it in the
Southern part. The same holds for Western and Eastern parts. This means, that we can write

dhN
dt

A0(t) = −dhS
dt

A0(t) = 2

∫ 1

0

vLW−Ehdξ, (1.6)

dhE
dt

A0(t) = −dhW
dt

A0(t) = 2

∫ 1

0

uLS−Nhdξ, (1.7)

where we introduced hS, hN , hW and hE as the average deviations of the lake surface level in
Southern, Northern, Western and Eastern halfs of the lake surface, respectively, and A0(t) is
the lake surface area. In the above equations we assumed that the deviations h∗ are small, so
that the use of A0(t) instead of A0(h∗, t) is justified.

Once h∗ are found, we parameterize the needed surface level gradients as:

g
∂hs
∂x
≈ gπ2

4

hE − hW
LW−E,0

, (1.8)

g
∂hs
∂y
≈ gπ2

4

hN − hS
LS−N,0

. (1.9)

It can be shown (ref!) that this parameterization of seiches exactly fits the analytical solution
for specific case of 1D channel flow oscillations described by shallow water equations (Merian
formula). To implement the above equations we need LW−E(z), LS−N(z) for each particular lake
to be simulated. These parameters are easily derived from A(z), given the each lake horizontal
cross-section is an ellipse, and its eccentricity is known (making the model cross-section shape
to be close to the cross-section of a real lake).
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1.4 Turbulent mixing

1.5 Thermodynamics of ice

1.6 Thermodynamics of snow

Ice cover acts in winter as a heat insulating layer and thereby controls the growth and melting
of ice cover. Hence, the heat transport in a snow cover should be well reproduced. In order
to acheive realistic results on snow temperature and depth, a number of processes are included
in the model, snow gravitational compaction and liquid water transport, among others. The
mathematical description of these processes closely follows the formulation from (Volodina
et al., 2000) (for liquid water equation derivation see Appendix B). The governing equations
have a form:

csnρsn
∂T

∂t
=

∂

∂z
λsn

∂T

∂z
+ ρsnLfrFfr, (1.10)

∂W

∂t
= −(1−W )

ρw0

ρsn

∂γv
∂z
− Ffr −

W

ρsn
Csn. (1.11)

Here, the snow thermal conductivity is calculated by the empirical formula:

λsn = C1

(
ρsn
ρw0

)4

+ C2
ρsn
ρw0

+ C3, (1.12)

with C1 = 2.514, C2 = 0.796, C3 = 0.021, [C∗] = J/(m ∗ s ∗ K) 1. The specific heat is
determined by liquid water content:

csn = Wcw + (1−W )ci. (1.13)

The rate of phase transition, Ffr, is non-zero, when the temperature crosses the melting point for
water, and is calculated according to heat balance in a given numerical cell. The gravitational
flux of liquid water, m/s, is given by:

γv = hc

(
Wv −Whc

p−Whc

)3

, (1.14)

where Wv = Wρsnρ
−1
w0 is a volumetric ratio of liquid water. The snow compaction term, Csn,

enters the equation for ρsn:

∂ρsn
∂t

= −ρw0
∂γv
∂z

+ Csn. (1.15)

Boundary condition at the top of snow is a heat balance equation, including heat and
radiation fluxes. The botton boundary conditions, i.e. the condition at the snow-ice interface
is continuity of heat flux and temperature. For liquid water content, the gravitational flux is
zero at the bottom (boundary condition for the top is not needed, as (1.11) is a 1-st order
equation).

1.7 Thermodynamics of bottom sediments (ground)

1Hereafter, if not otherwise stated, * in the subscript means all possible values of the subscript in the current
context



Chapter 2

Biochemistry in the water column and
sediments

2.1 Governing equations for dissolved gases and organic

carbon in a water column

Thy dynamics of three dissolved gases is considered: methane (CH4), oxygen (O2) and car-
bon dioxide (CO2). However, dissolved carbon dioxide is supposed to be always in carbon-
ate equilibrium, so that it enters concentration of dissolved inorganic carbon (DIC), CDIC =
CCO2 +CHCO−

3
+CCO2−

3
, and it is the change of DIC that reflects the number of carbon atoms

in CO2 molecules added to (or lost by) a solution from (to) atmosphere, bubbles, respiring
organisms or decaying organical matter (see Section 2.2).

In addition, dissolved organic carbon (DOC), particulate organic carbon (both living, POCL,
and dead, POCD) are calculated. POCL includes phytoplankton and zooplankton.

The species listed above obey the following equation system:

∂CCH4

∂t
= A ±

CH4
+ AdvA(CCH4) + DifA(CCH4) +BCH4 −OCH4 , (2.1)

∂CO2

∂t
= A ±

O2
+ AdvA(CO2) + DifA(CO2) +BO2 + PO2 −RO2 −DO2 − SO2 −OO2 , (2.2)

∂CDIC
∂t

= A ±
DIC + AdvA(CDIC) + DifA(CDIC) +BCO2 − PCO2 +RCO2 +DCO2 + SCO2 +OCO2 ,

(2.3)

∂CDIP
∂t

= A −
DIP + AdvA(CDIP ) + DifA(CDIP ) +DDIP +RDIP + SDIP − PDIP , (2.4)

∂ρDOC,au
∂t

= A −
DOC,au + AdvA(ρDOC,au) + Dif(ρDOC,au) + EPOCL −DDOC,au, (2.5)

∂ρDOC,al
∂t

= A ±
DOC,al + AdvA(ρDOC,al) + Dif(ρDOC,al)−DDOC,al, (2.6)

∂ρPOCL
∂t

= A ±
POCL + AdvA(ρPOCL) + Dif(ρPOCL) + PPOCL −RPOCL − EPOCL −Dh,POCL,

(2.7)

∂ρPOCD
∂t

= A −
POCD + AdvA(ρPOCD)− 1

h

∂(wgρPOCD)

∂ξ
+ Dif(ρPOCD)−DPOCD +Dh,POCL.

(2.8)

where DifA(•) ≡ M(ξ, t)∂•
∂ξ

+ 1
Ah2

∂
∂ξ

(
Aks

∂•
∂ξ

)
, Dif(•) ≡ M(ξ, t)∂•

∂ξ
+ 1

h2
∂
∂ξ

(
ks

∂•
∂ξ

)
, AdvA(•) =

− 1
Ah

∂(Aw•)
∂ξ

– vertical adbection, M(ξ, t) =
(
ξ
h
dh
dt
− r−E

h

)
is a metric term arising from using

4
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the normalized vertical coordinate originating at moving water surface, wg is a sedimenta-
tion velocity of POCD particles. Equations (2.5)-(2.8) do not contain A, i.e. they are not
horizontally-averaged (see Appendix A) but 1D equations, where horizontal homogeneity of
computed variable is assumed. This is caused by uncertainty how to assess marginal flux of
these substances at the sloping sediments-water interface. The r.h.s of these equations represent
diffusion (assuming ks = ks,t + ks,m with the same eddy diffusivity ks,t and molecular diffusiv-
ity ks,m for all species; molecular dissusivity is not included in POCL and POCD equations),
sources and sinks due to the following processes:

• dissolution/exsolution of gases at the bubble-water interface (BCH4 , BO2 and BCO2);

• photosynthesis (PO2 , PCO2 , PPOCL, PDIP );

• respiration (RO2 , RCO2 , RPOCL, RDIP );

• biochemical oxygen demand in the water column (DO2 , DCO2 , DDOC , DPOCD);

• sedimentary oxygen demand (SO2 , SCO2 , SDIP );

• methane aerobic oxidation in the water column (OCH4 , OO2 , OCO2);

• death of living species (Dh,POCL)

All variables in the above list are positive definite, excepting BCH4 , BO2 and BCO2 that
may be either positive or negative. All concentrations in (2.1)-(2.4) are expressed in mol/m3

that allows for simple relations of sinks/sources in different equations based on stoichiome-
try of the respective reactions. Organic carbon variables DOC, POCL and POCD in (2.5)-
(2.8) are molar concentrations of carbon atoms contained in these organic groups. Terms
BCO2 , PCO2 , RCO2 , DCO2 , SCO2 , OCO2 in (2.3) possess ”CO2” subscript because carbon atoms
are supplied to or removed from DIC of a solution in a form of CO2.

Terms A ∗
∗ stand for input and output of respective species to a lake by inlets and outlets,

respectively; ”±” sign in uppercase means, that both tributaries and effluents are taken into
account, ”–” indicates that only effluents are included.

We note that equations (2.1)-(2.3) and (2.4)-(2.8) may form a coupled system if sinks/-
sources at the r.h.s. are related, or be solved as independent subsets otherwise. The details
will be given below.

In the following sections we first consider carbonate equilibrium, then continue with bound-
ary conditions for (2.1)-(2.3) and finally describe the abovementioned sources/sinks in more
detail. The formulations for photosynthesis, respiration, biochemical oxygen demand and sed-
imentary oxygen demand basically follow (Stefan and Fang, 1994) and (Hanson et al., 2004).

2.2 Carbonate equilibrium

Carbonate equilibrium means the equilibrium in the following reactions:

CO2 +H2O ↔ H+ +HCO−3 , (2.9)

HCO−3 ↔ H+ + CO2−
3 . (2.10)

Involving kinetic constants of these reactions yields, that the DIC

CDIC ≡ CCO2 + CHCO−
3

+ CCO2−
3

= CCO2

[
1 + k110pH + k1k2102pH

]
. (2.11)
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Here, the constants are given by Arrhenius equation:

ki = ki0 exp

[
−Eact,i

R

(
1

T
− 1

T0

)]
, i = 1, 2, (2.12)

R – universal gas constant, k1 = 4.3 ∗ 10−7 mol/l, k2 = 4.7 ∗ 10−11 mol/l, Eact,1 = 7.66 ∗
103 J/mol, Eact,2 = 1.49 ∗ 104 J/mol. Thus, CCO2 is readily calculated given CDIC value, and
vice versa.

Carbon atoms are added or removed from carbonate equilibrium system in a form of CO2

during respiration, photosynthesis and organic chemical and physical processes, hence the
change of CDIC equals to number of CO2 consumed or produced. This explains the sense
of terms in equation (2.3). For obtaining CO2 flux across bubble surface or CO2 diffusive flux
to the atmosphere, CCO2 is needed and is calculated from (2.11).

2.3 Boundary conditions for dissolved gases in a water

column

The top boundary condition (at the lake-atmosphere interface) for any dissolved gas concen-
tration for the case of open water has the form:

ks
h

∂C

∂ξ

∣∣∣∣
ξ=0

= FC , (2.13)

where C is CCH4 , CO2 or CCO2 , and FC is the diffusive flux of a gas into the atmosphere, positive
upwards. This flux is calculated according to the widely used parameterization:

FC = kge(C|ξ=0 − Cae), (2.14)

with Cae being the concentration of the gas in water equilibrated with the atmospheric con-
centration and described by Henry law and kge,m/s denoting the gas exchange coefficient, the
so-called ”piston velocity”. The latter is written as:

kge = k600

√
600

Sc(T )
, (2.15)

with the Scmidt number Sc(T ) having individual values for different gases and being temperature-
dependent (ref!). The k600 coefficient has been a subject of numerous studies, and a number
concepts have been proposed to quantify it (Donelan et al., 2002). We adopt two widespread
options for k600: (i) empirical dependence on wind speed and (ii) surface renewal model.

The dependency on wind velocity takes the form (Cole and Caraco, 1998):

k600 = Ck600,1 + Ck600,2|ua,10|nk600 . (2.16)

Here, ua,10 stands for the wind speed at 10 m above the surface. The simple empirical eq. (2.16)
”integrates” the effects of wind speed on a number of processes such as turbulence in adjacent
layers of water and air, wave development and breaking, cool skin dynamics, and therefore is
likely to be not enough sophisticated to express adequately a wide variety of conditions on real
lakes. Therefore, we also included surface renewal model (MacIntyre et al., 2010; Heiskanen
et al., 2014), that in terms of k600 states that:

k600 =
C1,SR(ε|ξ=0νw)

1
4

√
600

, (2.17)
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where νw designates molecular viscosity of water. As TKE dissipation rate is available directly
from k− ε closure, we do not use any special parameterization for ε|ξ=0 (e.g., (MacIntyre et al.,
2010)).

When a lake is covered by ice, FC = 0, neglecting contribution of diffusion through ice
cracks.

The boundary conditions for methane at the sediments-water body interface are:

− ks
h

∂C

∂ξ

∣∣∣∣
ξ=1

= − ks,s
∂Cs
∂zs

∣∣∣∣
zs=0

, (2.18)

C|ξ=1 =

(
Cs
p

)∣∣∣∣
zs=0

. (2.19)

Here, additional subscript ”s” denotes characteristics of sediments. Porosity appears in (2.19)
because Cs is a bulk concentration in soil. These relations mean continuity of both diffusive
flux and concentration at the water-sediments boundary.

Table 2.1: Constants for water-air gas exchange

Constant Variable in the code Units Value

Ck600,1 constvel1 m/s 5.75 ∗ 10−6

Ck600,2 constvel2 (m/s)1−nk600 5.97 ∗ 10−7

nk600 wind10power n/d 1.7

C1,SR c1 n/d 0.5

2.4 Dissolution/exsolution of gases at the bubble-water

interface

2.4.1 Bubble model

The bubble model presented here closely follows that described in (McGinnis et al., 2006).
Consider the evolution of a bubble, consisting of a gas mixture, rising from a lake bottom. In
this case the quantity of each i-th gas in the bubble Mi (mol) is changing due to dissolution
into oceanic water according to equation

dMi

dt
= vb

dMi

dZ
= −4πr2

bKi(Hi(T )Pi − Ci), i = 1, ..., ng, (2.20)

where rb is the bubble radius (m), Hi - the Henry constant dependent on temperature T (K),
Pi the partial pressure of i-th gas (Pa), Ci is the concentration of a gas dissolved in water
(mol/m3), Ki is exchange coefficient, vb is bubble vertical velocity (m/s), Z is the vertical
coordinate originating at the bottom and pointing opposite to gravity (m), ng is the number
of gases in a mixture. Five gases are considered simultaneously in a bubble: methane, carbon
dioxide, oxygen, nitrogen and argon. The temperature in the bubble is assumed to be equal to
temperature of environment lake water at the depth of current bubble location. It means that
the heat exchange between the rising bubble and water is assumed to be intensive enough to
dominate over the adiabatic cooling of the bubble. This is likely to be a rough aproximation,
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however, including adiabatic bubble temperature change would increase the complexity of the
model. The temperature dependency of Henry constants for flat solute surface is taken from
(Sander, 1999). The effect of gas-water interface curvature on equilibrium gas pressure is
omitted because when using Thomson formula it turns to be negligible as long as typical bubble
radiuses in lakes and ocean are considered (≥ 1 mm). Exchange coefficient Ki is dependent on
molecular diffusivity in water, bubble radius and its velocity according to empirical formulae
from (Zheng and Yapa, 2002). The bubble velocity is determined from equilibrium between
buoyancy force and environment resistance defined by quadratic law for small radiuses (rb <
1.3mm) and taking into account bubble surface oscillations for larger sizes (Jamialahmadi et al.,
1994).
For each component of gas mixture one applies an ideal gas law because under the typical
pressures at small depths (e.g. several dozens of meters) Van der Waals forces are small:

4

3
Piπr

3
b = MiRT, i = 1, ..., ng, (2.21)

where R is the universal gas constant. The surface tension pressure is small for the bubbles
with radiuses typical for lacustrine and marine environments. Then, when equating the gas
mixture pressure

∑ng
i=1 Pi to hydrostatic pressure at a given depth pa + ρw0g(h−Z) (ρw0 being

the mean density of water and pa the atmospheric pressure) and using (2.21) one yields:

rb =

[
3RT

∑ng
i=1Mi

4π(pa + ρw0g(h− Z))

]1/3

. (2.22)

For solution of 2ng + 1 equations (2.20)-(2.22) the boundary conditions are needed. These are
initial gases’ quantities Mi,Z=0 = Mi0(t), i = 1, ..., ng, that are the quantities when the bubble
crosses the lake bottom. In the model they are initialized as follows:

M0 =
4
3
πr3

b0(pa + ρw0gh)

R T |Z=0

,

Mi0 = αiM0, i = 1, ..., ng,

(2.23)

where M0 - is the total gas quantity in the bubble (mols). From (2.23) it is seen that bubble
initialization is given by inital bubble radius rb0 and molar fractions of mixture components αi.
The bubble model described above is numerically solved by Euler explicit scheme.

2.4.2 Interaction between bubbles and dissolved gases

To calculate Bi, B1 = BCH4 , B2 = BCO2 , B3 = BO2 (see (2.1)-(2.3)) in our model we consider
an idealized situation whenall bubbles rising from the bottom have the same initial radius rb0
and identical gas composition. From (2.20)-(2.22) it immediately follows that their radius and
composition are the same at any depth ξ. Since the vertical gas transport by bubbles changes
with depth only due to exchange with water solution, one writes

Bi = +
1

h

∂FB,i
∂ξ

. (2.24)

Here FB,i is the bubble gas flux (mol/(m2s)) pointed upwards (this leads to ”+” sign in the
r.h.s.). The definition of this flux is

FB,i = Minbvb. (2.25)
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We introduced bubble concentration (m−3) here. All bubbles release at the bottom and com-
pletely dissolve simultaneously at some depth or reach the surface. Moreover, it is known
(Yamamoto et al., 2009; McGinnis et al., 2006) that bubbles with diameter ≈ 1 mm are unsta-
ble and split up. Hence, in the model is it assumed that a bubble with rb ≥ 0.5cm splits into
two. In the depth interval between two subsequent bubble splits the bubble flux (that is the
number of bubbles crossing the horizontal surface of 1 m2 per second) is constant, and at the
depth of division it doubles. One may rewrite (2.24) as follows

Bi =
1

h

∂(nbvbMi)

∂ξ
=
FB0,i

h

∂(Nmi)

∂ξ
, (2.26)

where we have introduced the relative bubble flux Nmi with mi = Mi

Mi0
, N = nbvb

nb0vb0
, and FB0,i

is the bottom bubble flux (zero subscript indicates the bottom value of a variable). Evidently,
N(ξ) = 2k, k being the number of bubble divisions happened below the depth ξ. If the bottom
bubble flux of one gas is known (in this model it is methane, i = 1) then the bottom fluxes of
other gases are determined by bottom bubble composition:

FB0,i = FB0,1
αi
α1

, i = 2, ..., ng. (2.27)

2.5 Photosynthesis

The intensity of photosynthesis in terms of oxygen production is expressed as (ref!):

PO2 =
PmaxLminLPρChl−a

HsecµO2

. (2.28)

The denominator here serves co convert units in the r.h.s. from mg/(l ∗ h) to mol/(m3s). The
Pmax value expresses limitation of oxygen production by temperature in a form:

Pmax = CP θ
(T−T0)
P , (2.29)

so that CP is Pmax at the reference temperature T = T0. The effect of soluble reactive phos-
phorus is postulated by Michaelis-Menten equation:

LP =
CDIP

Khs,DIP,Chla + CDIP
. (2.30)

The limitation of oxygen production by the available photosynthetically active radiation PAR
(SPAR) is given by the following Haldane kinetics:

Lmin =
SPAR(1 + 2

√
CLmin,1/CLmin,2)

SPAR + CLmin,1 + S2
PAR/CLmin,2

. (2.31)

The PAR intensity delivering maximum to Lmin (=1) is SPAR =
√
CLmin,1CLmin,2. In the

model, these coefficients are specified as (Stefan and Fang, 1994; Megard et al., 1984):

CLmin,1 = CPARθ
(T−T0)
PAR , (2.32)

CLmin,2 = H(T − T00)CLmin,2,>T00 + [1− H(T − T00)]CLmin,2,<T00 , (2.33)

with H(•) being a Heavyside function, and T00 is an another reference temperature. It is seen
from (2.31), that Lmin → 0 if SPAR → 0 and SPAR → ∞, i.e. PAR ihnibits photosynthesis
at both low and high values of its intensity. To calculate SPAR, it is assumed that the ratio
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of PAR intensity to total shortwave radiation intensity in the water column, αPAR, is known,
thereby

SPAR = αPARHsecTJ→EinsS. (2.34)

The coefficient transfroming from J to Einstein (Einstein is an energy of Avogadro number
of photons), TJ→Eins, is calculated in approximation of uniform distribution of energy in PAR
region, yielding

TJ→Eins =
λPAR
NAhP c

, (2.35)

with NA, hP , c denoting Avogadro number, Planck constant and the light speed in vacuum,
respectively, all in SI units.

Finally, from the gross photosynthesis reaction:

6CO2 + 12H2O + photons→ C6H12O6 + 6O2 + 6H2O, (2.36)

or, in a shortened form:

CO2 + 2H2O + photons→ CH2O +O2 +H2O, (2.37)

we see that the carbon dioxide consumption equals oxygen production, i.e. PCO2 = PO2 .

Table 2.2: Constants in photosynthesis model

Constant Variable in the code Units Value

CP c1 pmax h−1 9.6

θP c2 pmax n/d 1.036

T0 T 0 ◦C 20

T00 T 00 ◦C 10

µO2 molmass o2 g/mol 32

Hsec hour sec s 3600

CPAR k1 c1 Einstein/(m2 ∗ h) 0.687

θPAR k1 c2 n/d 1.086

CLmin,2,>T00 k2 c2 Einstein/(m2 ∗ h) 15.

CLmin,2,<T00 k2 c1 Einstein/(m2 ∗ h) 5.

λPAR lambda PAR0 m 5.5 ∗ 10−7 (550 nm)

αPAR short2PAR n/d 0.48

Khs,DIP,Chla halfsat DIP photosynt mol/m3 10−3/µp, [µp]=g/mol

Equation (2.36) also implies that PPOCL = PCO2 .

2.6 Respiration

2.6.1 Formulation by Stefan and Fang

Respiration is a process opposite to photosynthesis. In the model, the oxygen consumption due
to respiration is given by:

RO2 =
krθ

T−T0
r ρChl−a

YCHO2DsecµO2

, (2.38)
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where YCHO2 is a mass ratio of chlorophyll-a to oxygen, utilized in respiration. Analogously to
the case of photosynthesis, RCO2 = RO2 .

Table 2.3: Constants in respiration model

Constant Variable in the code Units Value

YCHO2 YCHO2 mg/mg 8 ∗ 10−3

kr k r day−1 1 ∗ 10−1

θr theta r n/d 1.045

Dsec day sec s 86400

µO2 molmass o2 g/mol 32

2.6.2 Formulation by Hanson et al.

P.Hanson et al. (Hanson et al., 2004) assume, that respiration is performed by ”living particles”,
POCL, only in epilimnion, and may be scaled by gross primary production (i.e., photosynthesis
rate), RPOCL = αPOCLPPOCL, αPOCL = 0.8. In contrast, we assume that this process happens
at all depths where enough oxygen in situ is available, with the same scaling. Evidently,

RO2 = RCO2 = αPOCLPPOCL. (2.39)

2.7 Biochemical oxygen demand (BOD)

2.7.1 Formulation by Stefan and Fang

Biochemical oxygen demand is an oxygen consumption due to organic matter decomposition
in the water column. It is expressed as (Stefan and Fang, 1994):

BO2 =
kbθ

T−T0
b ρChl−aCst
DsecµO2

. (2.40)

Here, temperature dependence constant is given by:

θb = [θb1H(T − T0) + θb2[1− H(T − T0)]]H(T − Tmd). (2.41)

This means switching between constants θb1 and θb2 at the reference temperature T0 and ”switch-
ing off” BOD below the temperature of maximum density, Tmd, implying ice-cover conditions.
The constant Cst reflects the stoichiometry of respective reactions. According to (Stefan and
Fang, 1994), it reads:

Cst = MO2/CMC/Chl, (2.42)

where MO2/C is the mass ratio of oxygen to carbon in the aerobic organic decay reaction:

C +O2 = CO2, (2.43)

and MC/Chl is a mass ratio of carbon to chorophyll-a in the organic matter. The equation (2.43)
shows that DCO2 = DO2 .
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Table 2.4: Constants in biochemical oxygen demand model

Constant Variable in the code Units Value

kb k b day−1 0.1

θb1 theta b1 n/d 1.047

θb2 theta b2 n/d 1.13

Tmd T md ◦C 4.

MO2/C mO2C dec mg/mg 8/3

MC/Chl mCChla dec mg/mg 30.

2.7.2 Formulation by Hanson et al.

Here, for biochemical oxygen demand, we adopt respiration terms, related to dead organic par-
ticles (POCD) and dissolved organic carbon (DOC) from (Hanson et al., 2004), namely, DPOCD

and DDOC in our notation. P.Hanson et al. suggest that DPOCD = ρPOCD/τPOCD, DDOC =
ρDOC/τDOC with time scales τPOCD = 20Dsec, τDOC = 200Dsec. We extend this model to
distinguish between allochtonous and autochtonous DOC, so that:

DO2 = DCO2 =

(
ρPOCD
τPOCD

+
ρDOC,au
τDOC,au

+
ρDOC,al
τDOC,al

)
. (2.44)

In current model version, a default option is τDOC,au = τDOC,al = τDOC , however, τDOC,au and
τDOC,al may be adjusted, and generally τDOC,al > τDOC,au.

2.7.3 Photodissociation of DOC

Photodissociation of DOC means removal of C atoms from DOM to DIC. A formula presented
in (Fichot and Miller, 2010; Koehler et al., 2014) can be readily extended to a case where optic
properties of water medium vary with depth:

Pd,DOC =

∫ λmax

λmin

αCDOM(λ, z)E(λ, 0) exp

(
−
∫ z

0

α(λ, z′)dz′
)

Φ(λ)dλ, (2.45)

where ...

2.8 Sedimentary oxygen demand (SOD)

Two sedimentary oxygen demand formulations are implemented in the model. In both of them,
the sedimentary oxygen demand appears as a sink in (2.2) and in essence is the contribution of
the vertical flux at the lake’s bottom to the horizontally averaged oxygen concentration:

SO2 = −FSOD
Ah

∂A

∂ξ
. (2.46)

In the first SOD formulation which is that used in (Stefan and Fang, 1994), the bottom oxygen
flux due to organics decomposition is a function of temperature only:

FSOD =
1

DsecµO2103
Sb20θ

T−T0
s . (2.47)
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Here, again switching between two different values of temperature dependence parameter, θs,
is used:

θs = θs1H(T − T0) + θs2[1− H(T − T0)]. (2.48)

This parameterization does not include dependence of SOD on oxygen concentration, hence the
O2 uptake in sediments is not zero even when CO2 = 0. From this point the more physically
grounded SOD parameterization is the model provided by Robert Walker and William Snod-
grass (Walker and Snodgrass, 1986). Basing on the argument that SOD is contributed both
by diffusion (governed by Fickian law) and biochemical consumption (described by Michaelis-
Menthen kinetics), they derive:

FSOD = µβ
CO2

kO2,SOD + CO2

+ kcCO2 , (2.49)

where µβ is proportional to organics oxidation potential rate in sediments, and kc is the mass
transfer coefficient. Both are thought to be exponentially dependent on temperature:

µβ = µβ,0θ
T−Tµβ
µβ , kc = kc,0θ

T−Tkc
kc

. (2.50)

The stoichiometry of SOD is assumed to be close to that of BOD (2.43), therefore, SCO2 = SO2 .
Additionally, the flux of O2 due to SOD at the lake bottom, FSOD, is used as the bottom (lake
deepest point) boundary condition for the oxygen equation (2.2).

Table 2.5: Constants in sedimentary oxygen demand model

Constant Variable in the code Units Value

Sb20 Sb20 mg/(m2day) 103

θs1 theta s1 n/d 1.065

θs2 theta s2 n/d 1.13

θµβ thetamu SOD n/d 1.085

θkc thetaC SOD n/d 1.103

Tµβ - K 25

Tkc - K 20

µβ,0 mubeta0 mol/(m2 ∗ s) 0.5/(µO2Dsec), [µO2 ] = g/mol

kc,0 kc0 m/s 0.045/Dsec

2.9 Exudates and death rate of POCL

Hanson et al. suggest exudation to be scaled with photosynthesis rate, EPOCL = βPOCLPPOCL, βPOCL =
0.03 and the death rate to be defined as Dh,POCL = ρPOCL

τDh
, where time scale τDh ranges from

1.1Dsec in hypolimnion to 33Dsec in epilimnion.

2.10 Dissloved inorganic phosphorus

Dissolved inorganis phosphorus or soluble reactive phosphorus gets P atoms from degradation of
organic matter (dissolved organic compounds, sediments and dead organisms), respiration, and
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looses them during buildup of living organisms, i.e. photosynthesis. The respective sinks and
sources in equation (2.4) are set proportional to carbon exchange rates via P/C stoichiometric
ratios:

DDIP = γP/C,DOM,auDDOC,au + γP/C,DOM,alDDOC,al + γP/C,POMDPOCD, (2.51)

RDIP = γP/C,POMRCO2 , (2.52)

PDIP = γP/C,POMPCO2 , (2.53)

SDIP = γP/C,SODSCO2 . (2.54)

Here, parameters γ∗ are ratios of P to C atoms in dissolved organic and particulate organic
matter.

Table 2.6: Constants in dissolved inorganic phosphorus model

Constant Variable in the code Units Value

γP/C,DOM,au DOMauto PtoC n/d 1/106

γP/C,DOM,al DOMallo PtoC n/d 1/199

γP/C,POM POM PtoC n/d 1/106

γP/C,SOD sedoxid PtoC n/d 1/106

2.11 Sedimentation of organic particles

In the current model version we use the Stokes sedimentation velocity below the mixed layer:

ws =
4

3A

∆gd2

νm
, (2.55)

and the high-Reynolds-number limit of this variable

ws =

√
4

3B
∆gd (2.56)

in the mixed layer. Here, ∆ = ρp/ρw0 − 1, ρp is a particle’s density, and d – its diameter, the
typical values for constants may be chosen as A = 30.0, and B = 1.25 (Song et al., 2008), and
the density of organic particles as 1.25 g/cm3 (Avnimelech et al., 2001).

2.12 Chlorophyll-a dynamics

2.12.1 Formulation by Stefan and Fang

The chlorophyll-a dynamics in the model follows a simple scheme suggested in (Stefan and
Fang, 1994), where chlorophyll-a density is calculated as:

ρChl−a = ρChl−a,0H(Ha − z), (2.57)

where the active layer, Ha, is a maximum value between mixed-layer depth, HML, and the
photic zone depth, HPZ . The mixed-layer depth is defined as the depth of maximum Brunt-
Väisälä frequency, and the photic zone depth is estimated as the depth at which the PAR
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irradiance drops to 10% of its surface value. The mean chlorophyll-a concentration, ρChl−a,0,
is assigned according to a trophic status of the lake: 2 ∗ 10−3 mg/l for oligotrophic lakes,
6∗10−3 mg/l for mesotrophic lakes and 15∗10−3 mg/l for eutrophic lakes. In turn, the trophic
status is formally defined from the water turbidity. The Secchi disk values of 2 m and 3.5 m are
used to distinguish between eutrophic and mesotrophic, mesotrophic and oligotrophic states,
respectively. These thresholds are expressed in the model through light extinction coefficient
values, α, using Poole and Atkins formula (Poole and Atkins, 2009):

α =
kPA
zSD

, (2.58)

where zSD is the Secchi disk depth and kPA = 1.7. The above chlorophyll-a scheme is identical
to that of (Stefan and Fang, 1994), excepting for it does not take into account the annual cycle
of ρChl−a,0.

2.12.2 Chlorophyll model based on light and phosphorus limitation

This approach follows (Sadeghian et al., 2018) and (Chapra, 2008). Introduce a fraction of
chlorophyll-a mass in total phytoplankton mass, γChl/phyto. Assuming that photoplankton com-
prises most of POCL, yields:

γChl/phyto =
ρChl−a

ρPOCL × µCH2O

. (2.59)

This fraction is controlled by availability of nutrients (phosphorus and nitrogen) and light
(PAR). Assuming nitrogen is non-limiting, allows to neglect its content and consider the fol-
lowing approximation:

γChl/phyto = γChl/phyto,0 + γChl/phyto,1 × LP (CDIP )(1− ΦPAR(SPAR)), (2.60)

where γChl/phyto,0 and γChl/phyto,1 are constants. The effect of soluble reactive phosphorus (term
LP ) is given by Michaelis-Menten equation (2.30).

There are two options of quantifying the influence of PAR on chlorophyll-a fraction. The
first one is to assume ΦPAR = Lmin, where Lmin is given by (2.31). The second one is to use
the relation (Sadeghian et al., 2018):

ΦPAR(SPAR) =
SPAR

SPAR,MP

exp

(
1− SPAR

SPAR,MP

)
, (2.61)

where SPAR,MP is PAR intensity, optimal for photosynthesis. Thus, at each time and depth,
ρChl−a is diagnosed using POCL, DIP and PAR quantities.

The constants of chlorophyll-a model described above are given in the following table.

Table 2.7: Constants of Chlorophyll-a model

Constant Variable in the code Units Value

γChl/phyto,0 C1 Chla to POCLphyto n/d 6.4*10−3

γChl/phyto,1 C2 Chla to POCLphyto n/d 4.5*10−2

SPAR,MP PAR prod max warm Einstein/(m2*h)
√
CLmin,1CLmin,2
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2.13 Aerobic methane oxidation

The aerobic oxidation of methane follows the equation:

CH4 + 2O2 = CO2 + 2H2O (2.62)

that means OO2 = 2OCO2 = 2OCH4 . To calculate OCH4 , three options are available in the
model. The simplest one is the first-order kinetics:

OCH4 = kox,CH4CCH4 , (2.63)

where kox,CH4 is a constant (according to (Striegl et al., 1998), is chosen 0.38D−1
secs

−1).
More sophisticated, but containing 4 constants, Michaelis-Menten kinetics, has the general

form:

OCH4 = Vmaxexp

[
∆Eox,CH4

R

(
1

T
− 1

T0

)]
CCH4

Khs,CH4 + CCH4

CO2

Khs,O2 + CO2

, (2.64)

where we introduce the activation energy of methane oxidation reaction, ∆Eox,CH4 , reaction po-
tential Vmax at the reference temperature, T0, half-saturation constants Khs,CH4 , Khs,O2 . How-
ever, a number of studies (Utsumi et al., 1998; Liikanen et al., 2002a; Striegl et al., 1998) have
shown a weak dependence of reaction potential on temperature. Hence, the second option in
the model is the Michaelis-Menten kinetics (2.64) without exponential term.

In a case of oxygen depletion aerobic methane oxidation should approach zero in the water
column, so that O2 should be kept in (2.64). Unfortunately, we have found a quite limited data
on Khs,O2 in the literature. However, from the experience on methane modeling in wetlands
(Watson et al., 1997) and measurements in the lake sediments (Lidstrom and Somers, 1984)
Khs,O2 ≈ Khs,CH4 , and we have used this approximation in our model.

In order to avoid dependency of methane oxidation on oxygen concentration the third op-
tion considers simplified Michaelis-Menten equation, formally coming from (2.64) for highly
oxygenated waters:

OCH4 = Vmax
CCH4

Khs,CH4 + CCH4

. (2.65)

The Michaelis-Menten constants are given in the table 2.8.

Table 2.8: Michaelis-Menten kinetics constants for methane oxidation

in the water column

Reference Vmax Khs,CH4 Remarks

(Lidstrom and Somers, 1984) 3.8 ∗
10−2H−1

sec mol/(m
3s)

9.5± 1.2 mol/m3 Measured in top
1 cm of bottom
sediments

(Liikanen et al., 2002a) 3.6 ∗
10−2D−1

sec mol/(m
3s)

5.5 ∗ 10−3 mol/m3 shallow profun-
dal water, 4 m

(Liikanen et al., 2002a) 1.4 ∗
10−1D−1

sec mol/(m
3s)

4.4 ∗ 10−2 mol/m3 deep profundal
water, 9 m
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2.14 Methane dynamics in the bottom sediments

2.14.1 Governing equation

The dynamics of bulk methane concentration (the number of dissolved molecules in moles per
unit volume of sediment / soil) is governed by three processes: production, ebullition and
diffusion:

∂CCH4

∂t
=

∂

∂zs

(
kCH4

∂CCH4

∂zs

)
+ Psoil,CH4 − Esoil,CH4 −Osoil,CH4 , (2.66)

where zs is a downward coordinate originating at the sediments’ surface, Psoil,CH4 and
Esoil,CH4 are the methane production and ebullition rates, respectively, and Osoil,CH4 is the
aerobic methane oxidation, all positive. Aerobic methane oxidation term is non-zero only in
the top thin computational layer; in the rest layers oxygen is assumed to be depleted, that is the
well-known observational fact (Huttunen et al., 2006). Note, that the methane concentration
CCH4 accounts for dissolved gas only, so that ebullition rate is a sink term for it. The soil
diffusion coefficient is given by:

kCH4 = CtortkCH4,w, (2.67)

and molecular diffusivity for methane dissolved in water, kCH4,w, depends on temperature
according to quadratic function. Here, Ctort is a tortuosity coefficient (set to 0.66), accounting
for tortuosity of diffusion paths through soil skeleton.

The eq. (2.66) should also contain the plant-mediated transport of methane for vegetated
lakes. In future we intend to include this mechanism in the model.

2.14.2 Production

Methane production is comprised of two sources (Stepanenko et al., 2011). First is methane
production from decomposition of ”young” organics, i.e. the current NPP of lake ecosystem,
depositing at the lake bottom. The organic material reaching the bottom after coast abrasion
also contributes to this source, located at the top of sediments. The second source of methane
is to be switched on in the model for thermokarst lakes for which it is known, that the ”old”
organics, sequestered in the premafrost below the talik, is subjected to biotic degradation when
the temperature exceedes the metling point in the process of talik deepening (Walter et al.,
2007). Thus, this second source has its maximum in the vicinity of talik bottom.

Formulations for both production sources base at the assumption that the production is
proportional to quantity and quality of organics, exponentially dependent on temperature and
does not happen under temperatures less than melting point:

Psoil,CH4,i ∝ ρorg,iH(T − Tmp)qT/10
10 (1 + αO2,inhibCO2)

−1 [1− H(CSO4 − CSO4,crit)] , i = old, new
(2.68)

where Tmp standing for the melting point temperature, q10 is times that the methane pro-
duction increases when the temperature rises by 10◦C, and αO2,inhib denoting the constant for
methanogenesis inhibition by oxygen. Oxygen concentration, CO2 , decays very fast within a few
millimeters below the bottom (Huttunen et al., 2006). The last multiplier in (2.68) represents
suppression of methanogenic Archaea by sulfate-reducing bacteria when sulfate concentration
exceeds critical value, CSO4,crit (Lovley and Klug, 1986). The constant of proportionality in
(2.68) should reflect the quality of the organic substrate regarding methane production. The
density (kg/m3) of organics available for anaerobic decomposition resulting in methane pro-
duction, ρorg,i, may be estimated from either 1st-order or Michaelis-Menten kinetics. For young
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organics we adopt an assumption ρorg,new ∝ exp(−αnewzs) (Walter and Heimann, 2000), that
formally can be derived from 1st-order kinetics for ρorg,new decay and constant rate of depositing
new sediments at the lake bottom. For the old organics content, an expression is developed in
(Stepanenko et al., 2011) based on Michaelis-Menten decomposition rate for ρorg,old:

ρorg,old = ρorg,old,0

[
2 + λρ −

√
(1 + λρ)2 + γρ(h2

t − z2
s)

]
, (2.69)

where λρ = ρorg,old,0K
−1
org,old, γρ = 2V K−1

org,oldC
−2
t are the derived constants, and the original

constants are given in the Table 2.9, ht - talik depth. Thus, basing on (2.69), we get:

Psoil,CH4,i = Pi,0ρ
∗
iH(T − Tmp)qT/10

10 (1 + αO2,inhibCO2)
−1 (2.70)

ρ∗i =

 exp(−αnewzs) : i = new[
2 + λρ −

√
(1 + λρ)2 + γρ(h2

t − z2
s)
]

: i = old

Here, Pnew,0, Pold,0 are new constants to be calibrated.

Table 2.9: Constants for methane production in the lake sediments

Constant Variable in the
code

Units Value (refer-
ence)

ρorg,old,0 (the density
of old organics below
the talik)

C0 oldorg kg/m3 18

Korg,old (the half-
saturation constant
of Michaelis-Menten
decomposition of old
organics in talik)

k oldorg kg/m3 3 ∗ 10−1

V (the maximum de-
composition rate of
old organics in talik)

V oldorg kg/(m3 ∗ yr) 2 ∗ 10−3

Ct (a constant in a
talik deepening law,
ht = Ct

√
t, t - time)

ms−1/2 C talik age 0.5 (West and
Plug, 2008)

q10 q100 n/d 2.3 (Liikanen
et al., 2002b)

αnew lambda new org m−1 3

2.14.3 Ebullition

The formation of bubbles (ebullition) happens in the model only in the sediments layer, as we
havn’t found evidences in literature that this process occurs at significant rates in the water
column. As the bubble formation takes a certain amount of methane from the dissolved state,
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it is represented by a sink term in (2.66). The rate of this sink is determined by a methane
concentration excess over a critical value, CCH4,crit:

Esoil,CH4 = rebulH (CCH4 − CCH4,crit) (1− H(wi)) (CCH4 − CCH4,crit) , (2.71)

where we also postulated that ebullition happens in non-frozen soils only, and rebul = 1.0 H−1
sec

(Walter and Heimann, 2000). Now, the critical concentration of dissolved methane in soil,
CCH4,crit, is assumed to be a fraction, rcrc = 0.4, of saturation concentration ((Wania, 2007)
and references therein). In turn, the saturation concentration is found from two conditions: (i)
the sum of partial pressures of all gases comprising a bubble equilibrates the external hydrostatic
load, P = g(ρw0h+ρszs), and (ii) partial pressure of each gas is in equilibrium with the dissolved
gas according to Henry’s law (with Henry constants H∗(T ), * standing for the gas name). We
assume the presence of two dissolved gases in sediments, entering the bubble composition:
nitrogen and methane. Thus, the critical bulk methane concentration is expressed as:

CCH4,crit = rcrcp

(
PHCH4(T )− HCH4(T )

HN2(T )
CN2

)
, (2.72)

with p standing for sediments’ porosity. Following (Bazhin, 2001) we assume that nitrogen
rapidly decays to zero in the top thin sediments layer, and therefore contributes to (2.72) only
in the top numerical layer of the in-sediments’ grid.

The mechanical interaction of bubbles with the soil skeleton (Scandella et al., 2011) is
omitted in the current version of the model, and it is assumed that all bubbles generated at
different depths in the bottom sediments instantly reach the lake’s bottom. Therefore, the
methane bubble flux at the lake bottom is:

FCH4,b(ξ = 1) =

∫ d

0

Esoil,CH4dzs, (2.73)

where d is the thickness of ground domain in the model.

2.14.4 Aerobic methane oxidation in bottom sediments
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List of symbols

Symbol Name Variable in the
code

Units

General

h Lake depth h1, h2 m

l Ice thickness l1, l2 m

hsn Snow thickness hs1 m

ξ = z
h

Normalized vertical coordi-
nate

dzeta n/d

Snow cover

W Liquid water content in
snow

- kg/kg

Biochemistry

ρChl−a Chlorophyll-a density in a
water column

Chl a mg/l

SPAR The intensity of photosyn-
thetically active radiation

PAR Einstein/(m2 ∗
h)

20
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Appendix A

Equation for horizontally averaged
quantity in a lake

Consider equation (1.1) and an auxiliary operator:

f̃ =

∫
A(z)

fdxdy. (A.1)

The cross-section of a lake with notations used in this derivation is given at Fig. ??.

Figure A.1: A lake horizontal cross-section

The integration operator (A.1) possesses the following property:

∂f̃

∂z
=
∂̃f

∂z
+Bf , (A.2)

Bf =

∫ x2(z)

x1(z)

[
∂y2

∂z
f(x, y2, z)−

∂y1

∂z
f(x, y1, z)

]
dx, (A.3)

stemming from the Leibnitz integral rule. Now let’s apply operator (̃...) to (1.1), then insert
f = Af̃ , and it will lead us to

∂Af

∂t
= −

∫
ΓA(z)

f(uh · n)dl −
∫

ΓA(z)

(Fh · n)dl − ∂Awf

∂z
− ∂AFz

∂z
+Bwf +BFz + ARf , (A.4)

where we introduced uh = {u1, u2} and Fh = {F1, F2}, and ΓA(z) is a boundary of A at depth
z. The first term to the right hand side of (A.4) is a horizontal advection of property f through
boundaries of a water basin, i.e. the inflow from inlets, outflow by outlets and groundwater
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discharge. The second term represents non-advective horizontal fluxes at the lake margins,
whereas B∗ quantifies the effect of vertical fluxes at the lake bottom of depth z; we refer to them
as to marginal fluxes. Equation (A.4) is the most general equation, that is, however, difficult
to implement without further simplifications. First, assume that the lake bottom is quasi-
horizontal, and in this case the rigid boundary condition for velocity brings w ≈ 0, Bwf ≈ 0.
Then, we suppose that F = {F1, F2, F3} is normal to the bottom boundary, and it is true for
diffusive transport, because it is proportional to a gradient of f , and this gradient is usually
oriented almost perpendicular to the bottom surface. Therefore, F1 ≈ 0, F2 ≈ 0, vanishing the
second term to the right hand side of (A.4). We also can decompose the vertical advection as
wf = wf + w′f ′, w′ = w − w, f ′ = f − f . After these modifications, (A.4) devolves to:

∂Af

∂t
= −

∫
ΓA(z)

f(uh · n)dl − ∂Awf

∂z
− ∂Aw′f ′

∂z
− ∂AFz

∂z
+BFz + ARf . (A.5)

At this stage it is timely to distinguish between turbulent and non-turbulent flux, namely
Fz = Ftz + Fnz, and define ”effective” turbulent flux, F ∗tz = Ftz +w′f ′. This effective turbulent
flux includes horizontally-averaged small-scale turbulent flux (Ftz) and the flux mediated by
organized flow structures, w′f ′. We also assume that the total non-advective flux Fz at the
bottom is the same at all bottom locations of the depth z. Then, taking into account the above
hypotheses and

B1 =

∫ x2(z)

x1(z)

[
∂y2

∂z
− ∂y1

∂z

]
dx =

dA

dz
, (A.6)

we transform (A.5) to

∂Af

∂t
= −

∫
ΓA(z)

f(uh ·n)dl− ∂Awf
∂z

− ∂AFnz
∂z

− ∂AF
∗
tz

∂z
+
dA

dz
(Fnz,b(z) +Ftz,b(z)) +ARf , (A.7)

where F∗,b(z) denote bottom values of fluxes at depth z. The mean vertical velocity, w, may
be expressed from the horizontally integrated continuity equation (1.2):

∂Aw

∂z
= Bw −

∫
ΓA(z)

(uh · n)dl, (A.8)

where Bw ≈ 0 according to assumption of quasi-horizontal bottom. This means, w arises from
disbalance between inflows and outflows and subsequent water level change. For the LAKE
model hasn’t been applied for water bodies with significant water level change, the term with w
is omitted in (A.9) in the model equation set. The next strong assumptions applied to deliver
a familiar 1D lake model equation from (A.9) are:

• the non-turbulent flux, that is the shortwave radiation flux if f is a temperature, is
horizontally uniform, so that Fnz(z) = Fnz,b(z) = Fnz(z);

• the ’effective’ turbulent flux may be represented via the gradient of mean quantity: F ∗tz =

−keff ∂f∂z ;

• the source averaged horizontally, Rf (f, ...), may be approximated as the same function of

mean values, Rf (f, ...) = Rf (f, ...).

Substituting these statements into (A.9), we finally get:

∂f

∂t
= − 1

A

∫
ΓA(z)

f(uh·n)dl+
1

A

∂

∂z

(
Akeff

∂f

∂z

)
− 1

A

∂AFnz
∂z

+
1

A

dA

dz
(Fnz(z)+Ftz,b(z))+Rf . (A.9)



Appendix B

Liquid water equations for snow cover

In the model, liquid water content, W , is expressed as the ratio of liquid water mass to the
total snow mass, W = ρw,sn/ρsn. To derive an equation for W , (1.11), first note that

W ′ =
ρ′w,sn
ρsn
− Wρ′sn

ρsn
, (B.1)

where the primes denote time derivative, for brevity. The local mass balance of liquid water is
governed by gravitational infiltration, γv, [γv] = m/s, and by the rate of freezing, F ∗fr:

∂ρw,sn
∂t

= −γvρw0

∂z
− F ∗fr, (B.2)

where we introduced the reference liquid water density, ρw0, to convert the volumetric flux to
mass flux. In turn, the snow density is determined by gravitational water flux, and by the snow
compaction, Csn:

∂ρsn
∂t

= −γvρw0

∂z
+ Csn. (B.3)

Inserting (B.3) and (B.2) in (B.1) yeilds (1.11).
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